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Abstract 

Floorplan Design is the problem of planning the positions and shapes of the 

modules at a very early designing stage of VLSI circuits in order to optimize the 

circuit performance. During this floorplanning phase, the circuit performance 

like layout area, interconnect cost, heat dissipation and power consumption, 

etc, should be minimized. There are several aspects that a floorplanning algo-

rithm has to deal with: the flexibilities of the modules, total area of the chip, 

routability and delays. All these are essential for optimizing the circuit perfor-

mance. With the scaling down of the IC technology, the number of transistors 

that can be built into a standard size chip has increased rapidly and inter-

connect delay has become a dominant factor in circuit delay. Both scalability 

and interconnect optimization are currently one of the most important issues 

in floorplan design. 

Placement constraints are useful that some modules are constrainted to be 

placed at some specify positions of the chip to reduce the interconnect cost and 

to improve the circuit performance. Clustering constraint in slicing floorplan 

is considered. It is a constraint in which some modules are required to be 

placed geometrically adjacent to each other forming a cluster in the floorplan. 

A linear time algorithm is devised to locate all the neighbors of a module in a 

normalized Polish expression. By making use of this algorithm, we can address 

the Clustering Constraint in slicing floorplan effectively. 
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Multilevel approach is also studied to address the scalability problem in 

floorplanning. The floorplanning process is divided into two phases: the Clus-

tering Phase and the Refinement Phase. In the Clustering Phase, heavily 

connected modules are clustered together recursively to reduce the intercon-

nect cost. The modules are then unclustered and packed in the Refinement 

Phase. Experimental results show that this approach can speedup the floor-

planning process for even very large circuits and can reduce the interconnect 

cost significantly. 

Slicing floorplans have two important advantages: they have small solu-

tion space and the best dimensions of the modules can be computed in linear 

time. However, slicing floorplan can only represent a small subset of packings. 

Many representations are proposed in order to represent non-slicing floorplans 

effectively and we have studied and analyzed different floorplan representa-

tions. Twin binary tree is one of the newly proposed representations for mo-

saic floorplan. We have proved an interesting property in non-slicing floorplan 

and devised an efficient algorithm to generate pairs of twin binary trees and 

to convert a twin binary tree to its corresponding packing. 
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佈圖的可變性與互連及佈圖的代表式 

作者：袁詠湘 

論文摘要 

佈圖是應用在超大規模集成電路結構設計的較早階段，主要通過計算模件的擺 

放位置與其尺寸，把版面面積、互連、熱能與能量消耗等影響電路性能的因素 

盡量減低，從而提高電路的性能。此外，佈圖的演算法也會考慮模件的形狀、 

大小、延時及可佈線性等問題。由於集成電路的特徵尺寸日益縮小，一片晶片 

可容納的電晶體數目大大增加，互連延時因而成了電路延時的主要因素；可變 

比例性與互連則成了現今佈圖面對的主要問題。 

佈局限制可以把所需的模件放置於指定的區域’從而縮短模件與連接口以 

及多互連模件之間的距離。我們把群集限制用於分片佈圖中。這限制是在佈圖 

上把指定的模件放於一起。我們設計了一個線性的演算法，此演算法能從分片 

佈圖表達式中找出在佈圖上一個模件的周圍模件，利用此演算法，群集限制便 

可用於分片佈圖中。 

多層法是一個解決佈圖上可變比例性問題的有效方法。我們把佈圖的過程 

分成兩部份，分別爲群集和求精。在群集的過程中，多互連的模件會組成一組， 

從而提早減低互連的成本。之後，模件會在求精的過程中作佈圖。從實驗結果 

得知，這方法可以減少運算的時間與互連接距離。 

分片佈圖有著解空間小及可以有效地計算模件的最佳尺寸等特點，這是非 

分片佈圖所不能做到的。現有很多的非分片佈圖表達式，都沒有分片佈圖的這 

些優點。我們分析了不同佈圖表達式，而且更證明了一個非分片佈圖的特性。 
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Chapter 1 

Introduction 

1.1 Motivations and Aims 

Integrated Circuit (IC) Technology is a revolution of this century. All the 

electronics devices including computers, phones, appliances, etc, are using ICs 

as the microprocessor, memory and interface chips. Devices become smaller, 

faster and more advanced due to the scaling down of the ICs technology. 

Very Large Scale Integration (VLSI) is a term describing a chip that is in-

tegrated of up to millions of transistors. It is difficult to handle up to millions 

or even billions of transistors. The transistors have to be placed, the connec-

tions between them have to be routed, and all these have to be done within 

a limited area on a chip. Optimization is very important in Physical Design 

of VLSI circuits and automation is unavoidable in speeding up this very large 

scale and complicated optimization. 

Computer Aided Design (CAD) in VLSI is playing an important role in 

the IC industry. Tools and algorithms are developed to solve different kinds 

of optimization problem in the Physical Design phase. This can help the 

engineers to develop their chips and products efficiently. 

Floorplan Design is an important step in VLSI Physical Design. The ob-

jective of floorplanning is to plan the positions, shapes and dimensions of 

the modules on a chip to optimize circuit performance like total chip area, 
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mutability, circuit delay, power consumption, etc., at a very early designing 

stage. 

With the scaling down of the technology in the IC development, the number 

of transistors that can be built into a standard size chip has increased rapidly. 

The functionality of the chip has also become more and more complicated. We 

need to handle large problem size in floorplanning and scalability has become 

an important issue [KahOO]. Most traditional floorplanners are unscalable since 

the process to obtain a good packing when everything is still very flexible is 

non-trivial and time consuming. They are unable to handle large problem size 

with even a few hundreds of modules in practical time. The runtime required 

will grow exponentially with the problem size. 

Interconnect optimization is another major concern in Floorplan Design. In 

some advanced systems today, as much as 80% of a clock cycle is consumed by 

interconnect and interconnect delay has dominated the system performance. 

We should consider interconnect as early as possible so that timing closure can 

be achieved more effectively in the later designing stages. In the floorplanning 

stage, we only got some preliminary information like module area, net infor-

mation and pin positions. Interconnect cost can only be estimated roughly by 

some simple methods at this stage such as half-perimeter and center-to-center 

estimations. We want to minimize these values in the floorplanning stage to 

improve the interconnect cost of the final circuit. 

The objective of this project is to investigate and study the methods to 

address the scalability and interconnect issues in floorplan design, and to study 

the representations of floorplan in general to achieve a better understanding 

of this important problem. 

Placement constraints in floorplan design are useful for specifying the place-

ment relationship between the modules according to their functionality in order 

to improve the circuit performance like interconnect cost and delay. Some pre-

vious works on placement constraints in slicing floorplans [YW99b, YW99a 
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have been done. Clustering constraint is considered in our research work in 

which some modules are required to be placed next to each other. The cost 

of routing can be reduced by imposing clustering constraint to the modules 

which are heavily connected. 

Multilevel approach is a good solution to address the scalability and inter-

connect issues in floorplan design. Multilevel approach has been used in circuit 

partitioning [KK95, AHK98, WA98, KAKS99] to handle large circuits. It con-

sists of two phases: clustering and refinement. The Clustering Phase groups 

modules with heavy interconnection together and the Refinement Phase per-

forms partitioning. We are pioneers in applying this multilevel technique in 

floorplan design and its applicability is strongly supported by the very promis-

ing experimental results. 

1.2 Contributions 

This thesis will present three pieces of work: slicing floorplan with clustering 

constraint, interconnect driven multilevel floorplanner and some studies of the 

properties and representations of non-slicing floorplan. 

• Clustering Constraint is considered in slicing floorplan. Given a set of 

modules M and a subset of modules 5 C M, we want to pack those 

modules in M such that the modules in S will be geometrical adjacent 

to each other. The wiring cost can be reduced by putting modules with 

a lot of connections closely together. Designers may also need this type 

of placement constraint to pack the modules according to their function-

ality. 

A method addressing clustering constraint in slicing floorplan is pre-

sented. A linear time algorithm is devised to locate neighboring modules 

in a normalized Polish expression and to re-arrange the modules such that 
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the floorplan generated is feasible and satisfys the given constraints. 

Experiments were performed for one to five clusters in a packing on 

different MCNC benchmarks and the results are promising. The runtime 

has only increased by 10% on average and the resulting deadspace is 

similar to that of the original floorplanner when no clustering constraints 

is imposed. 

• Multilevel technique is applied to floorplanning in order to reduce run-

time and to better optimize the interconnect cost of the final packing. 

This technique has been found to be very efficient in reducing the run-

time for the circuit partitioning problem and we want to find out if this 

technique is also applicable to floorplanning. 

The clustering and refinement methods for the multilevel approach are 

devised. Experiments were performed for up to a thousand of modules 

in the packing. The wirelength of the result packing is improved by 

about 10% on average in comparison with those without using multilevel 

approach. The runtime is halved and a small deadspace can be obtained. 

• Some interesting properties of non-slicing floorplan are studied. We have 

proved that a non-slicing floorplan must contain at least a module (or a 

supermodule) with four T-junctions of different orientations at its four 

corners. We also devised an efficient algorithm to generate pairs of valid 

twin binary tree and to convert a twin binary tree to its corresponding 

packing. 

1.3 Dissertation Overview 

This thesis is consisted of nine chapters. Introduction to Computer Aided 

Design in VLSI circuits and Floorplanning is given in Chapter 2. Chapter 3 

describes different types of floorplan representations. For each representation, 
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the transformation from the abstract representation to the real packing will be 

described. Some optimization techniques commonly used in floorplan design 

will be presented in Chapter 4. Chapter 5 is a literature review on intercon-

nect driven floorplan design which includes the placement constraint, buffer 

block planning and wirelength estimation model. Chapter 6 presents the work 

on clustering constraint in slicing floorplan. The algorithm details and proce-

dure will be given in this chapter. Chapter 7 describes the work on multilevel 

floorplanner. The clustering and refinement procedures are applied to the 

floorplanning problem. Chapter 8 is a study of the properties and representa-

tions of non-slicing floorplans. Finally, the conclusion will be given in the last 

chapter. 



Chapter 2 

Physical Design and 

Floorplanning in VLSI Circuits 

This chapter will briefly introduce several important stages in Physical Design 

of VLSI circuits. They are partitioning, floorplanning, placement, routing and 

compaction. These steps are essential for optimization can optimize and layout 

of the chips. Problem formulations and types of floorplan will also be discussed 

in this chapter. 

2.1 VLSI Design Flow 

Physical Design translates a circuit diagram into its layout. During this pro-

cess, we need to minimize the chip area and signal delay in order to improve the 

circuit performance. It consists of several steps including Partitioning, Floor-

planning, Placement, Routing and Compaction [She99]. Figure 2.1 shows the 

flow diagram of these processes. For each circuit, it will go through these steps 

to obtain a good layout before fabrication. 

The partitioning step divides a circuit into several parts such that the net 

connections between the parts are minimized. Partitioning is significant be-

cause the number of pins on the chip is limited and also a good partition can 

reduce the circuit complexity significantly. Some systems today may consist of 
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Figure 2.1: Physical Design Cycle 

millions of transistors on one single chip. It is impossible to layout the entire 

chip fast due to the limitation in computational power and memory. Circuits 

are usually partitioned recursively into smaller sub-circuits. Actually, the pro-

cess will also consider the size of the modules, the number of modules and 

the number of interconnections between the modules. It is beneficial to min-

imize the number of connections between the partitions and keep the size of 

the partitions similar. Kernighan-Lin [KL70] and Fiduccia-Mattheyses [FM82: 

methods are two famous algorithms in solving the graph bi-partitioning prob-

lem in which we want to divide a graph into two partitions with similar size. 

Floorplanning and Placement are an important step that determine the 
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shapes and positions of the modules on a chip. This will greatly affect the area 

and the dalay of the chip. The area of each module can be estimated since the 

amount of gates and logics are known after circuit partitioning. The intercon-

nect information are also obtained from the partitioning process. These are the 

input to the floorplanning process and the output is the packing that with the 

chip area and interconnect cost optimized. The dimensions and shapes of the 

modules are also varies. It is a computational intensive problem to determine 

both the dimensions and positions of the modules such that the chip area and 

interconnect cost are minimized. Placement determines the exact positions of 

the modules on the chip with more detailed information like pin assignment, 

module's dimensions, such that the chip area and delay constraint are satisfied. 

After the modules are placed, routing completes the interconnect between 

the pins of the modules. Routing may include two phases - global routing 

and detailed routing. Global routing determines a rough route for each net. It 

determines the regions in which the route should go to complete the connection. 

Detailed routing completes the route within the regions. The regions can be a 

channel, a box or over the modules. It is a hard problem because the resources 

for routing is limited and routablity is an important issue. 

The area of the layout will be further reduced in the Compaction stage. 

Compaction is to compress the layout in all directions such that the deadspace 

within a chip can be reduced, resulting in a smaller total chip area. After all 

the above stages, the layout have to be verified and checked whether it satisfy 

the timing and function requirement. Otherwise, the design flow have to be 

repeated until all requirements are satisfied. 

2.2 Floorplan Design 

Floorplanning is the problem of placing and sizing the modules after the circuit 

is partitioned into different units. During this floorplanning phase, the total 
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area of the layout and the interconnect cost should be minimized. 

The input to this floorplanning problem are the areas of the modules, the 

possible shapes of each module, possibly the I /O pins of each module and the 

netlist between the modules. 

There are two types of modules, namely hard modules and soft modules. 

Hard modules are the modules whose dimensions and shapes are fixed. Soft 

modules are the modules which dimensions and shapes are not known though 

their areas can be estimated by knowing how much logic each contains. There 

may be restrictions to the aspect ratio and orientation of the soft modules. In 

floorplanning, most of the modules are flexible and the floorplanning step is 

to determine the positions, dimensions and shapes of the modules. 

There are several aspects that a floorplanning algorithm has to deal with: 

the shapes of the modules, routablity, area and delays. All these are essential 

for optimization of the circuit performance. 

2.2.1 Problem Formulation 

A floorplan with n modules ( 1 , 2 , . . . , n) is an enveloping rectangle R subdi-

vided by horizontal and vertical line segments into n or more non-overlapping 

rectilinear regions [WL86] such that each region Ri must be large enough to 

accommodate the corresponding module i. 

A floorplan is evaluated by its packing area and interconnect cost. An nxn 

matrix C can represent the interconnections between n modules. C = (cjj)nxn 

with Cij > 0,1 < i,j < n, is the number of wire between each pair of modules. 

The most common method is that for every pair of modules i and j , we use 

dij to denote the distance between i and j. Then W, an estimate of the total 

interconnection wire length, can be computed as In most 

iterative methods, a floorplan is evaluated by the function A + AW. where A 

is the area and W is the wire length. The overall aspect ratio of the floorplan 
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also needs to be considered. 

The aspect ratio for each module will be limited to a range so that the 

routing inside each module will not be very long. For each rectangular modules 

i, there are three input values Ai, ri and Si. where Ai is the area of the 

module, 7\ and Si are the minimum and maximum aspect ratio of the module 

respectively. The list of three tuples {Ai, ri, 5i), {A2, ”2, S2), •. -, (An, r^, Sn) 

thus represent n modules to be packed. Let Wi and hi be the width and height 

of module i, then Ai 二 wihi and r̂  < ^ < s^ 

The input for non-rectangular modules will be different. For example, an 

L-shaped module will be represented by a five tuples {xi,工2, Vi, 2/2, s) to 

describe the geometric figure of the module where s denotes orientation of the 

module. 

2.2.2 Types of Floorplan 

There are two types of floorplan: slicing and non-slicing. A slicing floorplan is 

a floorplan which can be obtained by recursively partitioning a rectangle into 

two parts either by a vertical line or a horizontal line. An example is shown 

in Figure 2.2. 

A non-slicing floorplan is a floorplan which is not slicing. An example 

is shown in Figure 2.3. Non-slicing floorplans are flexible and more general 

that they can represent any packing. However, it is difficult to find a good 

representation for non-slicing floorplan to handle shaping efficiently. 

Bound-sliceline-grid [NFMK96], sequence-pair [MFNK95, KD98, MFK98], 

0-tree [GCY99], B*-tree [CCWWOO] and corner block list [HHC+00] have been 

proposed to represent non-slicing floorplans. Polish expression [WL86] is used 

to represent slicing floorplans. 
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Figure 2.2: A Slicing Floorplan 
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Figure 2.3: A Non-slicing Floorplan 



Chapter 3 

Floorplanning Representations 

This chapter will introduce several floorplan representations including Polish 

expression(PE), Bounded-Sliceline-Grid(BSG), Sequence Pair(SP), O-tree(OT), 

B*-tree(BT) and Corner Block List(CBL). For each representation, the floor-

plan construction method, moves and some extension works will be briefly 

introduced. 

3.1 Polish Expression(PE) [WL86 

This representation is for slicing floorplans. Otten has proposed a pioneer 

representation of slicing floorplan using slicing trees [Ott82]. The leaf nodes 

of the slicing tree represent the modules in the floorplan. The internal nodes, 

labelled either with a '+ ' or a represent the directions of the cuts in the 

floorplan. If an internal node is labelled by a '+，，the cut will be horizontal. 

