
Scalability and Interconnection Issues in
Floorplan Design and Floorplan

Representations

YUEN Wing-seung

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Philosophy

in

Computer Science and Engineering

©The Chinese University of Hong Kong

July 2001

The Chinese University of Hong Kong holds the copyright of this thesis.

Any person(s) intending to use a part or the whole of the materials in this

thesis in a proposed publication must seek copyright release from the Dean of

the Graduate School.

K 統 系 . a i i ^ A

|(11 M 膽 jij

Scalability and Interconnection Issues in Floorplan
Design and Floorplan Representations

submitted by

YUEN Wing Seung
for the degree of Master of Philosophy

at The Chinese University of Hong Kong in July 2001

Abstract

Floorplan Design is the problem of planning the positions and shapes of the

modules at a very early designing stage of VLSI circuits in order to optimize the

circuit performance. During this floorplanning phase, the circuit performance

like layout area, interconnect cost, heat dissipation and power consumption,

etc, should be minimized. There are several aspects that a floorplanning algo-

rithm has to deal with: the flexibilities of the modules, total area of the chip,

routability and delays. All these are essential for optimizing the circuit perfor-

mance. With the scaling down of the IC technology, the number of transistors

that can be built into a standard size chip has increased rapidly and inter-

connect delay has become a dominant factor in circuit delay. Both scalability

and interconnect optimization are currently one of the most important issues

in floorplan design.

Placement constraints are useful that some modules are constrainted to be

placed at some specify positions of the chip to reduce the interconnect cost and

to improve the circuit performance. Clustering constraint in slicing floorplan

is considered. It is a constraint in which some modules are required to be

placed geometrically adjacent to each other forming a cluster in the floorplan.

A linear time algorithm is devised to locate all the neighbors of a module in a

normalized Polish expression. By making use of this algorithm, we can address

the Clustering Constraint in slicing floorplan effectively.

i

Multilevel approach is also studied to address the scalability problem in

floorplanning. The floorplanning process is divided into two phases: the Clus-

tering Phase and the Refinement Phase. In the Clustering Phase, heavily

connected modules are clustered together recursively to reduce the intercon-

nect cost. The modules are then unclustered and packed in the Refinement

Phase. Experimental results show that this approach can speedup the floor-

planning process for even very large circuits and can reduce the interconnect

cost significantly.

Slicing floorplans have two important advantages: they have small solu-

tion space and the best dimensions of the modules can be computed in linear

time. However, slicing floorplan can only represent a small subset of packings.

Many representations are proposed in order to represent non-slicing floorplans

effectively and we have studied and analyzed different floorplan representa-

tions. Twin binary tree is one of the newly proposed representations for mo-

saic floorplan. We have proved an interesting property in non-slicing floorplan

and devised an efficient algorithm to generate pairs of twin binary trees and

to convert a twin binary tree to its corresponding packing.

i i

佈圖的可變性與互連及佈圖的代表式

作者：袁詠湘

論文摘要

佈圖是應用在超大規模集成電路結構設計的較早階段，主要通過計算模件的擺

放位置與其尺寸，把版面面積、互連、熱能與能量消耗等影響電路性能的因素

盡量減低，從而提高電路的性能。此外，佈圖的演算法也會考慮模件的形狀、

大小、延時及可佈線性等問題。由於集成電路的特徵尺寸日益縮小，一片晶片

可容納的電晶體數目大大增加，互連延時因而成了電路延時的主要因素；可變

比例性與互連則成了現今佈圖面對的主要問題。

佈局限制可以把所需的模件放置於指定的區域’從而縮短模件與連接口以

及多互連模件之間的距離。我們把群集限制用於分片佈圖中。這限制是在佈圖

上把指定的模件放於一起。我們設計了一個線性的演算法，此演算法能從分片

佈圖表達式中找出在佈圖上一個模件的周圍模件，利用此演算法，群集限制便

可用於分片佈圖中。

多層法是一個解決佈圖上可變比例性問題的有效方法。我們把佈圖的過程

分成兩部份，分別爲群集和求精。在群集的過程中，多互連的模件會組成一組，

從而提早減低互連的成本。之後，模件會在求精的過程中作佈圖。從實驗結果

得知，這方法可以減少運算的時間與互連接距離。

分片佈圖有著解空間小及可以有效地計算模件的最佳尺寸等特點，這是非

分片佈圖所不能做到的。現有很多的非分片佈圖表達式，都沒有分片佈圖的這

些優點。我們分析了不同佈圖表達式，而且更證明了一個非分片佈圖的特性。

Acknowledgments

I would like to acknowledge the support and guidance of my supervisor, Prof.