The module represented by the left child will be below that of the right child 

in the floorplan. Similarly, a '*' represents the vertical cut, and the module 

represented by the left child will be on the left of that of the right child. This 

is shown in Figure 3.1 and Figure 3.2. If we read the slicing tree in postorder 

we will obtain an expression called the Polish expression which can represent 

the floorplan structure [WL86 . 
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Figure 3.1: Slicing Tree 
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Figure 3.2: Binary operations for slicing floorplans 
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The normalized Polish expressions is used to represent a solution. This ex-

pression is particularly suitable for the method of simulated annealing such 

that the floorplan can be modified by simply changing and swapping the 

operands and operators. The expression is said to be normalized if and only 

if there is no consecutive *，s and +，s. 

The area of the whole packing can be computed recursively from the leaves 

to the root of the slicing tree in linear time. The slicing tree is a binary tree. 

All the leaf nodes of the slicing tree are operands which represent the modules 

in the packing. The parents of the modules are the operators. For every 

two modules with the same parents in the slicing tree, they are either placing 

horizontally or vertically adjacent to each other to form a supermodule. The 

computation is done recursively at every nodes in a bottom up manner. The 

whole packing can be obtained at the root finally using this method. 

There are three kinds of moves. (1) Swap two adjacent operands,(2) Inter-

change the operators '*' and '+ ' in a chain. (3) Swap two adjacent operand 

and operator [WL86].The operands are from 1,2,. ••，n which represent the 

rectangular modules in the floorplan. The operands are either '+，or '*' in the 

Polish expression. For each iteration, one of the move will be selected and the 

cost of the floorplan will be calculated. The three types of moves are enough 

to transform an initial solution into any other expressions [WL86 . 

3.2 Bounded-Sliceline-Grid(BSG) [NFMK96 

Bounded-Sliceline-Grid(BSG) is a representation for non-slicing floorplan. This 

method is based on the bounded-sliceline grid structure (shown in Figure 3.3) 

with size p x q where p x q > n and n is the number of the modules of the 

packing problem. We may notice that BSG suffers a major problem that there 

are huge redundancies if the size of the grid structure is large. 

Horizontal and vertical unit adjacency graphs can be obtained from the 
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Figure 3.3: A 4 x 4 Bounded Sliceline Grid structure 
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Figure 3.4: Horizontal and vertical unit adjacency graphs 
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Figure 3.5: One of the assignment of module into the grid 
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\ Sh 

Figure 3.6: Horizontal unit and vertical unit adjacency graphs of the BSG 
assignment in Figure 3.5 

BSG as shown in Figure 3.4. In Gh = {Vh,Eh) and Gy 二 (K,丑^；), a source 

node Sh and Sy and a destination node th and t̂  are added respectively. 

Given a set M with n modules, the modules are assigned into the rooms 

of the BSG. Figure 3.5 gives one of the assignments of the modules in M = 

{a, b, c, d, e, / } into the grid. The weights on the edges of the adjacency graphs 

can be obtained from the widths and heights of the modules. We have a 

weighted adjacency graph shown in Figure 3.6. The longest paths in the graph 

Gh and Gy are the width and height of the final packing respectively. 
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Figure 3.7: The packing correspond to the BSG assignment in Figure 3.5 

Let lh{u) be the longest path length from Sh to u in Gh- It is the x-

coordinate of the bottom left corner of u in the packing. Similarly, ly{u) is 

the longest path length from Sy to u in Gy. By finding all pairs of lh{u) and 

we know the positions of all the modules and the packing is obtained. 

Figure 3.7 gives a packing corresponding to the BSG assignment in Figure 3.5. 

Packing is changed by assigning the modules into a different set of rooms in 

the BSG. 

3.3 Sequence Pair(SP) [MFNK95； 

A sequence-pair (r+，r—) is an ordered pair of module names. Given a set 

of module M = {a.b, c, d}, {abed, dbca) is one sequence pair for the modules 

in M. A sequence pair can represent all kinds of packings according to the 

following two rules: 

H-constraint: li s = { .. a .. b " a .. b .. ), module b is on the right hand 

side of module a. 

V-constraint: If s = ( .. a .. 6 .. b .. a .. ), module b is below module a. 

From the rules, we can construct the vertical constraint graph Gy and the 

horizontal constraint graph Gh in O(n^) time. There is an example shown in 
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Figure 3.8: H-constraint and V-constraint graph by the given sequence pair 
(abed, chad) 
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Figure 3.9: The packing corresponding to the sequence pair in Figure 3.8 

Figure 3.8. The vertices of the graphs represent the modules. The directed 

edges between the vertices represent the H-constraint and the V-constraint. 

In Gv, an edge e{i,j) of weight y denotes that module i is below module j by 

at least a distance of y. Similarly, an edge e{i,j) of weight x in Gh denotes 

that module i is on the left hand side of module j by at least a distance of x. 

Using the graph representations, we are able to determine the dimensions of 

the packing by computing the longest paths in the graphs. From the constraint 

graphs in Figure 3.8, a packing can be constructed as in Figure 3.9. 
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There are two kinds of moves in the sequence pair representation in the 

annealing process. They are exchanging two modules in the first sequence, 

and exchanging two modules in both sequences. 

Besides, there are some research works focusing on improving the com-

plexity of the packing construction algorithm of sequence pair using some 

sophisticated data structure. The papers [TTWOO] and [TWOl] presented 

the work that improved the the complexity of the algorithm to O(nlogn) and 

0{n log logn) respectively. The method in [TTWOO] is based on some proper-

ties of the longest common subsequence in a sequence pair. [TWOO] improved 

the method in [TTWOO] by the priority queuing technique and give a better 

complexity. 

3.4 O-tree(OT) [GCY99 

These representations of non-slicing floorplan are based on ordered trees. So, 

it is called 0-tree. 

An ordered tree consists of an ordered set of subtrees T — {Ti, T2, . . . , T^} 

where m > 0. The root of the tree has zero or more children, and every node 

of the tree can be visited using depth-first-search. 

The topology of the tree can be represented by a 2(n - l)-bits string. 

Together with the sequence of nodes visited, we can represent an ordered tree 

using two strings. The two tuples (T, tt) where T is a bit string and tt is 

a sequence of nodes is used to represent an ordered tree. Figure 3.10 is an 

ordered tree represented by the two tuples (00110100010111, dacfgeb). 

A horizontal 0-tree (T, tt) can be used to represent a packing. We use Xi 

and Wi to denote as the x-coordinate and width of node i on the tree. The 

root of the tree represents the left boundary of the packing, i.e., Xroot — 0 and 

Wroot = 0. For other nodes in the horizontal 0-tree, Xj = X i W i if node i is 

the parent of node j. The x-position of module j is the sum of Wi of all the 
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場 / A 
Figure 3.10: The depth first search of an ordered tree 

modules lying on the path from the root to j. The y-position of the modules 

are determined by the permutation tt. Let be the set of modules Mk with 

its order lower than Mi in the permutation tt and its interval (Xk,Xk + Wk) 

overlaps with the interval(a;^, Xi + Wi) If there is no such tp{i) for node i, yi = 0 

in which there is no module with lower order of permutation is placed at 

its x-interval. The module i will then be placed along the lower boundary. 

Otherwise, yi 二 ma:]CkeiKi)�yk + ^k). According to above transformation, we 

can convert an 0-tree representation into its corresponding packing in linear 

time. Figure 3.11 shows the packing corresponding to the tree in Figure 3.10. 

However, this representation use sequence encoding that inevitably limits 

the insertion position and solution quality. Besides, this packing scheme only 

runs in a one-dimensional manner which may not lead to a good placement 

since the modules are placed in a two-dimensional plane. 

The move of the 0-tree representation consists of several steps. First, a 

module Mi in the original tree is selected. Mi is removed from the tree and 
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I 

Figure 3.11: A pack correspond to the 0-tree in Figure 3.11 

then inserted back to the position with the best value of cost function among 

all the other possible inserting positions. 

3.5 B*-tree(BT) [CCWWOO 

It is based on ordered binary tree and the admissible placement 0-tree dis-

cussed previously. With the nice properties of order binary tree, it gives a 

better complexity in insertion, deletion and searching in comparison with the 

0-tree representation. 

The packing can be constructed from a B*-tree representation using a re-

cursive method. The root node of a B*-tree corresponds to the module at 

bottom left corner. Let a node n̂  in the B*-tree corresponds to the module bi 

in the packing. Let Ri be the set of modules located on the right and adjacent 

to hi. The left child of rii will correspond to the lowest module in Ri that is 

unvisited. If a node rij is the right child of a node rii module bj will be placed 

above bi. If a node rij is the right child of a node rii, module bj will be placed 

on the right of bi. Figure 3.12 shows a B*-tree and its corresponding packing. 

The packing can be changed by following methods: (1) Swapping two mod-

ules; (2) Delete a node from the tree and insert it to another place. 
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Figure 3.12: An example of B*-tree and its correspond packing 

3.6 Corner Block List(CBL) [HHC+00 

It is a topological representation for non-slicing floorplan. The representation 

consists of three tuples {S, L, T) called corner block list. 5 is a sequence 

of module names, L is a list of orientations and T is a list of T-junction 

information. 

S is the order in which modules are inserted into the packing from the right 

top corner. L consists of (n—1) bits where n is the number of modules in S that 

indicates the orientations of the modules when being inserted into the packing. 

There are two types of orientation: horizontal and vertical, denoted by a '1' and 

a '0，respectively. For example, module g in Figure 3.13 is horizontally oriented 

and the T-junction at its bottom left corner is rotated by 180 degrees. If the 

T-junction is rotated by 90 degrees in anti-clockwise, the modules is vertically 

oriented (like module d and e). 

T is a sequence of '0' and '1' bits that counts the number of T-junctions 
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Figure 3.13: An example non-slicing floorplan 

attached to a corner block. The number of consecutive 'I's corresponds to the 

number of T-junctions attached to a corner block and the '0，s are delimiters 

to separate one sequence of T s from another. 

The corner block list representation of a packing can be done by removing 

the corner block from the packing one by one. If the corner block is horizontally 

oriented, the left segment of the module is shifted to the right boundary of 

the packing. For example, in the first deletion step of Figure 3.14, the left 

segment of g is shift to the right boundary such that modules a, d and e 

become adjacent to the right boundary of the packing. Similarly, if the corner 

block is vertical oriented, the bottom segment of the module will be shifted 

to the top boundary of the packing. The attaching T-junctions will be pulled 

along with the segment. 

While deleting a corner block from the packing, its module's name, ori-

entation and number of attaching T-junctions will be recorded into the list 

S, L and T respectively. Figure 3.14 shows the deletion step of a packing. 

Therefore, for the packing in Figure 3.13, we will obtain the corner block list 

(cbfedag, 010001, 0010010110). A packing can be obtained from the corner 

block list by applying the procedures reversely, i.e., inserting the modules in 

the sequence of S back to the packing using the information in L and T. 
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Figure 3.14: Illustrates deletion of corner block of the packing in Figure 3.13 

Figure 3.15: Horizontal constraint graph and vertical constraint graph of pack-
ing in Figure 3.13 
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The horizontal constraint graph (HCG) and vertical constraint graph (VCG) 

(shown in Figure 3.15) are introduced to perform the insertion and deletion of 

the corner block. In HCG, the west pole (W) and east pole (E) represent the 

left and right boundary of the packing respectively. The top and the bottom 

boundaries of the packing is represented by the south pole (S) and north pole 

(N) in VCG. In the constraint graphs, the edges represent the modules and the 

nodes represent the segments in the packing. Note that the constraint graphs 

are planar. 

If a module is a corner block, its corresponding edges in HCG and VCG 

will be pointing to the destination nodes. As we remove the corner block g 

from the packing, the edges will be removed and the graph will be changed If 

the source node of a deleted edge e has no outgoing edge after the removal of 

e, all edges pointing this node have to be changed to point to the destination 

node of e after the removal. This node can then be removed from the graph. 

The corner block list representation has a disadvantage that it can only 

represent mosaic floorplans. A mosaic floorplan is a floorplan without empty 

room such that each room is assigned one and only one module. Also, it 

is topological equivalence on segment sliding. This means that slides of a 

non-crossing segment of T-junction give the same representation. Besides, 

it is non-degenerate topology that the case of two distinct T-junctions meet 

at the same point is not considered. Therefore, this representation cannot 

represent all possible packings especially for those with empty space in the 

packing. The Extended Corner Block List (ECBL) is introduced to overcome 

this problem [ZDH+01；. 

In ECBL, some dummy modules are introduced into the packing called 

false block(FB). Their widths and heights are zero. The FB are included in 

the insertion and deletion procedure in the corner block list. An extending 

factor A is introduced such that the total number of rooms in the packing is 

An and the number of FB is An — n. This factor will affect the quality of 
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packing significantly. 

There are three kinds of moves in CBL representation during the annealing 

process. (1) Randomly exchange the order of the modules in S• (2) Randomly 

change an orientation in L. (3) Randomly change a bit in T. Other moves in-

clude changing the orientations and the shape is of the modules. However, the 

moves may lead to some infeasible representations which cannot be converted 

to a packing. 



Chapter 4 

Optimization Technique in 

Floorplan Design 

There are two main types of optimization techniques used in our approaches for 

floorplan design: deterministic and non-deterministic. For the packing process, 

we used simulated annealing which is a non-deterministic method to optimize 

the packing results by the cost function. Other commonly used techniques like 

genetic algorithm and integer programming will also be discussed. For further 

optimization of the resultant packing, we use some deterministic methods like 

the shape curve computation and the Lagrangian Relaxation technique, to 

compute the best dimensions of the modules and to reduce the total chip area. 

These techniques will be discussed in this chapter. 

4.1 General Optimization Methods 

4.1.1 Simulated Annealing 

Simulated annealing simulates the behavior of a complex system consisting 

of a large number of interacting atoms in thermal equilibrium at a certain 

temperate. This technique was widely applied to placement, floorplan design, 

channel routing and layout optimization. The method can usually produce 
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high quality solutions although the annealing process may take a long time. 

The following is a generic simulated annealing algorithm: 

Algorithm: SA 

Begin 

S •.二Initial solution Sq 

T ：二Initial temperature Tq 

While stopping criterion is not satisfied do 

Begin 

While not yet in equilibrium do 

Begin 

S, :=Some random neighboring solution of S 

A := Cost{S)-Cost{S) 

Prob :=mm(l, e-么“） 

If random(fi, 1) < Prob then S := S' 

End; 

Update T 

End 

Output best solution 

End 

By applying different function Cost{S) to the simulated annealing algo-

rithm, we can optimize different aspects of the problem. In floorplanning, 

Cost{S) is usually equal to the cost function A-^XW where A is the total area 

of the packing, W is the wirlength and A is a constant. Area and wirelength 

are the two main aspects to be optimized. The cost function equation can be 

changed to satisfy the requirement of any specific floorplanning problem. 

In simulated annealing, one important issue is to have a concise represen-

tation and description of the solution configuration. Also, the neighbors of 
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each solution have to be defined such that the optimal solution is reachable. 

Any particular annealing process will include initial temperature, moves and 

temperature range [WLL88]. For each representation described in the previous 

chapter, they have defined the set of moves in an annealing process such that 

every solution is reachable. 

4.1.2 Genetic Algorithm 

Genetic Algorithm is commonly use in solving a wide range of problems in-

cluding control system, function optimization and combinatorial problems. For 

this algorithm, a population of solutions is maintained and is allowed to evolve 

through successive generations. 

The solutions in the next generation can be formed by two operations:(1) 

crossover, i.e., merging two solutions from the current generation; (2)mutation, 

i.e., modifying an individual solution. The algorithm can be parallelized in 

order to speed up the computational time [CHMR91]. The difference between 

simulated annealing and genetic algorithm method is that there can be more 

that one solution in the solution set at a time for genetic algorithms while 

simulated annealing only obtain one best solution. In a genetic algorithm a 

population of solution is used to generate the offspring (next generation of 

solution). 

In the paper [CHMR91], the Polish expression is used as the floorplan rep-

resentation. There are four types of crossover operations in Figure 4.1 which 

demonstrates the crossover operations: COi, CO2, CO3, CO4. 

CO I： It first copy the operand from parent PI into the corresponding posi-

tions in the offspring O. Afterwards, it copies the operators ( '+', '*') from P2, 

by a left-to-right scan to fill up the missing spaces in O. 

CO2： It is similar to COi, it copies the operators from Pi first and fill the 

missing space of O with the operands in P2. 
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Parent 1 + * Parent 1 1 4 5 6 

O f f s p r i n g 1 4 5 6 ^ * * . * 8 7 + 3 ^ * + + Offspring 2 6 8 7 * + + 5 4 * 1 3 * + * 

////y// ///I //// 
Parent 2 2 6 8 * * 7 * 5 + 4 * 1 3 + + Parent 2 2 6 8 * * 7 * 5 + 4 * 1 3 + + 

(a) COi (b) CO2 

Parent 1 1 4 5 6 * + + 8 7 * 乂 3 2 * + * 

\ 
Of f s p r i n g ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ * * 

Parent 2 5 + 4 * 1 3 + + 

, ^ Si ‘ ~ ^ , ^ Si 
I 1 I I 

Parent 1 1 4 5 6 * + + 8 7 * 3 2 * + * Parent 1 1 4 5 6 * + + 8 .7 * 3 2 * + * 
Of fspring 6 5 4 1 * + + 8 7 * 3 2 * + * Offspring 8 7 * 3 2 * + 6 + 5 * 4 1 + + 

/ ^ ^ ^ ^ z ' z : / : 舞 
Parent 2 2 6 8 * * 7 * 5 + 4 * 1 3 + + Parent 2 2 6 8 * * 7 * 5 + 4 * 1 3 + + 

(c) CO3 (d) CO4 

Figure 4.1: Crossover operation of the genetic algorithm in [CHMR91 

CO3： A subtree in Pi is selected and copied it to the correspond position 

of the offspring. The spaces are filled up by operators from Pi and operands 

from P2. 