Evangeline F. Y. Young. A lot of ideas and problems are raised by her and I can

just finish some of them. She has allowed me to explore different techniques

in solving the problems, and I have developed deep interest in the field of

Computer Aided Design during this research work even through I did not

know much of it at the beginning. She is nice, patient and enthusiastic. I

warmly thank her.

I would also like to thank the CAD research group in our department. The

supervisors of the group include my supervisor and Prof. David Y. L. Wu.

In the meeting, we have shared our research works, problems, comments and

supports. It is interesting and supporting to raise and discuss the problems

together. I would like to thank all the members of the group, including Mr.

Ray C. C. Cheung, Mr. Bruce C. W. Sham, Mr. Cliff C. N. Sze and Mr. Keith

W. C. Wong.

I warmly thank all my classmates including Mr. Ivan K. H. Leung, Mr. Nor-

ris M. P. Leong, Ms. Polly P. M. Wan, Mr. Hiu-Yung Wong who are working

in the same office with me days and nights. They have made my postgraduate

school life enjoyable. Also, I kindly thank all my students in the courses. They

are smart and excellent, that allows me to have abundant time to concentrate

on my research works.

i i i

Contents

Abstract i

Acknowledgments iii

List of Figures viii

List of Tables xii

1 Introduction 1

1.1 Motivations and Aims 1

1.2 Contributions 3

1.3 Dissertation Overview 4

2 Physical Design and Floorplanning in VLSI Circuits 6

2.1 VLSI Design Flow 6

2.2 Floorplan Design 8

2.2.1 Problem Formulation 9

2.2.2 Types of Floorplan 10

3 Floorplanning Representations 12

3.1 Polish Expression(PE) [WL86] 12

3.2 Bounded-Sliceline-Grid(BSG) [NFMK96] 14

3.3 Sequence Pair(SP) [MFNK95] 17

3.4 O-tree(OT) [GCY99] 19

iv

3.5 B*-tree(BT) [CCWWOO] 21

3.6 Corner Block List(CBL) [HHC+00] 22

4 Optimization Technique in Floorplan Design 27

4.1 General Optimization Methods 27

4.1.1 Simulated Annealing 27

4.1.2 Genetic Algorithm 29

4.1.3 Integer Programming Method 31

4.2 Shape Optimization 33

4.2.1 Shape Curve 33

4.2.2 Lagrangian Relaxation 34

5 Literature Review on Interconnect Driven Floorplanning 37

5.1 Placement Constraint in Floorplan Design 37

5.1.1 Boundary Constraints 37

5.1.2 Pre-placed Constraints 39

5.1.3 Range Constraints 41

5.1.4 Symmetry Constraints 42

5.2 Timing Analysis Method 43

5.3 Buffer Block Planning and Congestion Control 45

5.3.1 Buffer Block Planning 45

5.3.2 Congestion Control 50

6 Clustering Constraint in Floorplan Design 53

6.1 Problem Definition 53

6.2 Overview 54

6.3 Locating Neighboring Modules 56

6.4 Constraint Satisfaction 62

6.5 Multi-clustering Extension 64

6.6 Cost Function 64

V

6.7 Experimental Results 65

7 Interconnect Driven Multilevel Floorplanning Approach 69

7.1 Multilevel Partitioning 69

7.1.1 Coarsening Phase 70

7.1.2 Refinement Phase 70

7.2 Overview of Multilevel Floorplanner 72

7.3 Clustering Phase 73

7.3.1 Clustering Methods 73

7.3.2 Area Ratio Constraints 75

7.3.3 Clustering Velocity 76

7.4 Refinement Phase 77

7.4.1 Temperature Control 79

7.4.2 Cost Function 80

7.4.3 Handling Shape Flexibility 80

7.5 Experimental Results 81

7.5.1 Data Set Generation 82

7.5.2 Temperature Control 82

7.5.3 Packing Results 83

8 Study of Non-slicing Floorplan Representations 89

8.1 Analysis of Different Floorplan Representations 89

8.1.1 Complexity 90

8.1.2 Types of Floorplans 92

8.2 T-junction Orientation Property 97

8.3 Twin Binary Tree Representation for Mosaic Floorplan 103

8.3.1 Previous work 103

8.3.2 Twin Binary Tree Construction 105

8.3.3 Floorplan Construction 109

v i

9 Conclusion 114

9.1 Summary 114

Bibliography 116

A Clustering Constraint Data Set 123

A.l ami33 123

A. 1.1 One cluster 123

A.l.2 Multi-cluster 123

A.2 ami49 124

A.2.1 One cluster 124

A.2.2 Multi-cluster 124

A.3 playout 124

A.3.1 One cluster 124

A.3.2 Multi-cluster 125

B Multilevel Data Set 126

B.l data_100 126

B.2 data一200 127

B.3 data—300 129

B.4 data_400 131

B.5 data_500 133

v i i

List of Figures

2.1 Physical Design Cycle 7

2.2 A Slicing Floorplan 11

2.3 A Non-slicing Floorplan 11

3.1 Slicing Tree 13

3.2 Binary operations for slicing floorplans 13

3.3 A 4 X 4 Bounded Sliceline Grid structure 15

3.4 Horizontal and vertical unit adjacency graphs 15

3.5 One of the assignment of module into the grid 16

3.6 Horizontal unit and vertical unit adjacency graphs of the BSG

assignment in Figure 3.5 16

3.7 The packing correspond to the BSG assignment in Figure 3.5 . . 17

3.8 H-constraint and V-constraint graph by the given sequence pair

(abed, cbad) 18

3.9 The packing corresponding to the sequence pair in Figure 3.8 . . 18

3.10 The depth first search of an ordered tree 20

3.11 A pack correspond to the 0-tree in Figure 3.11 21

3.12 An example of B*-tree and its correspond packing 22

3.13 An example non-slicing floorplan 23

3.14 Illustrates deletion of corner block of the packing in Figure 3.13 24

3.15 Horizontal constraint graph and vertical constraint graph of

packing in Figure 3.13 24

v i i i

4.1 Crossover operation of the genetic algorithm in [CHMR91] . . . 30

4.2 Shape curve of a rectangular module 34

5.1 The Boundary Constraints 39

5.2 The Pre-placed Constraints 40

5.3 Reference point inherit for the supermodule 40

5.4 The Range Constraints 42

5.5 The Symmetry Constraints 43

5.6 Feasible regions for inserting k buffers 46

5.7 2-D feasible regions with existing placed modules 47

5.8 Buffer zones of a packing 48

5.9 A BP problem containing two buffers, two nets and seven buffer

zones 49

5.10 The corresponding network flow graph of problem in 5.9 49

5.11 L-shaped routing 50

5.12 Z-shaped routing 51

6.1 An illustration of the clustering constraint 54

6.2 The Illustration of the neighboring structure 57

6.3 An illustration of the algorithm Find—Surrounding 60

6.4 D does not belong to lit where Mt is F 61

6.5 A result packing of ami33 with three clusters (Ci:5,7,ll,13;

^2：14,27,30; C3:19,22,25,29) 67

6.6 A result packing of ami49 with four clusters (Ci:6,7,8,9; C2:10,ll,12，13;

^3:15,16,17,18; ^4:18,19,20,21) 67

6.7 A result packing showing the improvement in interconnection by

imposing clustering constraints (wirelength = 0.1472xl0^units). 68

6.8 A result packing of the same problem in Figure 6.7 without

clustering constraints (wirelength 二 0.1596xl06units) 68

ix

7.1 Multilevel Partitioning 70

7.2 Coarsening Step 71

7.3 Illustration of a Multilevel Floorplanning 72

7.4 Illustration of The Hyperedge Clustering Method 74

7.5 Illustration of The Heavy Edge Clustering Method 75

7.6 Illustration of the Sequence Pair Refinement 78

7.7 Initial temperature in the Refinement Phase for ami33 83

7.8 Initial temperature in the Refinement Phase for ami49 84

7.9 Initial temperature in the Refinement Phase for playout 85

7.10 A result packing of ami33 (area 二 1143430//m2, wlen 二 56479/im) 86

7.11 A result packing of ami49 (area = 35543600/im^, wlen = 907515/xm) 86

7.12 A result packing of data.lOO (area = 8733540/_mi2, wlen =

2811010/im) 87

7.13 A result packing of data—200 (area = 17567900/xm^, wlen =

4506900/im) 87

7.14 A result packing of data_500 (area = 49626700譯2, wlen 二

14559800/im) 88

8.1 Complexity of different floorplan representations 93

8.2 Complexity of CBL comparing with exact number of mosaic

floorplan 94

8.3 Complexity of PE comparing with exact number of slicing floor-

plan 95

8.4 The illustration of Maximally Compact Placement 95

8.5 The illustration of slicing floorplan is not necessarily to be max-

imally compact 96

8.6 A falling edge from the top of the T structure 100