CO4： It uses two parents to produce two offspring by interchanging the 

subtree of the parents. 5i and S2 of the same size are selected from parents Pi 

and P2. It fails if there is no 5i and S2 in Pi and P2. The next procedure will 

be similar to CO3. The offspring Oi will be created by copying S2 from P2 to 

the correspond position of 5i in Pi. O2 is obtained similarly with the role of 

Pi and P2 interchanged. 

For the result shown in the paper [CHMR91], the performance is slightly 

better that of the simulated annealing method. Genetic algorithm gives a faster 

computation than the simulated annealing method since it can be implemented 

on distribution system. Selecting, crossing over pairs of solutions and mutating 

are done in parallel. 
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4.1.3 Integer Programming Method 

An analytical method for general floorplan design was proposed by Sutanthav-

ibul, Shargowitz and Rosen in 1991 [SSR91]. This method is based on a mixed 

integer programming model and a standard mathematical software which can 

be applied on both rigid and flexible modules. 

Consider two modules i and j. Let (Wi, hi), {wj, hj) be the dimensions of 

the modules, {xi, yi) and [xj.yj] are the coordinates of the lower left corners 

of the modules. Since i and j are non-overlapping, at least one of the linear 

inequalities shown below holds: 

Xi -{-Wi < Xj， i is to the left of j 

Xi — Wi y OC j, 1 IS to the right of j 

yi + hi< yj, i is below j 

Vi- hi > yj, i is above j (4.1) 

Two variables Xij and yij of value either 0 or 1 are used for each pair of 

blocks. Two bounding function W and H are defined where \XI - XJ\ < W 

and \YI - YJ\ < H. W and H is either equal to WMAX and HMAX where the 

maximal width and height. If WMAX and HMAX is not given, then W = 22I=I 川I 

and H — YL^I "厂 

The modules are allowed to rotate by making use of a variable Zi of value 

either 0 or 1. If 二 0, module i is placed in its initial orientation. If 2：̂ = 1, 

module i will be rotated by 90� . Then, equation 4.1.3 can be rewritten as 

follow: 

oci + Zihi + (1 - Zi)wi < Xj + M{xij + yij) 

Xi — Zjhj — (1 — Zj)wj > Xj - M(1 Xij + yij) 

Vi + ZiWi + (1 - Zi)hi < yj + M(1 + Xij — yij) 
Vi — ZjWj - (1 - Zj)hj > yj — M(2 — Xij yij) (4.2) 
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2/* > + (1 - zi)wi + Zihi (4.3) 

where M — max{W, H) and y* is the height to be minimized. The model above 

does not consider flexible modules and interconnect lengths, and it requires a 

substantial number of variables and constraints for the optimization [SSR91 . 

For a flexible blocks, its width and height Wi and hi can be varied but its 

aspect ratio is bounded and its area Ai remain fixed such that Ai = wihi This 

function can be linearized about the point of maximum allowable width Wmax 

by applying the first two member of its Taylor series [SSR91 . 

^Wi is a continuous variable for each flexible module. For a flexible module 

i and a rigid module j, the set of inequalities 4.1.3 can be rewritten as follows: 

Xi + Wi,max —么Wi < Xj, 1 is to the left of j 

Xi — Wj > Xj, i is to the right of j 

Vi + hiQ + AwiXi < yj, i is below j 

yi-hi> Vj, i is above j (4.4) 

where hfi 二 , \ 二 2' . The constraints on routablity can also be 

formulated. A chip is mutable if the length of the available routing tracks 

is 1.5 to 2.0 times longer than the actual length of the required interconnec-

tions [SSR91]. This allows the constraint to be formulated as inequalities. 

A greedy procedure used to solve the floorplanning problem is given below 

where k is the total number of modules. 

Procedure FloorplanDesign 

Begin 

Select a group of m modules as a seed 

Formulate a system of linear constraints for these unpositioned modules 

Call an integer programming procedure to obtain the first partial floorplan 

While ( m < k ) do 

Begin 
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1. Select a new group of e modules based on time consideration the 

connectivity to the already fixed modules in the partial floorplan 

2. Find a set of d covering rectangles for the partial floorplans, 

where d < m 

3. Formulate a system of linear constraints for d covering 

rectangles and e unpositioned modules 

4- Call an integer programming procedure to obtain a new partial 

floorplan 

End 

Perform global routing 

Adjust floorplan 

End 

4.2 Shape Optimization 

4.2.1 Shape Curve 

Shape Curve computation is used in Polish expression. The total area of 

a floorplan can be computed and optimized by using shape curve as shown 

in Figure 4.2. The values on the curve represent the possible dimension of a 

module where x is the width and y is the height. For the curve in Figure 4.2(a), 

there are only two possible dimensions: {ai, bi} and {a?, 62}. The shape curve 

of a module can also be a smooth curve and the module will be very flexible 

in this case as shown in Figure 4.2(b). 

Shape curves can be used to compute the packing area optimally. Let 

r and A be two shape curves. The new shape curve ^ that represent the 

supermodule (a sub-floorplan that consists of more that one basic modules) 

by combining the two modules can be computed from P and A. 
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Figure 4.2: Shape curve of a rectangular module 

If the cut is vertical, ^ == F + A such that 

^ : {{u,v -\-w)\{u,v) e r and {u,w) e A} 

Similarly, if the cut is horizontal, ^ = F * A such that 

屯 : { { u + V, w)\{u, w) e r and w) G A} 

4.2.2 Lagrangian Relaxation 

We are given n modules {Mi, M2, • •.，M }̂ where each modules Mi has an area 

Ai. Let Wi and hi be the width and height of the modules Mi and r̂  and Si 

be the minimum and maximum aspect ratio of Mi respectively. We denote 

the minimum and maximum width of Mi by Li = y / A J n and Ui = y/Ai/si 

respectively. 

As mention above, we can construct a horizontal constraint graph and a 

vertical constraint graph from any sequence pair. For every edge e{ij) in Gh, 

we have the following constraint: 

Xi + Wi< Xj 
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where xi and Xj are the x positions of the low left corners of module Mi and 

Mj respectively. Similarly, for every edge e[i,j) in G^ , we have the following 

constraint: 

Vi H——< Vj 
WI 

where yi and yj are the y positions of the low left corners of module Mi and 

Mj respectively. 

A dummy vertex labeled n + 1 is added to both Gh and Gy. For every 

vertex i without any out-going edge in both G^ and Gh, an edge e(z, n + 1) 

with zero weight is added. Thus, the problem can be formulated as a geometric 

program(PP): 

Minimize Xn+iVn+i 

Subject to Xi + Wi < Xj 

\fe{ij) e Gh 

yi + ^.<yi M'^J) ^ GV 
Li <Wi< Ui \/l<i<n 

Let Xij denote the multiplier which is used for Lagrangian relaxation for 

the constraint Xi Wi < Xj and fiij denote the multipliers for the constraint 

Hi ^ < Vi. Let and be the vectors of all the Lagrangian multipli-

ers introduced into the constraints. Then, we can formulate the Lagrangian 

relaxation subproblem associated with the multiplier and 节,denoted by 

LRS/, 7t), as shown below: 

Minimize Xn+iyn+i+ 

^E{I,3)EGH XIA工I + Û i — + 

^e{i,j)eGv ^hjiVi + 念 _ 2/i) 
Subject to Li < W i < Ui VI < z < n 

A corresponding Lagrangian dual problem LDP of PP can be formulated for 

the optimal solution , denoted by of the subproblem 

for a particular pair of and as shown below: 
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Maximum , 7^) 

Subject to > 0 and > 0 

Since the original problem PP is convex, we can imply that if (A , jt) is 

the optimal solution to LDP. The corresponding solution of LRS/( A , ~jl) is 

the optimal solution to PP. 

Considering the Lagrangian of PP, we have 

C =Xn+iyn+l + Xij{Xi~{-Wi-Xj)-{- ^ fJ^ijiVi + ^ " Vj)^ 

y^ Ui{Li - Wi) + ^ Vi[wi - Ui) 
l<i<n l<i<n 

Using the Kuhn-Tucker conditions, we can imply the ^ = 0 and 祭 = 0 

for all 1 < 2 < n + 1 at the optimal solution of PP. Taking the partial 

derivatives of C, we have the following optimality conditions: 

eii,j)eGh e{j,i)eGh 

e{i,j)eGv e{j,i)eGv 

LDP is convex due to PP, so the optimal , ~j}) can be found by sub-

gradient optimization. However, the solution may not satisfy the optimality 

condition and we have to project a new pair of ( t , to the nearest point 

(A^,/?) that satisfy the optimality conditions. These steps continue until the 

solution converges. 



Chapter 5 

Literature Review on 

Interconnect Driven 

Floorplanning 

This chapter will have a review of the papers related to the interconnect driven 

floorplanning. They include placement constraint, timing analysis driven, 

buffer block planning and congestion control. Placement constraints are use-

ful that allow some modules are constrained to be placed in some specified 

positions to reduce the interconnect cost and to improve the circuit perfor-

mance. Buffer block planning optimize the delay by inserting buffers within 

the deadspace of a packing. Instead of minimizing the distance of wiring, we 

also conserve the problem of congestion in the floorplanning stage. 

5.1 Placement Constraint in Floorplan Design 

5.1.1 Boundary Constraints 

Boundary Constraints in floorplan design have been applied on slicing floor-

plan [YW99a], sequence pair [LLWWOl, TWOl] and corner block list [MDH+01 . 

Boundary Constraint is a constraint in which some modules required to be 
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placed along placed at the certain boundary of the packing. This allows the 

modules to be connected to the I /O pads much more easier and thus reduces 

the interconnect cost. For this problem, the modules are divided in to five 

sets, M^, MT, M^, MR and M^. M^ is a set of modules which can be placed 

freely at any position of the packing. The other four sets of modules are under 

boundary constraints such that the modules in M^, M^, M^ and M^ have 

to be placed along the top, left, right and bottom boundary of the packing 

respectively. Figure 5.1 illustrates the boundary constraint. The modules are 

assigned to each of the five sets according to its I /O pin connection. 

The papers [YW99a] and [MDH+01] use a similar technique to solve the 

problem in different floorplan representation. Methods are devised to find the 

modules which are located at the boundaries of the packing by just looking 

at the representation. In this way, they are able to check if the boundary 

constraints are satisfied. If some constraints are not satisfied, the modules 

under boundary constraint will be swapped with those modules lying at the 

boundary positions. There is though a problem this method which is, it may 

happen that the constraint cannot be satisfied in a packing since there are only 

a limit number of boundary positions for each packing. Solving this problem, 

a penalty term is introduced to the cost function to penalize violating the 

constraints during in the annealing process. 

The paper [LLWWOl] using a different method to solve the same problem 

in floorplan design. The method is based on sequence pair representation. A 

set of rules are devised from the properties of sequence pair. For example, if 

module x is in Ml and module y is in Mb, they have to obey the lb-property in 

the sequence pair(r+, r_). The lb-property is that position of y in r+ should 

be greater than that of x in r+. In this way, all the constraints can be satisfied 

in every packing after apply the rules and a feasible floorplan can always be 

obtained. 
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Figure 5.1: The Boundary Constraints 

5.1.2 Pre-placed Constraints 

Pre—placed constraints in floorplan design have been applied on slicing floor-

plans [YW98] and non-slicing floorplans [FMK97, MK98，TWOl: 

Pre-place constraints is a constraint in which some modules are required to 

be placed at certain positions of the packing. It is important that a floorplanner 

can handle pre-placed modules since some modules may have their on the 

positions fixed in some practical problems. Figure 5.2 illustrates the pre-placed 

constraints. 

In the paper [YW98], a reference point ref{X) is associated with each 

supermodule X if it contains at least one pre-placed module. All possible 

positions of ref{X) within the supermodule X can be kept using four num-

bers, boUom{X), top{X), left{X) and right{X) (Figure 5.3) and the reference 

point of a supermodule can be computed from the reference points of its chil-

dren. Figure 5.3 illustrates the steps of updating the locations of the reference 

point. Simulated annealing is used and a penalty term is introduced into the 

cost function such that the pre-placed modules will be pulled to the desired 

positions. 

The paper [MK98] use an efficient method to solve the problem based on 
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Figure 5.3: Reference point inherit for the supermodule 
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the sequence pair representation. An additional edge of a weight equal to the 

pre-assigned coordinate is added from the source node to the pre-placed mod-

ules in the horizontal and vertical constraint graph respectively. The resultant 

placement is called propped-realization. The placement may still not be a fea-

sible one since the additional edges can only constraint the pre-placed module 

to be place at least as far as the pre-assigned coordinates. An adaptation pro-

cedure is devised to test the placement of a module violating the constraints 

and fixed them. 

5.1.3 Range Constraints 

Range Constraints in floorplan design have been applied on slicing floorplans 

YW99b] and non-slicing floorplans [TWOl:. 

Given a rectangular region Ri = {{x,y)\xi < x < X2,yi < y < "2}，some 

modules with range constraint are required to be placed within Ri in the final 

packing. The range constraint is more general than the pre-placed constraint 

since very pre-placed constraint can be specified as a range constraint. It 

is useful to consider range constraint in the practical floorplanning problem. 

Figure 5.4 shows an example of a feasible floorplan in which a module is with 

range constraint is placed in the region Ri. 

The paper [YW99b] addresses the problem of range constraint using a 

similar technique for pre-placed constraint. There are four variables for each 

supermodule X {right{X), left{X),top{X) and hoUom[X)) that indicates in 

which X should be placed. For example, if a module Y with width w and 

height h is constrained to be placed within the region {{x,y) \ Xi < x < 

X2,yi < y < 1/2}, right{X) = Xi -h w,left[X) = X2 - w,top{X) = m + h 

and bottom{X) = y2 - h. The range for a supermodule can be inherited from 

its children. After the shape curve computation step, it can be determined 

whether a certain module is placed within the desired range constraint. A 
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Figure 5.4: The Range Constraints 

penalty term is introduced into the cost function so that the packing will 

converge to satisfy the range constraint finally. 

5.1.4 Symmetry Constraints 

Symmetry Constraints in floorplan design have been applied using 0-tree rep-

resentation [PBLCOO . 

Symmetry Constraints is a constraint in which some modules are required 

to be placed symmetrically along an axis. Two terms, symmetry pair and sym-

metry groups, are introduced to define the symmetry constraints clearly in the 

floorplan design problem. Symmetry pair is a pair of modules of the same 

dimensions and have to be placed symmetrically with respect to an axis. Sym-

metry group is a set of symmetry pairs which share the same axis. Given a sym-

metry group, S = {(M^,, Mb,), (M^,, MftJ,. . . , (M^,, M^J} where 

is a symmetry pair for z = 1 , . . . , A;, then for the case of horizontal symmetry 

^ai —工 bi 

Vai + Vbi + ha, = 2ys 

where i/s is the position of the common symmetry axis, and yâ  and hâ  are 

the x-position, y-position and height of module Ma- respectively. Figure 5.5 
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Figure 5.5: The Symmetry Constraints 

shows an example that illustrates the symmetry constraint. In the example, 

module (a, b), (c, d) and (e, / ) is the symmetry group with symmetry constraint 

in the packing. 

Symmetry Constraints is useful to handle the analog circuits. It is because 

analog circuits usually use differential architectures based on electrically sym-

metric networks. In addition, symmetry is commonly used balance thermal 

effects and to match interconnect parasitics and device parameters. 

5.2 Timing Analysis Method 

In the paper [SYTB95], the authors described the implementation of a floor-

planner that considers the timing information. The algorithm is divided into 

two phases. Phase I focuses on timing optimization while phase II performs 

floorplan refinement to allow the aspect ratios of the modules to be changed. 

However, there are some disadvantages. The floorplanner uses the timing data 

from another timing analysis program and includes the results into a fitness 

function as follows: 



Chapter 5 Literature Review on Interconnect Driven Floorplanning 44 

Fitness{i) = ^ x + ^ x Wr + ^ x Wl 

八macc 丄 max •'-'max 

where L* are the area, clock speed and wirelength of the circuit respec-

tively. Amax, Tmax, Luiax are the maximum values in the given population. 

Wa, Wt, Wl are the user specified relative weight of different aspects. 

This equation including the area , timing and wirelength factors. However, 

using another timing analysis program is time consuming. The method is 

based on an iterative method and the timing value is included only in the cost 

function. It does not have any scheme that directly reduce the delay of the 

system during the process. 

There is another paper [YSAF95] which described a similar approach. This 

paper combines the force directed approach and the constraint graph approach. 

It is also consisted of two phases. In Phase I, a timing and connectivity driven 

topological arrangement is acquired using a force directed approach. Then, the 

topological arrangement is transformed into a legal floorplan in Phase II. The 

floorplan is obtained from a greedy approach is such a way that the modules 

are put into the floorplan one by one. The growth of the chip will be controlled 

by a given aspect ratio. A gain function is used to an unplaced module into 

the floorplan in each step. The gain function of module i is computed as: 

CLOCK - Ui  
⑶ 减 = C L O C K 

Cij + 3 (1 — Pj�costj 
JEFK IEBJJENK 

where CLOCK is the clock period and ui is the delay bound on net rii e N 

computed from the timing analyzer. Cij is the connectivity between modules 

i and module j. The approach also use the timing analyzer to analyze circuit 

performance. 

In the paper [VNLG95], another timing driven floorplanner is introduced. 