8.7 A rising edge from the bottom of the T structure 100

V

8.8 The four possible cases when the rising and falling edges are one

vertical segment 皿

8.9 Two possible cases for the top segment of the T structure . . . 102

8.10 The illustration of formation of 4T modules 102

8.11 A packing and its twin binary tree representation 104

8.12 The illustration of case 1 in the proof of Theorem 8.12 107

8.13 The illustration of case 2 in proof of Theorem 8.12 108

8.14 A example of binary tree bi 108

8.15 The possible b) for the h in Figure 8.14 109

8.16 The twin binary tree labeled with the corresponding width and

height 110

8.17 The vertical constraint graph from the example in Figure 8.16 . I l l

8.18 The horizontal constraint graph from the example in Figure 8.16 112

8.19 The final vertical and horizontal constraint graph for the exam-

ple in Figure 8.16 113

8.20 The resultant mosaic floorplan of the twin binary tree shown in

the Figure 8.16 113

x i

List of Tables

6.1 Results of testing with one cluster for the MCNC examples . . . 66

6.2 Results of testing with multi-clusters for the MCNC examples . 66

6.3 Results of the control experiments 67

7.1 Results of the multilevel floorplanner 84

7.2 Results of original algorithm without multilevel 85

7.3 Results of comparison with [MK98] 85

8.1 Complexity of different floorplan representations 92

8.2 Relationship between representations and different kinds of floor-

plans 97

x i i

Chapter 1

Introduction

1.1 Motivations and Aims

Integrated Circuit (IC) Technology is a revolution of this century. All the

electronics devices including computers, phones, appliances, etc, are using ICs

as the microprocessor, memory and interface chips. Devices become smaller,

faster and more advanced due to the scaling down of the ICs technology.

Very Large Scale Integration (VLSI) is a term describing a chip that is in-

tegrated of up to millions of transistors. It is difficult to handle up to millions

or even billions of transistors. The transistors have to be placed, the connec-

tions between them have to be routed, and all these have to be done within

a limited area on a chip. Optimization is very important in Physical Design

of VLSI circuits and automation is unavoidable in speeding up this very large

scale and complicated optimization.

Computer Aided Design (CAD) in VLSI is playing an important role in

the IC industry. Tools and algorithms are developed to solve different kinds

of optimization problem in the Physical Design phase. This can help the

engineers to develop their chips and products efficiently.

Floorplan Design is an important step in VLSI Physical Design. The ob-

jective of floorplanning is to plan the positions, shapes and dimensions of

the modules on a chip to optimize circuit performance like total chip area,

Ch ap ter 1 Introduction 2

mutability, circuit delay, power consumption, etc., at a very early designing

stage.

With the scaling down of the technology in the IC development, the number

of transistors that can be built into a standard size chip has increased rapidly.

The functionality of the chip has also become more and more complicated. We

need to handle large problem size in floorplanning and scalability has become

an important issue [KahOO]. Most traditional floorplanners are unscalable since

the process to obtain a good packing when everything is still very flexible is

non-trivial and time consuming. They are unable to handle large problem size

with even a few hundreds of modules in practical time. The runtime required

will grow exponentially with the problem size.

Interconnect optimization is another major concern in Floorplan Design. In

some advanced systems today, as much as 80% of a clock cycle is consumed by

interconnect and interconnect delay has dominated the system performance.