The timing analyzing process is also done by a timing analyzer. It is not 
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efficient since the timing information have to be analysis in each iteration and 

thus the total computational time for the floorplanning step is increased 

5.3 Buffer Block Planning and Congestion Con-

trol 

Most of the interconnect optimization like buffer insertion/sizing, wire sizing, 

etc., are done on the layout after placement. It will be more effective if inter-

connect optimization can be done in the earlier stage such as the floorplanning 

stage. 

5.3.1 Buffer Block Planning 

Buffer insertion is a very effective and useful method to minimize the delay of 

a wire. It is an active devices to break original long interconnects into shorter 

ones such that the overall delay can be reduced. The first publication about 

buffer block planning is [CKP99]. The concept of feasible region(FR) was 

introduced. The FR for a buffer B is defined to be the maximum region where 

B can be located such that by inserting B into any location in the region, 

the delay constraint can be satisfied assuming that other buffers are inserted 

correctly. Figure 5.6 shows the feasible region of k buffers on a wire. For a 

long interconnect with k buffers inserted, the feasible region for the i-th buffer 

{i < k) is Xi e [xmini,Xmaxi] wheie Xmin and Xmax can be computed using 

Elmore delay model: 
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Figure 5.6: Feasible regions for inserting k buffers. 

where 

帅•�_ (Rb - Rd)c , r{CL-C,)+rcl 

K'“k, i) = m — Treq + [Rd + + f—-二]+ - l)Cb + Cl] 

rcf {i - l)c{R, - Rdf {k - i)r{C, - Cl? 
+ 2{k-i + l) + L ^ 2{k-i + l)c 

r, c are the unit length wire resistance and capacitance respectively, T^ is 

the intrinsic delay of the buffer, C ,̂ Rb is the input capacitance and output 

resistance of the buffer, and Rd, C l and I are defined in Figure 5.6. 

Besides, the minimum number of buffers to meet the delay constraint Treq 

for an interconnect of length I is devised as 

/Cm切一 ^ 

where 

LU 二 RBCB + TB 

K, = Treq + — Cl? + '{Rb — Rdf — 叫 + cRt)l-Tb — RdCt — RbCL c r 

Kq = + {tCl + cRd)l — Treq 
Li 
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Figure 5.7: 2-D feasible regions with existing placed modules. 

In a floorplan, a feasible region is bounded by two parallel lines with Man-

hattan distances from the source to be Xmim and Xmaxi respectively as shown 

in Figure 5.7. For those parts of a feasible region which overlap with a module, 

they have to be removed from the feasible region. 

The buffer block planning is a hard problem in which the number, size and 

positions of the buffers have to be determined. Besides, if there is not enough 

space for the buffers to insert in order to satisfy the timing requirement, the 

packing have to be expanded. The buffer block planning algorithm in [CKP99 

have several limitations. First, it only makes use of the deadspace in the pack-

ing. The formulae are simplified to reduce the runtime in handling thousands 

of nets. In addition, only one buffer is inserted for a single net. 

Their buffer block planning algorithm first builds the horizontal and vertical 

polar graphs. Each channel is divided into a set of rectangular tiles for better 

manipulation and representation of buffer blocks. Finally, the algorithm will 

insert as many buffers as possible by selecting the most suitable tiles for them. 

The buffer block planning algorithm in [CKP99]is a direct method to ad-

dress the problem. The paper [TWOO] have presented a polynomial time opti-

mal algorithm based on network flows for solving the problem of inserting the 
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Figure 5.8: Buffer zones of a packing 

maximum number of buffers into the free space between the modules. 

Since the feasible region can overlap with the modules, buffer zones are 

defined such that they are the dead spaces in which the buffer can be in-

serted. Given a placement, the buffer zones are obtained by cutting the free 

space between the modules into rectangular zones with different costs accord-

ing to the routing congestion and other factors. Figure 5.8 shows buffer zones 

zi, Z2,..., zg obtained by cutting the deadspace of the placement. 

Given a set of buffers B = 62,.. •,〜} and the corresponding feasible 

regions F = {/i, /2, •.., fn}, and buffer zone Z 二 {zi,z2,. •., Zm}, a network 

flow graph is constructed. By finding the min-cut of the network flow graph, 

the maximum number of buffers with the minimum total insertion cost can be 

obtained. 

A term buffer room is introduced. Given a set of FRs F = {/i, /2,..., fn}, 

buffer rooms are disjoint regions bounded by the boundaries of FRs. Let 

R = {ri,r2,.. .,ryj} denote the buffer rooms, then 7\ (Irj = 0 for i _ j. 

In Figure 5.9, it shows a problem containing two buffers, two nets and 

seven buffer zones. The corresponding network flow formulation is given in 

Figure 5.10. The vertices of the network flow graph consist of a source node, 

a destination node, B, R and Z. If a buffer room belongs to a certain buffer, 
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Figure 5.10: The corresponding network flow graph of problem in 5.9 

there will be a directed edge from the buffer to that buffer room. If a buffer 

room is overlapped with a buffer zone, there will be a directed edge from 

that buffer room to that buffer zone. A min-cost maximum flow in the graph 

corresponds to a buffer insertion solution to the buffer planning problem with 

the maximum number of buffers and minimum total insertion cost. If the size 

of the max-flow is n, then the buffer planning problem is feasible that all the 

buffers can be inserted into the deadspace of the packing. 
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Figure 5.11: L-shaped routing 

5.3.2 Congestion Control 

A new wirelength estimation method is used in [CZY+99]. Simple geometry 

routing is used to estimate the routing length between two pins. There are 

two types of routing to obtain the minimum wire length: L-shaped and Z-

shaped(shown in Figure 5.11 and 5.12). Z-shaped routing gives a more accurate 

estimation than L-shaped routing. Also, the cost function is aA + I3W + ^yOF 

where OF is the sum of the square of overflow in each grid. There are three 

stages in estimating the wirelength W . (1) half- perimeter; (2) L-shaped global 

routing and (3) Z-shaped global routing. In each stage, the value of W will be 

estimated by different methods. 

The cost function used is aA-i-j3W-i-jOF where OF is the sum of the square 

of overflow in routings. The values of OF is zero in stage 1 but it is computed 

by applying simple geometry routing to estimate the congestion/routablity of 

bin boundaries. This paper described a more efficient approach in estimating 

the timing information and considering the congestion during the floorplanning 

stage. Since it does not use any external timing analyzer and the computational 

time is reduced. 
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Figure 5.12: Z-shaped routing 

The paper [SSKOO] takes routing congestion into consideration in the buffer 

planning problem. The congestion model employed is a two dimensional rect-

angular grid based probabilistic map which assume two-bend routing for each 

segment. Ch { i , j ) and Cy{i,j) is the expected number of horizontal and ver-

tical routes passing through a routing tile tile{i,j) respectively. SCh{i,j) and 

SCv{i,j) are defined as the probability of a horizontal and vertical route pass-

ing through tile{i,j). The following equations compute the probability matrix 

for a route from (0,0) to (m, n). 

Tile S(Mi,j) 

0<i<m,0<j <n ^^：^ ^^^ 

0<z<mj = 0 ^ ^ ^ ^ 
Or\ ^ ' ̂  1 m—j 

z = 0,j = 0 1 1 

i 二 m, j = n 1 1 

A subnet is defined as the segment of a net between two consecutive buffers. 
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For each tile{j^, j), the congestion matrices Ch and Cy are computed as follows: 

V subnets 

N subnets 

Therefore, the congestion can be considered by introducing an element into 

the cost function using the congestion matrices. The congestion matrices will 

be updated after each buffer planning. 



Chapter 6 

Clustering Constraint in 

Floorplan Design 

This chapter presents the work on clustering constraints in floorplan design. 

Clustering Constraints is a constraint in which some modules are required to 

be placed geometrically adjacent to each other to form a cluster in the packing. 

In this chapter, a linear time algorithm is presented to locate all the neighbors 

of a module in the packing by just scanning the Polish expression once. 

6.1 Problem Definition 

Clustering Constraint is considered in floorplan design. Given a set of modules 

$ and a subset of modules A C we want to pack the modules in $ such 

that the modules in A will be geometrically adjacent to each other. Figure 6.1 

shows an example of the clustering constraint. Modules E, F and H are the 

subset of modules to be clustered and they have to be placed adjacent to 

each other in the final packing. The floorplanning problem with clustering 

constraints is defined as follows: 

Problem FP/CC Given a set ofn modules $ = {mi, 7712,..., m^} 

and rrii = {Ai, r^, Si) for i = 1,…n where Ai is the area of modules, 
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Figure 6.1: An illustration of the clustering constraint 

and Ti and Si are the minimum and maximum aspect ratio of mod-

ules i respectively. Let A be a subset of modules in 歪.The goal is to 

pack the modules in ^ to minimize the total area and interconnect 

cost such that the following three conditions are satisfied. 

1. Every Mi in A should be geometrically adjacent to at least one 

Mk E A where k ^ i. 

2. Each module satisfies its area and aspect ratio constraint. 

3. The aspect ratio of the whole packing is within a give range 

M. 

6.2 Overview 

W e consider clustering constraint in slicing floorplan. One method to solve this 

problem is by adding a optimizing term which is the center-to-center distance 

between the cluster modules to the cost function of the annealing process. Ex-

perimental is done, however the result is poor and the constraints will usually 

be violated in the final packing. A better approach will be introduced in which 
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clusters are maintained throughout the annealing process. In each iteration, 

we try to give the feasible packing by fixing the violation as much as possible. 

A method is devised to locate all neighbors of a target module. A target 

module Mt is picked from the constraint set A. A set of M^'s neighboring 

modules is obtained by this method. For each Mi G 11,, if Mi • A, we will 

swap Mi with Mj where Mj e A\ This algorithm is able to maintain the 

clustering constraint throughout the annealing process. 

An overview of the algorithm is given as follows: 

Main Program 

Begin 

While T > threshold do 

Begin 

Move by either Ml, M2 or MS 

Call procedure Clustering 

Compute Cost 

If Cost is reduced 

Accept the move 

Else 

Proh = min[l,e-么 c/T) 

where Ac 二 change of cost. 

If randomifi, 1) < Proh then 

Accept the move 

Else 

Reject the move 

Update T 

End 

End 



Chapter 6 Clustering Constraint in Floorplan Design 55 

W e have used simulated annealing to optimize the packing. After a move 

of the solution, the procedure Clustering is called. The procedure Clustering 

consists of two main steps. The first step is to find the neighboring modules of 

a target module. The second step is to perform swapping such that the packing 

will satisfy the clustering constraints as much as possible. The packing is then 

evaluated. A packing with better cost is accepted, while the acceptance of a 

worse one is dependent on the current temperature of the annealing processing. 

6.3 Locating Neighboring Modules 

An algorithm is devised to locate all neighboring modules of a target module 

in a normalized Polish expression. Note that we can locate the neighbors in 

linear time by just looking at the Polish expression once and no real packing 

is needed. 

In each iteration, a target module M , is selected randomly from A. A 

neighboring set Ut is found such that Mt is surrounded by the modules in 

in the packing. An example is shown in Figure 6.2. In this example Mt = F 

and Ut = {A, B, C, D, E, G, H}. Note that the modules found (e.g. D and E) 

may not be adjacent to Mt-

For each module Mi in the slicing floorplan, Mi is surrounded by four 

cuts which correspond to four operators in the normalized Polish expression. 

If those four operators are found in the Polish expression, the neighboring 

structure can be located and lit can be found. 

For a Polish expression a = aia2 .. .Q̂ n, we define a valid sub-expression 

P = a^afc+i... Qffc+m where k > 1 and n > k + m as a sub-expression in a 

such that ak must be an operand and the number of operands in (3 is equal 

to the number of operators plus one. A valid sub-expression indeed represents 

a sub-tree in the whole slicing tree and also represents a supermodule in the 

packing. 
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Figure 6.2: The Illustration of the neighboring structure 

The two operators correspond to cuts of different orientations. Let S and 

7 be valid sub-expressions in the Polish expression. Some terms are defined as 

follows: 

Below : If 7 = CS+, Below (6,() 

Above : If 7 = (5C+, Above{6,() 

Left : If 7 = Left{6,() 

Right : If 7 = (^C*, Right{6,() 

Given a target module Mt, the algorithm Find-Surrounding finds four valid 

sub-expressions a,b,c and d such that Below {Si, a), Above{S2, b), Left{6s,c) 

and Right{64, d) where 5[s are some valid sub-expressions containing Mt. 

Algorithm : Find-Surrounding{Mt, a) 

Input : a — aia2 ... is a Polish expression of the original packing, 

t is the index of the target module, i.e., at 二 Mt 

Output : a is a valid sub-expression such that Below{Si, a) 

b is a valid sub-expression such that Above{S2, b) 

c is a valid sub-expression such that Left{Ss, c) 

d is a valid sub-expression such that Right{64, d) 

where 6i for i = 1.. A is the shortest valid sub-expression containing Mt 



Chapter 6 Clustering Constraint in Floorplan Design 55 

such that the a, b, c and d above can be found. 

1 first = end = t 

2 While a, b, c, d are not found and first> 1 and end< 2n — 1 

3 Begin 

4 If o^end+i is an operator 

5 Begin 

6 Find k such that 

7 e = afirst-kC^first-k+l . . . O^first—l 

8 is the shortest valid sub-expression 

9 If aend+i is + and a is not found yet 

10 a = e 

11 Else if dend+i is * and c is not found yet 

12 c = e 

13 first 二 first — k; end — end + 1 

14 End 

15 Else 

16 Begin 

17 Find k such that 

18 e = O^end+lO^end+2 • • • Oiend+k 

19 is the shortest valid sub-expression 

20 If aend+k+i is + and b is not found yet 

21 b = e 

22 Else if aend+k+i is * and d is not found yet 

23 d = e 

24 end 二 end + A: + 1 

25 End 

26 End 
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The search starts from the position of the target module Mt in the Polish 

expression. W e have two position pointers first and end initialized as t (line 

1). For each iteration, we will first check whether the character at the position 

end + 1 is an operator or an operand in the Polish expression. If it is an 

operator, the supermodule that shared the same slicing cut with the target 

module is located before the position of first in the Polish expression (line 

4-14). The supermodule is either on the left or below the target module. W e 

will then search for the shortest valid sub-expression starting from the position 

first — 1 to the left. If the character at the position end + 1 is an operand, 

the supermodule that shared the same slicing cut with the target module is 

located after the position of end in the Polish expression (line 16-25). The 

supermodule is either on the right or above the target module. W e will then 

search for the shortest valid sub-expression followed by an operator starting 

from the position end+1 to the right. The position pointer first and end will 

then updated accordingly and the process will be repeated until a, b, c and d 

are all found. 

The complexity of this algorithm is 〇(n). Figure 6.3 illustrates the steps 

of the algorithm. Sub-expression a, b, c and d are valid sub-expressions repre-

senting sub-trees in the slicing tree. For the example in Figure 6.2, a 二 二 

c 二 A,d = H and Mt = F. The shortest valid sub-expression can 

be obtained by counting the number of operators and operands. Note that not 

all the basic modules in a, b, c and d belong to the neighboring set n^ of Mt. 

If the supermodule of a sub-expression b is above Mt, only the modules lying 

at the bottom of the supermodule belong to 11̂ . Figure 6.4 shows an example 

that b = BC * ED + * but D does not belong to Ut in this case. A recursive 

procedure can be used to find efficiently given a, b, c and d. The procedure 

shown in the following is for sub-expression below the target module only, i.e., 

sub-expression a. Procedures for sub-expressions above, to the left and to the 

right of the target module can be done similarly. 
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Figure 6.3: A n illustration of the algorithm Find_Surrounding 

Procedure •• Marking.Neighhor-Below{first, end) 

Input : first is the first index of the valid sub-expression a 

end is the last index of a where first < end 

Output: n is the set of module at the bottom of the supermodule 

represented by a 

1 If first = end 

2 n = UUafirst 

3 Else 

4 Begin 
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Figure 6.4: D does not belong to where Mt is F 

5 Find k such that e = aend-k(^end-2 . . . Q^end-l 

6 where e is the shortest valid sub-expression 

7 If aend is * 

8 Marking-Neighhor-Below{first, end — k — 1)) 

9 Marking-Neighhor-Below{end — k, end — 1) 

10 Else if aend is 

11 Marking^Neighhor-Belowiend — k, end — 1) 

12 End 

The above procedure is a recursive procedure locating all the modules at 

the top boundary of a given supermodule. The input of the procedure are two 

position pointers corresponding to a supermodule in the Polish expression. 

Therefore, the character at the position end should be an operator. W e check 

whether this operator is corresponding to a horzontial cut or a vertical cut in 

the packing. Since we want to locating the modules at the top boundary of 

the supermodule, the supermodules on the both sides of the cut have to be 

considered if the cut is a vertical cut. Both supermodules will contain modules 
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at the top boundary. However, if the cut is horzontial, only the one at the top 

will be considered. All the modules at the top boundary will be marked as 

neighboring modules of the target module. 

6,4 Constraint Satisfaction 

In the annealing process, all the constraints have to be satisfied to make the 

floorplan feasible. Modules in the constraint set A will be swapped with the 

neighboring set until the conditions A C {Mt} U IT亡 is satisfied. 