We should consider interconnect as early as possible so that timing closure can

be achieved more effectively in the later designing stages. In the floorplanning

stage, we only got some preliminary information like module area, net infor-

mation and pin positions. Interconnect cost can only be estimated roughly by

some simple methods at this stage such as half-perimeter and center-to-center

estimations. We want to minimize these values in the floorplanning stage to

improve the interconnect cost of the final circuit.

The objective of this project is to investigate and study the methods to

address the scalability and interconnect issues in floorplan design, and to study

the representations of floorplan in general to achieve a better understanding

of this important problem.

Placement constraints in floorplan design are useful for specifying the place-

ment relationship between the modules according to their functionality in order

to improve the circuit performance like interconnect cost and delay. Some pre-

vious works on placement constraints in slicing floorplans [YW99b, YW99a

Ch ap ter 1 Introduction 18

have been done. Clustering constraint is considered in our research work in

which some modules are required to be placed next to each other. The cost

of routing can be reduced by imposing clustering constraint to the modules

which are heavily connected.

Multilevel approach is a good solution to address the scalability and inter-

connect issues in floorplan design. Multilevel approach has been used in circuit

partitioning [KK95, AHK98, WA98, KAKS99] to handle large circuits. It con-

sists of two phases: clustering and refinement. The Clustering Phase groups

modules with heavy interconnection together and the Refinement Phase per-

forms partitioning. We are pioneers in applying this multilevel technique in

floorplan design and its applicability is strongly supported by the very promis-

ing experimental results.

1.2 Contributions

This thesis will present three pieces of work: slicing floorplan with clustering

constraint, interconnect driven multilevel floorplanner and some studies of the

properties and representations of non-slicing floorplan.

• Clustering Constraint is considered in slicing floorplan. Given a set of

modules M and a subset of modules 5 C M, we want to pack those

modules in M such that the modules in S will be geometrical adjacent

to each other. The wiring cost can be reduced by putting modules with

a lot of connections closely together. Designers may also need this type

of placement constraint to pack the modules according to their function-

ality.

A method addressing clustering constraint in slicing floorplan is pre-

sented. A linear time algorithm is devised to locate neighboring modules

in a normalized Polish expression and to re-arrange the modules such that

Ch ap ter 1 Introduction 4

the floorplan generated is feasible and satisfys the given constraints.

Experiments were performed for one to five clusters in a packing on

different MCNC benchmarks and the results are promising. The runtime

has only increased by 10% on average and the resulting deadspace is

similar to that of the original floorplanner when no clustering constraints

is imposed.

• Multilevel technique is applied to floorplanning in order to reduce run-

time and to better optimize the interconnect cost of the final packing.

This technique has been found to be very efficient in reducing the run-

time for the circuit partitioning problem and we want to find out if this

technique is also applicable to floorplanning.

The clustering and refinement methods for the multilevel approach are

devised. Experiments were performed for up to a thousand of modules

in the packing. The wirelength of the result packing is improved by

about 10% on average in comparison with those without using multilevel

approach. The runtime is halved and a small deadspace can be obtained.

• Some interesting properties of non-slicing floorplan are studied. We have

proved that a non-slicing floorplan must contain at least a module (or a

supermodule) with four T-junctions of different orientations at its four

corners. We also devised an efficient algorithm to generate pairs of valid

twin binary tree and to convert a twin binary tree to its corresponding

packing.

1.3 Dissertation Overview

This thesis is consisted of nine chapters. Introduction to Computer Aided

Design in VLSI circuits and Floorplanning is given in Chapter 2. Chapter 3

describes different types of floorplan representations. For each representation,

Ch ap ter 1 Introduction 5

the transformation from the abstract representation to the real packing will be

described. Some optimization techniques commonly used in floorplan design

will be presented in Chapter 4. Chapter 5 is a literature review on intercon-

nect driven floorplan design which includes the placement constraint, buffer

block planning and wirelength estimation model. Chapter 6 presents the work

on clustering constraint in slicing floorplan. The algorithm details and proce-

dure will be given in this chapter. Chapter 7 describes the work on multilevel

floorplanner. The clustering and refinement procedures are applied to the

floorplanning problem. Chapter 8 is a study of the properties and representa-

tions of non-slicing floorplans. Finally, the conclusion will be given in the last

chapter.