In the first iteration, Mt is randomly selected from A. An intersect set 

T is defined to be A fl n ^ If |A| > |T| + 1, swapping is needed to satisfy 

the clustering constraints. If |A| > \Ilt\ + 1, there is not enough space for 

swapping, the whole process will be repeated recursively by selecting another 

module which is already in the cluster as the new target module until all the 

constraints are satisfied. All three moves in the simulated annealing can affect 

the neighboring structure and give an infeasible packing. However we will swap 

operands in the Polish expression to maintain a feasible one. 

There is only one case in move M l that does not affect the neighboring 

structure of the packing, i.e., if two adjacent operands to be swapped are both 

in A or both in 屯一A. Modification is not required in this case and the 

clustering constraint will not be violated after the move. 

The following algorithm describes the swapping strategy such that the clus-

tering constraints are satisfy throughout the annealing process. 

Algorithm : Clustering[a, A ) 

Input:a = •.. ttn is a Polish expression of the problem. 

A is the set of modules having clustering constraint. 

1 For each Mi e A 

2 Begin 

3 Call Find_Surrounding[Mi,a) 
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4 Call Marking.Neighbor.Below{first{a), end{a)) 

5 Call Marking-Neighbor-Above{first{b), end{b)) 

6 Call Marking-Neighbor-Left{first{c), end{c)) 

7 Call Marking.Neighbor.Right{first{d), end{d)) 

8 Ti = A n n, 

9 //|T| + 1 = = |A 

10 All clustering constraints satisfied 

11 Return 

12 End 

18 count = 0 
14 While count < |A| _ 1 

15 Begin 

16 Take i where |Ti| is maximum and Mi is not marked 

11 / m i > iAi-i 

18 Begin 

19 For each Ma； G A fl II^ find Mj eUiD^ 

20 swap{Mj,Mk) 

21 count = |A| — 1 

忍忍 End 

23 Else 

24 Begin 

25 For each Mj e A nlU find MkeUiH^ 

26 swap{Mj,Mk) 

21 count — count + 

28 End 

29 Mark Mi 

30 End 
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If iriil < |A| - 1 (lines 24-28), the number of positions in Hi is not enough 

for swapping all the constrained modules into the neighboring positions. The 

other target module will be selected from and the process is repeated until 

all the constraints are satisfied. The algorithm can handle even very large 

cluster size. 

6.5 Multi-clustering Extension 

Multi-clustering constraint allows us to have more than one cluster in the 

final packing. The algorithm described above handles only one cluster. Multi-

clustering constraints can be resolved by invoking the above algorithm several 

times. However, the major problem of addressing multi-clustering constraint 

is that the neighboring sets can overlap. Infeasible packing will be resulted 

if modules are swapped randomly. For example, given two clustering sets Ai 

and A2. A target module Mt^ and Mt^ is found from each clustering set. Let 

Ut^ and 11̂ 2 be the neighboring sets of Mt^ and Mt^ respectively. If a module 

Mk, where M k G Ut^ and Mk G 11̂ 2 exists, the module M k should be removed 

from either Ht^ or lit?. 

Besides, while locating the neighboring modules, the module found earlier 

is probably nearer to the target module. It is thus better to swap into those 

positions first. This property make sure that the modules under clustering 

constraints will be placed as close to each other as possible. 

6.6 Cost Function 

The cost function is defined as ̂  + XW + pC where A is the total area of 

the packing, W is the half perimeter estimation of the wirelength, and C 

is a penalty for the clustering constraint. The penalty term C is the sum 

of center to center distances between the modules within the same cluster. 
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The penalty term helps to give packings in which the modules with clustering 

constraints will be packed closely together. A and /S are constants that control 

the weighting between the importance of the three terms. 

6-7 Experimental Results 

Our method is tested with three M C N C building blocks examples (ami33, 

ami49 and playout). Ami33 has 33 modules and 123 nets. Ami49 has 49 

modules and 408 nets. Playout has 62 modules and 1161 nets. In the first set 

of experiment, 20% of the modules in each benchmark are selected randomly 

to have clustering constraint, i.e., ami33, ami49 and playout have 7, 10 and 

12 modules respectively. For each benchmark, we repeat the experiment three 

times by selecting different modules into the constraint set. The results are 

given in Table 6.1. 

In the second set of experiment, we tested our method with multi-clustering 

constraints. In each benchmark problem, we picked 3，4 and 5 clusters and 

each cluster has 2 to 7 modules. The results are given in Table 6.2. All 

the data are shown in the appendix A. A control experiment is performed 

without clustering constraint for each data set and the results are shown in 

Table 6.3. The temperature decreases with a constant rate (0.9), and the 

number of iterations at one temperature step is one hundred times the number 

of modules. All experiments were done on a UltraSPARC-II 400MHz processor. 

Figure 6.5 and 6.6 shows a result packing of ami33 with three clusters and 

a result packing of ami49 with four clusters respectively. Figure 6.7 and 6.8 

shows the improvement in interconnection by imposing clustering constraints. 

In Figure 6.7, we observed from the data set that modules 15, 18, 19, 20, 21, 

24 and 25 are heavily connected with each other, so we impose clustering con-

straint between them. Figure 6.8 shows the result packing without imposing 

any clustering constraint. One can see that the interconnect cost in Figure 6.7 
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is smaller than that in Figure 6.8. 

Data Set n Cluster Size % Dead-space Time (sec) 

a m i 3 3 - c c l ^ 7 m 

ami33-cc2 33 7 2.80 18.4 

ami33-cc3 7 ^ 22.6 

ami49-ccl49 10 ^ 

ami49-cc2 49 10 3.53 53.2 

ami49-cc3 49 10 ^ 51.9 

playout-ccl^ 12 ^ 146.5 

playout-cc2 62 12 7.43 147.8 

playout-cc3 62 12 6.57 146.4 

Table 6.1: Results of testing with one cluster for the M C N C examples 

Data Set n # of Clusters (Cluster Size) % Dead-space Time (sec) 

ami33-mcl 3(4,4,3) ^ ^ 

ami33-mc2 33 4(3,3,3,2) 3.16 21.4 

ami33-mc3 33 5(3,2,2,2,2) ^ 21.9 

ami49-mcl 3(6,5,5) ^ ^ 

ami49-mc2 49 4(4,4,4,4) 2.77 56.7 

ami49-mc3 49 5(4,3,3,3,3) ^ 57.1 

playout-mcl 3(7,7,6) ^ 

playout-mc2 62 4(5,5,5,5) 7.18 154.6 

playout-mc3 62 5(4，4，4，4，4) 5.87 151.8 

Table 6.2: Results of testing with multi-clusters for the M C N C examples 
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Data Set n % Deadspace Time (sec) 

^ a m i 3 3 2.45 12.7 

ami49 3.00 37.5 

playout ^ 4.35 124.4 

Table 6.3: Results of the control experiments 
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Figure 6.5: A result packing of ami33 with three clusters (Ci:5,7,ll,13; 

(72:14,27,30; ̂ 3:19,22,25,29) 
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Figure 6.6: A result packing of ami49 with four clusters (Ci:6,7,8,9; 
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Figure 6.7: A result packing showing the improvement in interconnection by 

imposing clustering constraints (wirelength = 0.1472xl0^units). 

圖 
Figure 6.8: A result packing of the same problem in Figure 6.7 without clus-

tering constraints (wirelength = 0.1596xl0^units). 



Chapter 7 

Interconnect Driven Multilevel 

Floorplanning Approach 

In this chapter, a multilevel framework for floorplanning is presented. The 

Clustering and Refinement methods in the multilevel approach are described 

in details. The experimental results of the multilevel floorplanner are compared 

with those without applying the multilevel technique. Experimental results are 

shown and compared with some results recently published. The runtime of the 

implementation and the wirelength of the resultant packings are improved. 

7.1 Multilevel Partitioning 

Multilevel is a technique used in circuit partitioning to speed up the runtime 

KK95, AHK98, WA98, KAKS99]. Circuit size is growing rapidly to millions 

of gates nowadays and the runtime will be too slow if use traditional parti-

tioning methods are used to handle huge problems. Multilevel partitioning use 

a divide and conquer technique to reduce the problem size. Figure 7.1 illus-

trates the flow in multilevel partitioning. It consists of two phases: coarsening 

(clustering) and refinement (uncoarsening). 
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Figure 7.1: Multilevel Partitioning 

7.1.1 Coarsening Phase 

In the Coarsening Phase, the nodes (gates) are recursively grouped until the 

number of node (gates) is smaller than a certain threshold. This Coarsening 

step is illustrated in Figure 7.2. 

Several nodes are grouped together to form a new node in the next level 

of the Coarsening Phase. The nets within the group will be removed. The 

net between two groups will be combined to form one net and the weight of 

the net will be updated. Therefore, the number of nodes and nets will be 

reduced in the next level of the Coarsening Phase. There are many different 

ways to group the nodes and these method are usually different in the way 

they consider the netlist information. These methods included Heavy Edge 

Matching [KK95], Random Matching, Hyper Edge Coarsening [KAKS99], etc. 

Most of the multilevel partitioners are using more than one methods. 

7.1.2 Refinement Phase 

After the Coarsening Phase, the problem size will be significantly reduced. 

Traditional partitioning methods are the applied to perform partitioning on 

this smaller problem instance. The solution will then be projected to the 
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Figure 7.2: Coarsening Step 

next level by ungrouping the nodes and adding the nets back to the graph. 

The partitioning algorithms will then be applied to this projected solution 

again. These steps are repeated in each level until all the nodes and nets 

are uncoarsened. Since the initial solution at the beginning of each level is a 

projected solution from the previous level and it is thus already a pretty good 

solution and the number of iterations needed to reach a good solution in each 

level can be reduced. Therefore, the total runtime will be reduced and can be 

used to handle larger problems. 

Many research works have been done on applying and comparing different 

the kinds of partitioning methods in the Refinement Phase [KAKS99, AHK98, 

WA98, KAKS99 

However, using multilevel frameworks on placement and floorplanning is 

new and there are only a few publications on this topic. [CCKSOO] presented 

a pioneer work of applying this multilevel framework on the circuit placement 

problem based on the constrained nonconvex nonlinear programming method 

to solve the problem. 

The major difference between the work in [CCKSOO] and ours' is that our 

multilevel framework is based on simulated annealing. Some techniques are 

used to determine the initial temperature in each stage and also, we will handle 

the sizing problem by the Lagrangian Relaxation technique. 
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Figure 7.3: Illustration of a Multilevel Floorplanning 

7.2 Overview of Multilevel Floorplanner 

Multilevel approach can also be applied in the floorplanning problem. Fig-

ure 7.3 illustrates the steps of a multilevel floorplanner. There are two Phases 

in the multilevel floorplanner: Clustering and Refinement. In each level of 

the Clustering Phase, modules which are heavily connected with each other 

will be clustered together to form a new module. These new modules, each 

indeed is a collection of modules, will go through the same clustering process 

in the next level and this clustering process will repeat recursively until the 

number of modules remaining is small enough to be handled efficiently. Af-

terward, the Refinement Phase will perform refinement and packing. In each 

level of the Refinement Phase, the modules (each may be a cluster of modules 

itself) in a cluster will be unclustered and packed using some basic floorplan-

ning algorithm. This refinement and packing step will be repeated in the next 

level using the results obtained from the current level as the initial solution. 
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The process of refinement and packing will be repeated recursively in each 

successive level until all the basic modules are unclustered. 

In the following, we will discuss the clustering and Refinement Phase in 

more details. 

7.3 Clustering Phase 

The Clustering Phase performs grouping between the modules recursively in 

order to reduce the problem size and minimize the interconnect cost. In each 

level of the Clustering Phase, modules which are heavily connected with each 

other will be clustered together to form a new module for the next level. The 

area of the new modules will be the sum of the module areas in that cluster. 

The netlist information should also be reconstructed. The nets connecting 

modules in the same cluster can be removed, while those connecting modules 

in different clusters or connecting to an I/O pin will remain. The size of the 

circuit will thus be reduced successively during this Clustering Phase. 

7.3.1 Clustering Methods 

Given the netlist information, we consider two clustering methods, the Hyper-

edge Clustering Method and the Heavy Edge Matching Method: 

Hyperedge Clustering [KAKS99]: In this clustering method, 

the hyperedges representing the nets are first sorted according to 

their weights. They are then scanned in descending order of their 

weights and modules belonging to the same independent net will 

be clustered together. A net is independent if and only if all the 

modules in it are still unclustered. Using this method, we can take 

care of the heavily weighted nets. 

W e restrict the number of modules that can be put into one cluster 
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Figure 7.4: Illustration of The Hyperedge Clustering Method 

to be within an upper bound (four in our case) because large clus-

ter size is not good for the Refinement Phase. In the Refinement 

Phase, we will directly expand a cluster in the sequence pair repre-

sentation by replacing a cluster name by a list of the modules in the 

cluster. This corresponds to packing the modules inside the cluster 

horizontally from left to right. This simple expansion will create 

deadspace in the packing and small cluster size can minimize this 

undesirable effect. Those modules which are not selected to be in 

any cluster will each be a cluster on its own. Figure 7.4 illustrates 

this method. 

Heavy Edge Clustering: In this clustering method, modules 

will be clustered in pairs. From the netlist information, a simple 

graph G is built. In G, the vertices represent the modules and the 

edges represent the interconnection. A weight on an edge e{i,j) 

represents the total number of nets connecting between module i 

and j. The edges are sorted in descending order of their weights. 

W e will then scan the sorted list of edges. A pair of modules 

connected by an edge will form one cluster if both of them are 

not clustered yet. Figure 7.5 illustrates this heavy edge clustering 
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Figure 7.5: Illustration of The Heavy Edge Clustering Method 

method. 

7.3.2 Area Ratio Constraints 
In the Clustering Phase, we need to control the area ratios between the mod-

ules in a cluster in order to obtain a tight packing at the end. For example, 

we should prevent very large modules from clustering with very small ones 

because packing modules of very different size is difficult due to the modules' 

aspect ratio bound. W e impose two constraints on the area ratios during the 

Clustering Phase. The first constraint ensures that the clusters are formed 

progressively in the Clustering Phase: 

Xm� Area[Mi) < ^ ̂  ！徵� < i for each clusters C 
AREA - -

where Area{Mi) denotes the area of module M“ AREA is the total area of 

all the modules, r is a constant and level is the current level in the Clustering 

Phase. By imposing this constraint, small modules can be clustered together 

to form larger ones and clusters of similar size will be formed progressively. 

This is good since packing of modules with very different sized is difficult and 

should be avoided. The second constraint prevents very large modules from 

clustering with very small ones: 
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amin < < Ĉ mao： for all pairs of M , and M, which belong 
to the same cluster 

where amin and amax are the minimum and maximum area ratio allowed. These 

ratios are set to r and s in our implementation where r and s are the aspect 

ratio bounds of the modules. By imposing this constraint, large modules are 

prevented from clustering with small ones and packing within a cluster will 

thus be made easier. 

7.3.3 Clustering Velocity 

Clustering velocity is the percentage of modules that are being grouped into 

clusters at each level. If the clustering velocity is high (the number of levels 

will be small), the packing quality will be lower but the algorithm will be more 

efficient. O n the other hand, if the clustering velocity is low (the number of 

levels will be large), the packing quality will be higher but the algorithm will 

be less efficient. It is important to control the velocity in order to yield a good 

result in a short runtime. 

W e will use a mixture of the Hyperedge Clustering method and the Heavy 

Edge Clustering method because each method has its own pros and cons. The 

Heavy Edge Clustering method gives clusters of size two only and a simple 

graph has to be built. However, it can control the clustering velocity accurately. 

On the other hand, the Hyperedge Clustering method can only give very few 

number of clusters at one level especially at those later stages. However, we 

can take cares of several nets with heavier weights by putting all the member 

of the nets into a cluster. 

In each level of the Clustering Phase, we will first apply the Hyperedge 

Clustering method. If the percentage of modules being grouped into clusters 

is less than the required clustering velocity, we will apply the Heavy Edge 

Clustering method to increase the number of clusters to the required threshold. 
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The Clustering Phase is summarized as follows: 

Algorithm: Clustering 

Input: A set C — {Mi, M2,..., M^} of n modules 

A set N 二 {Ni, 7V2,... ,Nm} of m nets 

Clustering velocity v 

Maximum number of clusters at the highest level K 

Output: A set of clusters C^ at each level 1 < k < L where L is the 

highest level number 

A set of coarsened nets N^ at each level 1 < k < L 

1 C^ = C 

2 N^ = N 

3 k=0 

4 while > K 

5 Perform Hyperedge Clustering on (C^, N^) to give 

6 < X V 

7 Augment (7左+1 with clusters obtained by performing 

Heavy Edge Clustering on the remaining unclustered modules. 

8 Merging nets for the new set of dusters (7於+1 to get iY^+i 

9 k=k+l 

7.4 Refinement Phase 

After the Clustering Phase, we have all the information about the clusters and 

their interconnections at every level. W e will then perform packing successively 

at each level starting from the coarsest one, i.e., the one with the fewest number 

of clusters. The packing at each level is done by simulated annealing using the 

sequence pair representation. The solution will be passed from one level to 

another by using the result packing at one level as the initial solution for the 
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Figure 7.6: Illustration of the Sequence Pair Refinement 

next. One advantage of using sequence pair is that refinement can be done 

directly on the representation. The sequence pair of the result packing at 

level i can be unclustered naturally by expanding each cluster into a list of 

modules it contains (as illustrated in Figure 7.6) which is then used as the 

initial solution for the next level. 

Since the initial solution of the annealing process at one level is obtained 

from the result packing at the previous level, we expect that the number of 

iterations at each level to obtain a good packing will be reduced and the whole 

process can be sped up. 

Algorithm: Refinement 

Input: A set of clusters C^ at each level 1 < k < L where L is the 

highest level 

A set of coarsened nets N^ at each level 1 < k < L 

Output: A sequence pair s^ for the modules in (7° 

1 k二 L 

2 while k>0 
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3 If k==L 

4 = •.. C；�CfCf . • • C》）where {C^ C^ C � } 

is the set of clusters in C^ 

5 else 

6 Expand to s^ by replacing each cluster Cf+i in by 

a sequence of dusters from C^ contained in Cf+i 

1 Perform simulated annealing on C^ and N^ using s^ as 

the initial solution 

8 k=k-l 

7.4.1 Temperature Control 

In most simulated annealing process, the initial temperature is very high to 

allow random moves in the solution space and avoid being trapped in a local 

minimum. In our multilevel floorplanner the initial solution at each level of the 

Refinement Phase is already pretty good because it is obtained from the previ-

ous level by unclustering. A high initial temperature will, on the contrary, ruin 

the initial packing and waste the effort spent in the previous levels. In order to 

determine an appropriate initial temperature for the annealing process at each 

level, we will perform a certain number (proportional to the number of modules 

at the beginning of the annealing process) of random moves and an average 

change in cost is obtained from those iterations. The initial temperature is 

then computed according to the following equation: 

^ SC 
T 二一厂 inr 

where T is the initial temperature, 6C the average change in cost in the set of 

random moves and r is the probability to accept worse solution. This approach 

allows us to well control the starting temperature according initial probability 

of accepting a worse solution we want to have at the beginning of each level. 
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The initial probability of accepting a worse solution should decreasing during 

the refinement process since the packing is expected to be converging towards a 

good solution. In our implementation, it will be decreased linearly throughout 

the whole Refinement Phase. 

7.4.2 Cost Function 

Traditional floor planners usually assume a die area with an unlimited size and 

pack the modules as tightly as possible. However, in fact, the die size is already 

chosen before floorplanning, so the packing should be performed in a fixed die 

regime. W e use a better cost function that focuses more on optimizing the 

interconnect cost while constraining the final packing to within the fixed die 

regime. W e compute the cost function in the annealing process as follows: 

Cost = Wirelength + X{[W - + [H-丑']+) 

where 二 rr if is positive and 0 otherwise, Wirelength is the half perimeter 

estimation of the interconnect cost, W and H are the width and the height 

of the current packing solution, W and H' are the width and height of the 

fixed die regime and A is the weight. Notice that we are trying to minimize 

the interconnect cost as long as the modules are packed within the fixed die 

regime. Usually, A is set to a large value to ensure that the constraint of fixed 

die regime can be satisfied. Packing outside the die regime will lead to a high 

cost and the solution will be rejected. 

7.4.3 Handling Shape Flexibility 

Many modules still have large flexibility in shape in the floorplanning stage and 

we can make use of this flexibility to improve the packing quality. W e apply 

the Lagrangian relaxation technique in [YCLWOO] to handle soft modules by 

invoking the shaping procedure once after the Refinement Phase. The soft 



Chapter 7 Interconnect Driven Multilevel Floorplanning Approach 7丄 

modules have fixed areas but their widths and heights can be changed as long 

as their aspect ratio are lying within a given bound. The shaping procedure 

is time consuming but there is no need to invoke it in every iteration of the 

annealing process to minimize the area. The runtime will be extremely long 

for large problem size if the shaping procedure is invoked in every iteration of 

the annealing process. 

W e should minimize the interconnect cost as much as possible while main-

taining the packing within the fixed die regime. Applying the shaping proce-

dure once to the last result packing of the Refinement Phase (which should 

already be quite good) can further reduce the deadspace by 4% to 8% to give 

a very tight packing. Note that the interconnect cost will not change much 

after the shaping procedure. 

7.5 Experimental Results 

The algorithms are written in C language. All experiments were done using 

Sun Enterprise E4500 with twelve UltraSPARC-II 400MHz processor and 8GB 

Memory running in Solaris 7 operating system. It is tested with three M C N C 

building blocks examples (ami33, ami49 and playout) and some randomly gen-

erated data set. Ami33 has 33 modules and 123 nets. Ami49 has 49 modules 

and 408 nets. Playout has 62 modules and 1161 nets. Data sets with 100, 

200, 300, 400 and 500 modules and 888, 2388, 2888, 3388 and 3888 nets are 

generated randomly for testing purpose (for detail in appendix B). For those 

soft modules their aspect ratios are bounded to [0.5，2.0] for problems with 

less than 400 modules. The soft modules in the data set with 500 modules has 

an aspect ratio bound of [0.1, 10.0 . 
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7.5.1 Data Set Generation 

In order to test the scalability of our floorplanner, we have randomly generated 

some data sets with up to hundreds of modules (data_100, data_200, data一300, 

data_400, data_500). The generator is given the number of modules, number 

of pins and number of nets and it will generate the area of each module, pin 

positions and netlist information automatically. For each data set, we define 

several ranges of area. The areas of each module is generated randomly so 

that the distribution of areas in each range is uniform. The pin positions 

are assigned uniformly at the boundary of the chip. The net information is 

also generated randomly. W e will first determine whether a net is connected 

to a pin. Then, we will decide randomly the number of modules a net is 

connected to according to the distribution of nets and these modules will be 

picked randomly. All the module's number are resulting from a uniformly 

random number times some constants which according to number of modules 

of the problem set. 

7.5.2 Temperature Control 

As we mention before the initial temperature (T) is calculated using the change 

in cost. Figure 7.7, 7.8 and 7.9 plot of T at different level of the Refinement 

Phase for ami33, ami49 and playout respectively. The graphs also plot the 

number of nets that are unclustered at that level. The acceptance rate of a 

worse solution will change uniformly from 0.9 to 0.1 in the Refinement Phase. 

W e can see from Figure 7.7, 7.8 and 7.9 that T is low at the first few levels 

because there are only a small number of clusters to be packed at the beginning 

of the Refinement Phase. T increases to its highest at some intermediate stages 

which is dependent on the interconnect structure of the individual data set. T 

is computed from the change in cost and the acceptance rate. Notice that the 

total areas of the modules will remain unchanged in the refinement process. 
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Figure 7.7: Initial temperature in the Refinement Phase for ami33 

The cost of the packing will increase due to the uncoarsening of nets. T is 

lowest at the last level because the solution is already good. 

7.5.3 Packing Results 

Table 7.1 shows the packing results of our multilevel floorplanner for all the 

data set. Table 7.2 shows the results of the experiments using the original 

simulated annealing method using sequence pair representation without mul-

tilevel approach and shape flexibility. All experiments are done using the same 

set of parameters. The original algorithm can only handle up to two hundreds 

modules in practical time and the results for the problems with more than 200 

modules is thus not shown (cannot be obtained in practical runtime). 

The best result of ami33 and ami49 are compared with the result in [MK98 . 

It is shown in table 7.3. [MK98] used a quadratic programming method to 

perform area and wirelength optimization. Their results are nearly optimal 

but the runtime is very long and is unable to solve problem with large size in 

practical time. 

Figure 7.10, 7.11, 7.12, 7.13 and 7.14 shows some result packings of the 
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Figure 7.8: Initial temperature in the Refinement Phase for ami49 

multilevel floorplanner. The deadspace of the packings are very small, from 

0% to 4%. 

rr . n.. J ^^T J % Dead- Wlen r T T T i m e \ I t e r Time 
Data set # M o d #Net ^^^^^ (^mUlO^*^''' ( s e c ) x l Q - 3 (sec) 

ami33 ^ m 0 . 7 0 0.0587 441987 0.3373 149.1 
ami49 49 408 2.05 0.8573 579307 0.7975 462.0 
playout 62 1161 8.51 0.5216 774369 1.9220 1488.4 
data.lOO 100 1888 1.84 2.8909 1020917 3.6225 3698.3 
data_200 200 2388 4.28 4.5768 2350453 8.5513 20100.7 
data_300 300 2888 4.31 6.7701 3804513 15.8206 60189.7 
data_400 400 3388 5.44 8.8815 609360 38.9537 23740.5 
data-5Q0 500 3888 3.57 15.8380 922474 39.3843 36331.0 

Table 7.1: Results of the multilevel floorplanner 
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Figure 7.9: Initial temperature in the Refinement Phase for playout 

rr 」 U M . % Dead- Wlen r T T Time\Iter Time 
Data set # M o d #Net ^ c e (輝）xl06 # Iter (sec)x lQ-3 (sec) 

ami33 ^ m 5 . 2 2 0.0680 529322 0.4682 247.9 
ami49 49 408 4.58 1.0673 878082 1.0495 921.6 
playout 62 1161 9.29 0.5855 1061642 2.6347 2797.2 
data_100 100 1888 3.55 3.1716 1948002 4.5363 8836.9 
data_200 200 2388 7.76 5.7849 4744002 13.0356 61845.2 
data_300 300 2888 - — — 一 一 
data_400 400 3388 一 一 一 一 一 
data-500 500 3888 一 [j；； - | - -

Table 7.2: Results of original algorithm without multilevel 

\\n r ^ II Area Wlen lime 

Data set = 2 、 = = ； ™ ; in [MK98] in [MK98] in [MK98] 
) ” (secj ( " 肌 2 ) (sec) 

ami33 1143430 5 6 4 7 9 1 1 5 9 9 2 9 53393 75684 
ami49 367Q92Qo| 775486 447.1 || 35581225 775104 612103 

Table 7.3: Results of comparison with [MK98: 
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國： 
Figure 7.10: A result packing of ami33 ( area = 1143430/im^, wlen = 56479/xm) 

B 
Figure 7.11: A result packing of ami49 ( area = 35543600^m^, wlen = 

907515/xm) 
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Figure 7.12: A result packing of data_100 ( area = 8733540/im^ wlen = 

2811010/im) 

• 
Figure 7.13: A result packing of data_200 ( area = 17567900//m^, wlen = 

4506900/im) 
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— r I •• —J -

瞧 l i 

Figure 7.14: A result packing of data_500 ( area = 49626700評2, wlen 二 

14559800/im) 



Chapter 8 

Study of Non-slicing Floorplan 

Representations 

This chapter will analyze the complexity of different floorplan representations. 

W e proved that if a floorplan is non-slicing there will be at least one super-

module in the packing with its four T-junctions at the corners in four different 

orientations, i.e., a wheel. A new representation for mosaic floorplan called 

twin binary tree is proposed by [YCCGOl] and we have derived an efficient 

algorithm to generate pairs of valid twin binary trees and to convert this rep-

resentation to its corresponding packing efficiently. 

8.1 Analysis of Different Floorplan Represen-

tations 

In this section, we will discuss five popular floorplan representations: Polish ex-

pression (PE), Bounded-Slice-Grid(BSG), Sequence Pair(SP), O-tree(OT) and 

Corner Block List (CBL). 



Chapter 8 Study of Non-slicing Floorplan Representations 100 

8.1.1 Complexity 

Before we discuss the complexity of each representation, we need to know the 

enumeration of trees, because most of the representations make use of the 

trees. 

An ordered binary tree is a binary tree in which the two children of each 

node are ordered. Let K be the number of different ordered binary tree with n 

nodes. For a binary tree with n nodes, each parent have at most two children. 

Therefore, 

bn = bobn-l + hK-2 + . . . + K-I^o 

where n > 1. It is derived in [Knu93] that: 

1 f2n\ 
K = —r 

n + 1 \ n 

By Stirling's approximation, 

n!记 \lliin f — ) 
Ve/ 

Therefore 
— ( 2 n ) ! 

(n + l)(n!)2 

_ 广 
(n + l ) 2 ™ (尝广 

(n + l)y7m 

(92n \ — 

1. Polish Expression 

Each Polish expression corresponds to a slicing tree in which every inter-

nal nodes has two children. The n leaf nodes are operands and the n — 1 

internal nodes are operators and the number of such slicing trees with 

different structures is equal to bn-i. There are two types of operators and 

n leaf nodes. Therefore, there are 2几一i possible assignments of operators 



Chapter 8 Study of Non-slicing Floorplan Representations 100 

to the internal nodes, and n! possible assignments of operands to the leaf 

nodes for each tree structure. The total number of combination of Polish 

expression is thus 几 几 1 . 5 ) 乂 2 几 x n!，i.e., 

2. Baseline-Slice-Grid(BSG) 

For a B S G with size n x n, n room are selected for putting the mod-

ules. The total number of selection is C(n^,n). The total number of 

combination using B S G is thus C(n^,n) x nl, i.e., 0(n!C(n^, n)). 

3. Sequence Pair 

There are two sequences of module names in a sequence pair. The num-

ber of possible assignments for each sequence is nl. The complexity is 

thus 0((n!)2). 

4. Q-tree 

An ordered tree is a rooted tree in which the children of each node are 

ordered. Since every ordered tree can be converted to an ordered binary 

tree with a single child root uniquely, the number of ordered trees with 

n vertices is equal to the number of order binary tree with n — 1 vertices, 

i.e., hn-i [Knu93]. 0-tree is an order tree with n vertices. The number of 

such trees is 2加_2/in}\ The total number of combinations using 0-tree 

representation i s 、 2 加 x n!，i.e., 0(n!22几—Vni.”. 

5. Corner Block List 

5 is a sequence of n modules and L is a sequence of n — 1 bits. The total 

number of T s in the list T should be less than or equal to n — 2 and the 

number of 'O's should equal to n—1. The paper [ZDH+01] has shown that 

the total number of T is The total number of combination 

using corner block list representation is thus nl x x 2加/i.e., 

0(n!23“/ni-5). 

Table 8.1 summarizes the complexity of different floorplan representations and 
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Figure 8.1 plots these complexity measures (normalized by n!) in logarithmic 

scale. W e can see that B S G has the largest solution space. 

Solution Space Construction Time 

"Polish Expression(PE) — ^^^^^ — n 
Sequence Pair(SP) (n!)̂  n^  

Baseline-Sliceline-Grid(BSG) n\{C{n', n ) ) n ? 
~0-tree and B*-tree — “ n 
— Corner Block List(CBL) ^ ^ ^ ri 

Table 8.1: Complexity of different floorplan representations 

8.1.2 Types of Floorplans 

A mosaic floorplan is a floorplan without any empty room such that each 

room is acquired by one and only one module. Mosaic floorplan is introduced 

by [ZDH+01] and slicing floorplan is a subset of it. In the paper [YCCGOl 

the complexity of slicing floorplan and mosaic floorplan are derived. The exact 

number of slicing floorplan is a Schroder Numbers An given as below: 

A) 二 1 

Ai 二 1 

An = (3(2n - 3)An-i — (n — 2)/n 

The exact number of mosaic floorplan is a Baxter number B{n) as given below: 

/n + l y Vn + 1\ ^ /n + 1\ fn + 1\ /n + 1\ 

二 L 1 M 2 ； ^ U - l A k J U + i; 
The redundancies of a representation can be shown by comparing the exact 

number of packings and the complexity of the representation. Figure 8.2 and 

8.3 plots the complexity of C B L with the exact number of mosaic floorplan. 

According to the plots, we can conclude that the redundancies in P E is greater 
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Figure 8.1: Complexity of different floorplan representations 
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Figure 8.2: Complexity of CBL comparing with exact number of mosaic floor-

plan. 

than that in CBL. The redundancies in Polish expression can be reduced by 

using normalized Polish expression. A normalized Polish expression is an ex-

pression in which all consecutive operators are different, i.e., no，，++，，nor 

，，**，，in the expression. Besides, redundancies CBL may also give infeasible 

representations (representation that does not correspond to a packing) during 

the moves. 

The paper [LWOl] introduced the concept of maximally compact place-

ment. A packing with set of modules is maximally compact if no module 

in the packing can be moved horizontally to its left nor vertically downward 

without moving any other modules. An illustration is shown in Figure 8.4. 

Theorem 1 in the paper [LWOl] have proved that for any maximally compact 

placement P, there will exist a slicing tree T such that performing compaction 

of the slicing placement Pt of T can generate P. 

The complexity of maximally compact floorplan is difficult to obtain. A 
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Figure 8.3: Complexity of P E comparing with exact number of slicing floor-

plan. 

Figure 8.4: The illustration of Maximally Compact Placement 
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• • 
• 

Figure 8.5: The illustration of slicing floorplan is not necessarily to be maxi-

mally compact 

floorplan which is maximally compact depends on the dimensions of the mod-

ule. Slicing floorplan may not be maximally compact. For example, Figure 8.5 

give a slicing floorplan which is maximally compact even we force all the mod-

ules placed along the left and bottom boundaries of its room. 

In the paper [ZDH+01], the authors consider a representation called Extend 

Corner Block List to represent maximally compact floorplans using C B L by 

introduce some d u m m y blocks into the list. An of d u m m y blocks are introduced 

for a problem with n modules. The complexity of E C B L will become (An + 

n)!23(入几+几)—3/(An + n)i.5 which is larger than that of CBL. 

According to above factors, slicing floorplans with smaller complexity but 

it may not be maximally compact. For those non-slicing floorplans represen-

tation which able to give maximally compact floorplans but they with larger 

complexity than slicing floorplan. Therefore, it is difficult to draw a conclusion 

about the complexity of maximally compact floorplan. 

W e can categorize four types of floorplan: slicing, mosaic, maximally com-

pact and general. Table 8.2 shows the relationships between these popular 

representations and different kinds of floorplans. 
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Slicing Mosaic Max. Compact General 

Expression (PE) y/  

Sequence Pair(SP) \J \J V \l 

iseline-Sliceline-Grid(BSG)- \l — \l \j ~~ \j 

0-tree and B*-tree sj yj 丄 
"Corner Block List (CBL) | | 〉 I 

a/ : can represent 

Table 8.2: Relationship between representations and different kinds of floor-

plans 

8.2 T-junction Orientation Property 

At each corner of a module, a T-junction is formed between the modules. 

Definition 8.1 T = {—, —, T,丄} represents the set of all four possible ori-

entations of a T-junction at the corner of a module. For each module i 

in a packing, there is a corner sequence s : (̂̂；二召,ôi口, a;丑了, ) where 

• OLiLB corresponds to the lower left corner of the module. 

• OiLT corresponds to the upper left corner of the module. 

• otiRT corresponds to the upper right corner of the module. 

• ai貼 corresponds to the lower right corner of the module. 

Definition 8.2 If a module is surrounded by four T-junctions in different 

orientations, it is said to be '4T'. 

Definition 8.3 For a T-junction h, the is said to be the 'edge' and the 

is said to be the 'dash'. 

Definition 8.4 Given an edge of a module, if the orientation of two T-junctions 

at its two ends are opposite, i.e., T and 丄 or 卜 and H. the module is said to 

have an T structure. 
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Lemma 8.5 In a corner sequence s 二 , , of a module i: 

• h should not be assigned to or 

• H should not be assigned to ai^^ or ai^^. 

• T should not be assigned to ai^^ or ai^^. 

•丄 should not be assigned to ai^^ or 

Proof: For the T-junction 卜,the edge is on the left hand side. Therefore, 

the module should be on the right hand side of the T-junction and 卜 can only 

be assigned to ai^^ or ai^^ but not to ai^^ nor ai只召 for module i. For the 

T-junction of the other three orientations, similar argument follows. • 

From Lemma 8.5, we have the following Corollary: 

Corollary 8.6 For module i, 

• aiLB is either h or _L. 

• aiLT is either 卜 or T. 

• aiRT is either H or T. 

• aiĵ B is either H or 丄. 

Lemma 8.7 The T-junction at the diagonal corners of a module should not 

have the same orientation. 

Proof: Consider and aj灯 which are in diagonal positions. According 

to Corollary 8.6, ai^^ is either 卜 or 丄 and is either H or T. So, the 

orientation of ai^^ should not be the same as that of 〜？. It can be similarly 

proved for all other cases. • 
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Lemma 8.8 If a module is not '4T', there is at least one T structure on one 

side of the module. 

Proof: From L e m m a 8.7, the T-junctions at the diagonal corners of module i 

should not have the same orientation. Therefore, if module i is not '4T', there 

is at least two T-junctions with the same orientation in its corner sequence 

s. The two T-junctions with the same orientation can only be at the two 

end points of one of its edges. Without lost of generality, we can assume 

that these T-junctions are at the two ends of the upper edge, we have 二 

aiRT 二 T. From Corollary 8.6, a;⑶ is either 卜 or 丄 and ai只丑 is either H or 

丄.Therefore, there will exist two T-junctions on one side of the module with 

opposite orientations. Hence, an T structure exists. • 

Lemma 8.9 If a module has an T structure, the module is either obtained 

by a slicing cut or there exists a '4T' module (or supermodule) in the packing. 

Proof: Without lost of generality, we consider the case that module M j has 

an T structure at its right edge, i.e., a )灯 = T and a知丑 二 丄-Then, there 

exists a set of modules TV 二 {Mq, Mi,..., M̂；} on the right hand side of Mj 

such that one of their â ^̂ 's and ai^^ 's where i 二 …，k share the T-junction 

T and 丄 with Mj. There are two cases for the placement of the modules in 

N: 

• |7V| = 1, i.e., k = 0. W e have ao^^ 二 ajj^T = 丁 and ao^^ = ajj^^ =丄. 

The T structure is a slicing cut between module MK and Mq. 

• |7V| > 1, Since \N\ > 1，there exists at least one T-junction h such that 

its edge is on the right edge of Mj, i.e., along the T structure. From 

the horizontal segment at the top and bottom of the T structure, there 

should be a falling edge and a rising edge (Figure 8.6 and 8.7). There 

are two cases: 
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falling edge falling edge 

— r — r — H - ^ 
Mj - Mj -

Figure 8.6: A falling edge from the top of the T structure. 

IVT • • Mh • 
] rising edge 」 rising edge 

z z 

Figure 8.7: A rising edge from the bottom of the T structure. 
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Figure 8.8: The four possible cases when the rising and falling edges are one 

vertical segment. 

- T h e falling edge and the rising edge is the same vertical segment. 

There will be four possible cases as shown in Figure 8.8. Note that 

the modules in the shaded area will form one supermodule and 

this case will thus be the same as that when |7V| 二 1, i.e., the T 

structure is a slicing cut between Mk and the supermodule in the 

shaded region. 

— T h e falling edge and rising edge are not the same vertical segment. 

Consider the top segment of the T structure, it should terminate 

in one of the two possible ways as shown in Figure 8.9. These 

two cases are further elaborated in Figure 8.10. For case 1 in Fig-

ure 8.10, the top segment of the T structure terminates at a corner 

of the floorplan. The bottom segment from the T structure (edge 

d) must not meet edge b. Therefore, it must meet with another 

vertical edge e. Edge e must not meet edge a, so it must meet with 
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End with upper right corner .， . . 
_c 丄 T_ 1 1 • End with a T-junction 

of the whole packing . 」 

^ T — — i Z “ " "“ T — — l | Z 

Mj Mj 

CASE 1 CASE 2 

Figure 8.9: Two possible cases for the top segment of the T structure 

CASE 1 CASE 2 

a a 

T 
c b b 

Mj c ^ ^ - r Mj c 

e ^ 2 ) Edge e m u s t \ D E d g e b m u s t 

/ d not m e e t edge a ^ ^ not m e e t edge d 

’ ^ l)Edge d m u s t not 2) If edge f meets 
3) If edge f m e e t s m e e t edge b edge c, a 4T is formed, 
edge c, a 4T is formed . 

Figure 8.10: The illustration of formation of 4T modules 

another horizontal edge /. If edge f meets edge c, a '4T' super-

module is formed; otherwise, the argument will repeat until a '4T' 

supermodule is formed finally. For case 2 in Figure 8.10, the top 

segment of the T structure terminates at a H T-junction. Edge b 

must not meet the bottom segment of the T structure, so it must 

meet with another horizontal edge /. If edge f meets edge c, a '4T' 

supermodule is formed; otherwise, the argument will repeat until a 

'4T，supermodule is formed. • 

Theorem 8.10 A floorplan which is not slicing, will have at least one '4T' 



Chapter 8 Study of Non-slicing Floorplan Representations 100 

module. 

Proof: Assume that a floorplan which is not slicing has no '4T' module. From 

L e m m a 8.8, there exist at least one T structure in every module of the floor-

plan. From Lemma 8.9, if a module has an T structure, the module is either 

obtained by a slicing cut or there exists a '4T' module within the floorplan. 

The second case will contradict with the assumption that the packing has no 

'4T' module. That means, all the modules are obtained by slicing cuts and 

this contradicts with the fact that the packing is not slicing. Therefore, we 

can conclude that a floorplan which is not slicing should have at least one '4T' 

module. • 

8.3 T w i n Binary Tree Representation for M o -

saic Floorplan 

8.3.1 Previous work 

The paper [YCCGOl] have proposed a twin binary tree representation for mo-

saic floorplan. However, they only devised the algorithm to convert a packing 

to its twin binary tree representation and proved that for any given mosaic 

floorplan, there exists a unique twin binary tree representation. In this sec-

tion, we will describe an efficient algorithm to construct the packing from a 

twin binary tree representation. 

Twin binary tree T B T ^ = { { h M ) I h M ^ Tree几 and 6(61) = 6^(62)} 

where Tree。is the set of binary trees with n nodes and 9(6) is the labeling 

of a binary tree b. The labeling of a binary tree is a sequence of '0' and '1' 

bits obtained by an in-order traversal of the tree in such a way that a bit '0' is 

appended to the sequence when a node with no left child is visited and a bit 

'1，is appended when a node with no right child is visited. The first and the 
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Figure 8.11: A packing and its twin binary tree representation 

last bit can be omitted since they are the same for all binary trees. G^b) is 

the complement of 6(6) by changing all the bits '1' to '0' and '0' to '1'. 

The paper [YCCGOl] have proved that for a mosaic floorplan there exists 

a unique twin binary tree representation. Figure 8.11 shows an example of the 

representation. The roots of the twin binary tree will correspond to the top 

right corner block and the bottom left corner block of the packing, and these 

two blocks will be leaf nodes in the other tree of the pair. 

In the binary tree bi, the root node corresponds to the the module at the 
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bottom left corner of the packing. The two branches from this root will travel 

upward and to the right until they reach another T-junctions which are the 

bottom left corners of some other modules, then new nodes are formed corre-

sponding to the modules reached. Note that the bottom left corner of all the 

modules can be reached in this way. The construction of 62 is similar, except 

that the root node now corresponds to the module at the top right corner of 

the packing and the branches of the tree travel downwards and towards the 

left. 

The method [YCCGOl] described above shows the conversion from a pack-

ing to the twin binary tree representation. However, another important step 

is to generate valid twin binary trees and to convert an arbitrary twin binary 

tree representation to its packing efficiently. In the following section, we will 

describe an algorithm to achieve this purpose. 

8.3.2 Twin Binary Tree Construction 

From the twin binary tree in Figure 8.11, we observe that the in-order walk of 

the two twin trees are the same, while their labelling are complements of each 

other. 

Lemma 8.11 For the in-order traversal of and 62, where bi and 62 are the 

twin binary tree constructed from a packing by the method described in Sec-

tion 8.3.1, the first node in the two traversals are the same and it corresponds 

to the module at the top left corner of the packing. 

Proof: In bi, the first node visited in an in-order traversal is the left most 
child which is reached by traveling upward from the bottom left corner until 

there is no more module on the top. Therefore, it is the module at the top left 

corner of the packing. For 62, the first node visited in an in-order traversal is 

the left most child which is reached by traveling towards the left from the top 
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right corner until there is no more module on the left. Therefore, it is also the 

module at the top left corner of the packing. • 

Theorem 8.12 Given a packing and its twin binary tree representation bi 

and 62, the sequences obtained by in-order traversals of the trees including 

the bits labeled at the nodes with either no right child or no left child (we 

call this sequence an in-order sequence) will be the same except that, the bits 

in the two sequences are complemented, for example, AIBICODOFIEI and 

AOBOCIDIFOEO is a pair of twin binary tree of a feasible packing. 

Proof: The proof is done by induction. The proof for the base case with only 

one module is trivial and is not shown here. Assume that the statement is true 

for any packing with k modules where k > 1. Consider a packing with A: + 1 

modules. Let module Ui be the top left comer of the packing, and bi and 62 

are the corresponding twin binary tree. From lemma 8.11, node Ui is the left 

most child in both bi and 62. There are two possible cases: 

• Case 1: rii has a right child in 61. 

If rii has a right child in h, then n^ in 62 will have no right child. Fig-

ure 8.12 illustrates this case. The in-order sequences of bi and &2 are 

niOT2Ti and n^lTs respectively. However, T2T1 and T3 are the in-order 

sequences of the twin binary tree b[ and 63 for the packing P丨 obtained 

from P by sliding the edge a (Figure 8.12) to the left boundary of the 

whole packing to remove ly from P. By the induction hypothesis, T2T1 

and Ts are the same except that the bits are toppled, so n^OTsTi and 

riilTs also have the same property. 

• Case 2: rii has no right child in bi 

If m has no right child in 61, then rii in 62 will have a right child. Fig-

ure 8.13 illustrates this case. The in-order sequences of 61 and 62 are 

mlTi and rijCXTsTV 了 1 and T3T2 are the in-order sequences of the twin 
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/ 

Figure 8.12: The illustration of case 1 in the proof of Theorem 8.12 

binary tree b[ and 63 for the packing P' obtained from P by sliding edge 

b (Figure 8.13) to the top boundary of the whole packing to remove rii 

from P. By the induction hypothesis, Ti and T3T2 are the same except 

that that the bits are toppled, so nJTi and niOTsT2 also have the same 

property. • 

A binary tree bi is given in Figure 8.14 and its in-order sequence is CODIBIAOE. 

Using Theorem 8.12, we can obtain the in-order sequence of its twin binary tree 

by complementing all the bits in the sequence, i.e., CIDOBOAIE. Then, we can 

construct the twin binary tree according to this in-order sequence. Note that 

there may be more than one trees with that in-order sequence (Figure 8.14), 

and these are the possible twin binary trees of bi. Note that a leaf node of bi 

will be the root node of 62, and a leaf node of 62 will be the root node of 61. 

Each 62 can pair up with bi to generate a packing using the method described 

in Section 8.3.3. 

All possible 62 of a given bi can be obtained from the in-order sequence of 

62 since the positions of all the internal nodes and leaf nodes are known. 
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Figure 8.13: The illustration of case 2 in proof of Theorem 8.12 
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Figure 8.14: A example of binary tree bi 
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Figure 8.15: The possible 62 for the hi in Figure 8.14 

8.3.3 Floorplan Construction 

When we have a pair of twin binary tree, we can construct the packing from 

the two trees. The binary trees hi and 62 in Figure 8.14 and Figure 8.15(a) are 

used as an illustration. 

Consider a node A in a binary tree hi. The right child E of node A corre-

sponds to the module on the right of A. The left child B of node A corresponds 

to the module on top of A. Therefore, we have the following equations from 

the binary tree bi： 

OCj^ — X j I U) j 

where module i is the right child of module j, and 

Vi 二 Vj + hj 

where module i is the left child of module j, wj and hj are the width and 

height of module j, and Xi and i/i are the x-coordinate and y-coordinate of the 

bottom left corner of module i respectively. 
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Figure 8.16: The twin binary tree labeled with the corresponding width and 

height. 

Similarly, consider a node L) in a binary tree 62. The right child B of node 

D corresponds to the module below D. The left child C of node D corresponds 

to the module on the left of D. Therefore, we have following equations from 

the binary tree 62: 

x'i 二 oc'j - Wj 

where module i is the left child of module j, and 

y�i = y'j - hj 

where module i is the right child of module j, y\ is the x-coordinate and 

y-coordinate of the top right corner of module i respectively. Also, we have 

the following constraints: 

x[- Xi> Wi 

and 

y'i -yi> hi 

for module i. Figure 8.16 illustrates the twin binary tree labeled with correct 

widths and heights. 
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Figure 8.17: The vertical constraint graph from the example in Figure 8.16 

The vertical constraint graph and horizontal constraint graph can be con-

structed from the twin binary tree. In if node A is the left child of its parent 

B, there is an edge from ^ to A in the vertical constraint graph. If A is not 

the left child of its parent, then we have to search for a node along the path 

from A to the root which is a left child of its parent. For example, in bi of 

Figure 8.16, node D is not the left child of its parent, and we will search along 

the path towards the root until we find node C which is the left child of its 

parent and an edge will then be added from B to D in the vertical constraint 

graph. A similar method is applied to 62 except that the direction is reversed. 

If a node A is the right child of its parent B, we will add an edge from A to 

B in the vertical constraint graph. Figure 8.17 shows the vertical constraint 

graph constructed from the twin binary tree in Figure 8.16. 

For the horizontal constraint graph, the graph can be constructed using 

the same method. If node A is the right child of its parent B in 61, there is 

an edge from B to A in the horizontal constraint graph. For 62, if node A is 

the left child of its parent B, there is an edge from ^ to 5 in the horizontal 

constraint graph. The weight of each edge is the corresponding width or height 

of its source node module. Figure 8.18 shows the horizontal constraint graph 

obtained from the twin binary tree in Figure 8.16. 

Finally, we will add a source node s and a destination node t to the vertical 

constraint graph and the horizontal constraint graph. Edges of weight '0，are 

inserted into the constraint graphs from s to every other vertices with no 
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Figure 8.18: The horizontal constraint graph from the example in Figure 8.16 

incoming edge; and edges of weight equal to the width or height of its source 

node module are also inserted from every vertex with no outgoing edge to t. 

Node s and t correspond to the boundaries of the packing. The coordinates 

of the lower left corner of module Ui can be obtained from the longest path 

length from node s to node rii in the constraint graphs. 

The resultant floorplan corresponding to the twin binary tree in Figure 8.16 

is shown in Figure 8.20. 
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Figure 8.19: The final vertical and horizontal constraint graph for the example 

in Figure 8.16 
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Figure 8.20: The resultant mosaic floorplan of the twin binary tree shown in 

the Figure 8.16 



Chapter 9 

Conclusion 

9.1 S u m m a r y 

This thesis gives an overview of floorplanning in C A D of VLSI physical de-

sign. Important problems in floorplanning are described. These problems are 

due to the advance in the deep sub-micron technology and the scaling down 

of the feature size in the IC technology. Two important issues in floorplan-

ning are scalability and interconnection optimization. There have been many 

studies and research on these problems. W e have studied and investigated the 

methods of imposing clustering constraints and applying multilevel approach 

in floorplanning to address these two issues. In additions, we have studied 

the properties and different representations of non-slicing floorplans in order 

to achieve a better understanding of this important problem. 

A technique to handle clustering constraints is implemented on top of a 

slicing floorplanner. An algorithm is devised to find all the neighboring mod-

ules of a target module from the Polish expression. All the result packings 

satisfy the given clustering constraints and the deadspace is small on average. 

Multilevel approach is introduced to floorplan design. W e have imple-

mented an interconnect driven floorplanner by applying the multilevel tech-

nique. The interconnect cost is optimized in the clustering phase of the multi-

level process and the placement of the modules is performed in the refinement 
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phase. The applicability of this approach is supported by the promising ex-

perimental results in which the interconnect cost is reduced significantly and 

the runtime is shortened. 

A study on non-slicing floorplan is given in the last chapter. W e have 

analyzed different floorplan representations in terms of complexity and repre-

sentation power. A proof is given to show that for a non-slicing floorplan there 

exists at least one module (or supermodule) with four T-junctions of different 

orientations at its corners. A mosaic floorplan representation call twin binary 

tree has been proposed recently. W e have devised an efficient algorithm to 

generate pairs of valid twin binary trees and to convert a pair of such trees to 

its corresponding packing. 
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Appendix A 

Clustering Constraint Data Set 

A.l ami33 

A.1.1 One cluster 
Data Set Cluster (module's number) 

ami33-ccl 5 7 8 11 15 19 22 

ami33-cc2 5 7 8 26 29 30 31 

ami33-cc3 11 19 20 26 29 30 31 

A.1.2 Multi-cluster 
Data Set Number of Clusters Cluster (module's 

number) 

ami33-mcl 3 1) 5 7 11 15 2) 19 22 25 29 

3) 14 27 30 

ami33-mc2 4 1) 5 7 8 2) 11 14 18 

3) 21 24 27 4) 29 30 

ami33-mc3 5 1) 5 7 11 2) 8 14 

3) 21 27 4) 24 29 

5) 18 30 
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A.2 ami49 

A.2.1 One cluster 
Data Set Cluster (module's number) 

ami49-ccl 6 7 8 9 10 11 12 13 14 15 

ami49-cc2 16 17 18 19 20 21 22 23 24 25 

ami49-cc3 26 27 28 29 30 31 32 33 34 35 

A.2.2 Multi-cluster 
Data Set Number of Clusters Cluster (module's 

number) 

ami49-mcl 3 1) 6 7 8 9 10 11 2)12 13 14 15 16 

3) 17 18 19 20 21 

ami49-mc2 4 1) 6 7 8 9 2) 10 11 12 13 

3) 14 15 16 17 4) 18 19 20 21 

ami49-mc3 5 1) 6 7 8 9 2) 11 12 13 

3) 14 15 16 4) 17 18 19 

5) 20 21 22 

A.3 playout 

A.3.1 One cluster 
Data Set Cluster (module's number) 

playout-ccl 1 2 5 6 7 10 11 12 13 16 18 19 

playout-cc2 21 23 24 25 26 27 28 29 31 32 33 34 

playout-cc3 40 42 43 44 45 46 48 49 50 51 52 53 
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A.3.2 Multi-cluster 

Data Set Number of Clusters Cluster (module's 

number) 

playout-mcl 3 1) 1 2 5 6 7 10 11 2) 13 16 18 19 21 22 26 

3) 27 28 31 33 36 37 

playout-mc2 4 1) 1 2 5 6 7 2) 10 11 13 16 18 

3) 19 21 22 26 27 4) 28 31 33 36 37 

playout-mc3 5 1) 1 2 5 6 2) 7 10 11 13 

3) 16 18 19 21 4) 22 26 27 28 

5) 31 33 36 37 



Appendix B 

Multilevel Data Set 

B.l data_100 

Number of Modules 二 100 

Minimum Aspect Ratio 二 0.5 

Maximum Aspect Ratio 二 2.0 

Size of modules: 

49849 98183 75071 95600 61093 85791 94347 85135 

78336 94340 62177 61581 41382 99532 94960 47531 

17784 41769 81607 43630 92959 30494 32491 13738 

86207 66031 42056 7716 20099 79035 86148 96014 

38409 35077 37906 56472 5299 69761 76492 54874 

56713 8817 77678 70900 81432 73361 74732 97500 

72091 33468 62268 27015 30187 83107 11759 99749 

39775 52890 65317 70480 96060 6462 26557 45240 

37057 88023 92981 42521 80755 39158 91122 16340 

22721 82037 59121 21774 76069 36677 29755 11156 

8744 54602 66333 77751 44148 76537 93282 46083 

77292 63238 99290 78738 27599 75777 13260 89496 

53376 9258 34519 20102 
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Number of Pins 二 48 

Distribution of Pins: Evenly distributed on the boundaries of the chip. 

Number of Net = 1888 

Distribution of Nets: 

2 pins net 80% 

3 pins net 10% 

4 pins net 5% 

5 pins net 2% 

6 pins net 2% 

7 pins net 1% 

B.2 data 一 200 

Number of Modules = 200 

Minimum Aspect Ratio 二 0.5 

Maximum Aspect Ratio = 2.0 

Size of modules: 

49512 227393 37432 14075 31679 263100 70330 99589 

563849 68630 7696 45066 36529 55383 67717 24267 

61930 86274 56472 71641 66955 71334 70564 60843 

71862 55045 253651 31469 51235 89834 80542 68640 

47478 61358 67609 525336 8679 55534 11501 65751 

52472 34681 39490 99456 515465 220744 14244 70758 

33803 67233 73427 65442 14616 38343 97917 14938 

45814 298641 99873 49070 6216 48042 7296 14793 

57940 18350 37940 9219 27676 96835 34779 74304 

96375 37068 27264 25307 31642 75425 21993 48884 

22151 64927 56091 62132 37254 11159 9282 44031 
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18633 88938 39397 243075 86149 47893 592217 50642 

43424 56213 21036 69840 97930 19091 555659 91701 

39575 229577 98443 83352 25528 15693 53856 25686 

22381 61616 31077 57560 60267 99223 38337 264629 

99181 27568 99968 77475 46112 33769 45347 90047 

39805 52184 23737 61923 76325 565236 31892 573411 

583072 18901 61245 61484 98607 89696 74416 9399 

87174 8532 54656 5445 24014 64099 64306 18360 

67196 53917 68570 74507 50801 91963 42561 35542 

89985 44949 94307 43378 290768 41243 67751 67688 

54875 24031 56680 73997 263831 41454 27027 53531 

47481 10228 90674 59992 12481 32352 45799 5563 

204886 40683 48937 78682 507568 298473 12149 59532 

28026 80425 25021 25664 15040 18361 85714 59836 

Number of Pins 二 42 

Distribution of Pins: Evenly distributed on the boundaries of the chip. 

Number of Net 二 2388 

Distribution of Nets: 

2 pins net 80% 

3 pins net 10% 

4 pins net 5% 

5 pins net 2% 

6 pins net 2% 

7 pins net 1% 
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B.3 data—300 

Number of modules = 300 

Minimum aspect ratio 二 0.5 

Maximum aspect ratio = 2.0 

Size of modules: 

597414 42925 79706 38579 54275 19606 5713 68993 

62969 92758 57253 23444 35047 59669 15719 11233 

65746 83647 90266 45558 7135 25518 50242 38166 

44181 53308 41576 32945 41132 8975 50861 94472 

30015 65421 515948 28767 85220 63182 5930 33658 

66813 6309 51035 31224 93275 88451 278662 63951 

224079 11311 15293 73073 48201 58508 556329 267487 

68567 91902 76272 34718 44344 44539 50239 41597 

94646 84437 21610 63363 18501 8024 48360 13346 

36455 61679 50103 78333 86074 29257 229049 68987 

79076 98038 10905 45842 24643 65113 52936 30680 

85148 70849 26719 90154 92351 14476 87445 39924 

65999 54065 74159 71082 99893 69418 53029 97009 

28640 56625 93609 58748 70650 94271 598820 73482 

86588 41824 268538 84172 44864 86723 252851 34368 

59685 78665 8260 40730 13400 89708 30279 12438 

74167 17000 99336 71500 72423 43311 60833 5212 

69032 89748 88047 96094 17810 53467 42025 50202 

56919 81230 36676 8935 82033 54082 81624 26849 

11282 30152 53178 64499 34441 95918 40547 15313 

30352 82345 72061 61981 89056 93799 284082 88473 

34533 92260 581304 57420 81593 77140 51327 99468 
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76157 38636 51123 62021 72277 553566 20668 89173 

79545 90360 57964 28829 29472 555051 53203 88561 

44792 58746 92183 227273 32500 14742 51196 54215 

28403 88984 23337 58847 253697 292499 29846 59080 

44260 71750 85043 74265 42367 548255 51484 26289 

72658 82357 543143 47204 59430 87671 8766 25083 

80732 502550 54952 51089 96214 32803 49125 40272 

230333 15927 76203 86166 240266 21295 9631 74996 

48751 93018 97356 29152 76092 62595 56401 71566 

62686 7034 15892 33694 547689 560142 20836 46305 

76241 86996 22817 90198 564816 70010 55513 14415 

33989 20639 15780 80055 63232 58668 34054 25990 

63252 66786 44780 55643 75434 72715 95607 53044 

16905 80612 65898 93022 73484 21544 16489 6758 

528737 68551 75741 76492 64854 32128 97258 21982 

54513 90135 80381 18392 

Number of Pins = 64 

Distribution of Pins: Evenly distributed on the boundaries of the chip. 

Number of Net = 2888 

Distribution of Nets: 

2 pins net 80% 

3 pins net 10% 

4 pins net 5% 

5 pins net 2% 

6 pins net 2% 

7 pins net 1% 
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B.4 data—400 

Number of modules = 400 

Minimum aspect ratio = 0.5 

Maximum aspect ratio = 2.0 

Size of modules: 

83841 94654 82060 8914 23925 27070 31236 296471 

60089 73214 542710 12909 57208 38003 54217 225471 

49445 86582 19044 279003 74646 87587 12570 84632 

19404 73132 517704 81661 71442 9959 62882 77301 

49511 47385 11392 54169 82660 31978 23798 40505 

56368 38159 95949 574061 40114 26773 28136 12714 

24312 16620 17520 277075 98361 62851 98207 9746 

67325 549357 11011 96448 11330 17007 19834 48464 

84679 11778 59105 44058 51646 93056 10079 81271 

58364 48696 20304 77430 95808 47947 61734 17529 

25897 53413 46452 37637 33863 23611 529530 49472 

8958 269130 276831 73456 13074 509347 55772 563808 

66583 21630 43769 78154 55320 6241 14688 41450 

20722 578033 14416 16259 52489 88389 72704 25064 

290743 28661 62579 57168 10342 17176 10924 32614 

525948 84226 88679 60303 22029 69460 64924 67291 

47954 93429 93185 47621 89013 38491 43133 94299 

14063 74248 33129 47004 97004 62904 81323 31254 

56029 81660 13446 18164 564292 63849 81791 57066 

20454 275410 78915 93984 98475 8661 54464 28533 

70941 73320 96300 99992 88822 53476 72094 25173 

13901 29253 54020 54639 526986 5813 81832 98922 
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67908 48281 99136 31222 7456 67756 81666 503539 

69761 35962 88277 54148 85670 98042 72834 8235 

86147 17825 29825 45404 37342 99318 519684 50386 

94628 41483 82629 28583 41532 27598 88367 70249 

78419 47324 5306 92628 22625 5116 94523 94641 

47048 90940 86718 78381 53831 49696 45082 89662 

55540 39770 44350 95709 56872 52180 22994 64021 

96135 534470 538864 71734 9728 75196 21194 81043 

95246 47583 43313 224953 94181 11896 40841 47516 

32742 8742 83408 12119 26225 92927 41286 36154 

7083 97975 7945 21707 18915 48963 53596 45030 

21850 44163 86385 77841 76919 89406 32914 63217 

96039 53303 76441 63727 18959 15330 83839 53306 

53913 23341 72963 82580 596925 78935 17274 97786 

55444 97629 541108 8494 64620 60788 25785 23447 

23956 22761 77790 96892 89299 42024 82130 58897 

46078 34028 34091 217398 232381 11664 46423 42760 

73766 65136 62228 543568 10066 507077 47489 74953 

30267 547820 73848 52264 97210 41500 30441 29174 

58795 62461 32641 94675 10435 68461 27634 66973 

94706 82241 232058 13951 98444 76235 275279 9642 

34992 76589 63409 44091 79857 212082 23763 39981 

61740 21164 37254 93601 97700 96054 17064 249978 

86663 45947 42444 584686 9115 41660 75406 25011 

80248 5788 58446 65356 70314 83355 25542 26052 

37882 43079 90828 51126 21435 39471 86937 15940 

20420 54362 17252 20637 75564 88434 71993 23428 

78379 17667 64949 31689 17986 75873 68150 15062 
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Number of Pins = 64 

Distribution of Pins: Evenly distributed on the boundaries of the chip. 

Number of Net = 3388 

Distribution of Nets: 

2 pins net 80% 

3 pins net 10% 

4 pins net 5% 

5 pins net 2% 

6 pins net 2% 

7 pins net 1% 

B.5 data—500 

Number of modules 二 500 

Minimum aspect ratio 二 0.5 

Maximum aspect ratio 二 2.0 

Size of modules: 

70268 46383 84415 79249 93575 34533 56758 23949 

57208 53670 84034 68566 90972 40959 248764 35223 

87656 7419 54440 67740 48375 29617 518006 43746 

88565 8099 91227 10013 86973 84632 45626 48162 

92769 42918 49372 35190 22763 84414 75080 79077 

9506 85589 97086 49004 60272 67821 46766 84672 

9162 523729 38856 23649 77501 37906 63163 267163 

30147 30120 16623 87941 89670 95129 46688 527762 

20416 23564 81681 22748 54519 268368 584046 93180 

41513 17562 14316 94211 506009 582808 27750 94867 

64369 521884 522579 58654 33832 64981 7581 68514 
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242654 55298 91975 21390 35265 18689 55814 47614 

290308 56576 38324 558294 583008 272025 31824 48353 

83170 86660 79479 87214 58501 51676 27748 78860 

65815 37676 20364 21101 99046 34083 17673 25473 

12346 287911 49212 99568 22144 21740 69858 87034 

23741 5603 75667 42955 27765 22915 79464 76510 

5960 10857 576198 72341 20621 12305 555138 82090 

90215 27393 46552 573616 81958 87284 29625 20669 

43892 53527 501033 76775 93616 26714 59537 74578 

30619 10928 83844 22871 55715 15813 35543 77202 

50621 27685 76832 60299 264197 21686 33969 257926 

47150 42635 49730 14844 74160 27533 49162 13960 

47725 78757 53244 18137 7523 57723 80112 8377 

527151 76066 23488 44421 10964 11787 65918 550840 

29270 72759 227321 23983 58763 83446 91690 266233 

14471 46394 559129 58968 72591 27874 45903 42077 

34666 94209 64671 31678 28543 5112 44440 39075 

83110 78277 30416 63422 58367 75491 37542 18194 

60219 24692 18411 17275 20189 84711 46112 90304 

74300 79793 5684 18925 32479 79592 34013 85657 

90098 76942 47343 5341 96648 20511 547996 65453 

63037 292374 7493 36059 58654 81534 81902 22775 

22050 93624 27136 26827 585032 54273 46780 45145 

88896 9058 23169 590395 53719 96471 53562 235977 

46842 72020 37637 94194 85067 91338 39924 17189 

96610 18110 81379 569693 63444 8647 97999 60234 

62476 39105 541195 33179 224807 83618 84550 17824 

36412 22050 44705 510633 554582 20271 53613 73165 

27015 21197 213614 25473 9845 92092 74153 82062 
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68245 19807 65489 544136 39397 35978 23081 298904 

96420 82396 42412 12478 32987 23357 61168 37800 

74224 94805 88250 69480 74788 21833 14857 75190 

64411 89338 81193 13081 28577 81973 13925 52577 

92621 19006 94077 51947 11193 97297 62864 10196 

51866 21329 223798 43077 53431 33954 17816 56458 

90221 76773 92157 91228 31256 69182 94029 29389 

29962 13423 13861 23534 54403 579709 31246 31024 

35446 65737 91996 90489 6768 55758 289916 57861 

14621 39819 14030 88018 54209 299208 40079 95058 

71724 37683 16290 49341 56294 39703 17743 72660 

34490 66677 21080 74238 271568 60158 81909 29729 

78193 6937 80891 42996 19217 35157 41375 46166 

21905 52858 11334 587295 85026 10756 45460 26977 

97378 69616 19443 15293 84521 579223 57793 48752 

15923 30750 58986 13192 21188 27221 257305 83685 

27821 69421 70529 60943 35568 596960 40703 68160 

80148 502716 36728 84610 94098 24151 586685 59416 

82151 50670 94363 8311 81137 543098 30416 67027 

6105 265723 82345 81469 79569 38551 9195 21062 

79838 75438 12758 5757 81449 5940 60974 79203 

63632 585727 5324 509270 55494 525374 47877 523088 

21112 53180 70783 86904 

Number of Pins = 72 

Distribution of Pins: Evenly distributed on the boundaries of the chip. 

Number of Net = 3888 

Distribution of Nets: 
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2 pins net 80% 

3 pins net 10% 

4 pins net 5% 

5 pins net 2% 

6 pins net 2% 

7 pins net 1% 



Publications 

Full Length Conference Papers 

• W . S. Yuen and F. Y. Young, "Slicing Floorplan with Clustering Con-

straints" in Proceeding of IEEE Asia South Pacific Design Automation 

Conference, pp. 503-508, 2001. 

• W . S. Yuen and F. Y. Young, "Scalable and Interconnect Driven Multi-

level Floorplanner" in progress. 
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