Chapter 2

Physical Design and

Floorplanning in VLSI Circuits

This chapter will briefly introduce several important stages in Physical Design

of VLSI circuits. They are partitioning, floorplanning, placement, routing and

compaction. These steps are essential for optimization can optimize and layout

of the chips. Problem formulations and types of floorplan will also be discussed

in this chapter.

2.1 VLSI Design Flow

Physical Design translates a circuit diagram into its layout. During this pro-

cess, we need to minimize the chip area and signal delay in order to improve the

circuit performance. It consists of several steps including Partitioning, Floor-

planning, Placement, Routing and Compaction [She99]. Figure 2.1 shows the

flow diagram of these processes. For each circuit, it will go through these steps

to obtain a good layout before fabrication.

The partitioning step divides a circuit into several parts such that the net

connections between the parts are minimized. Partitioning is significant be-

cause the number of pins on the chip is limited and also a good partition can

reduce the circuit complexity significantly. Some systems today may consist of

Chapter 2 Physical Design and Floorplanning in VLSI Circuits 7

Circuit
Design

Physical Design

\i
Partitioning

Floorplanning &
Placement

i
Routing

Compaction

\i
Extraction &

Verification

V

Fabrication

Figure 2.1: Physical Design Cycle

millions of transistors on one single chip. It is impossible to layout the entire

chip fast due to the limitation in computational power and memory. Circuits

are usually partitioned recursively into smaller sub-circuits. Actually, the pro-

cess will also consider the size of the modules, the number of modules and

the number of interconnections between the modules. It is beneficial to min-

imize the number of connections between the partitions and keep the size of

the partitions similar. Kernighan-Lin [KL70] and Fiduccia-Mattheyses [FM82:

methods are two famous algorithms in solving the graph bi-partitioning prob-

lem in which we want to divide a graph into two partitions with similar size.

Floorplanning and Placement are an important step that determine the

Chapter 2 Physical Design and Floorplanning in VLSI Circuits 8

shapes and positions of the modules on a chip. This will greatly affect the area

and the dalay of the chip. The area of each module can be estimated since the

amount of gates and logics are known after circuit partitioning. The intercon-

nect information are also obtained from the partitioning process. These are the

input to the floorplanning process and the output is the packing that with the

chip area and interconnect cost optimized. The dimensions and shapes of the

modules are also varies. It is a computational intensive problem to determine

both the dimensions and positions of the modules such that the chip area and

interconnect cost are minimized. Placement determines the exact positions of

the modules on the chip with more detailed information like pin assignment,

module's dimensions, such that the chip area and delay constraint are satisfied.

After the modules are placed, routing completes the interconnect between

the pins of the modules. Routing may include two phases - global routing

and detailed routing. Global routing determines a rough route for each net. It

determines the regions in which the route should go to complete the connection.

Detailed routing completes the route within the regions. The regions can be a

channel, a box or over the modules. It is a hard problem because the resources

for routing is limited and routablity is an important issue.

The area of the layout will be further reduced in the Compaction stage.

Compaction is to compress the layout in all directions such that the deadspace

within a chip can be reduced, resulting in a smaller total chip area. After all

the above stages, the layout have to be verified and checked whether it satisfy

the timing and function requirement. Otherwise, the design flow have to be

repeated until all requirements are satisfied.

2.2 Floorplan Design

Floorplanning is the problem of placing and sizing the modules after the circuit

is partitioned into different units. During this floorplanning phase, the total

Chapter 2 Physical Design and Floorplanning in VLSI Circuits 9

area of the layout and the interconnect cost should be minimized.

The input to this floorplanning problem are the areas of the modules, the

possible shapes of each module, possibly the I /O pins of each module and the

netlist between the modules.

There are two types of modules, namely hard modules and soft modules.

Hard modules are the modules whose dimensions and shapes are fixed. Soft

modules are the modules which dimensions and shapes are not known though

their areas can be estimated by knowing how much logic each contains. There

may be restrictions to the aspect ratio and orientation of the soft modules. In

floorplanning, most of the modules are flexible and the floorplanning step is

to determine the positions, dimensions and shapes of the modules.

There are several aspects that a floorplanning algorithm has to deal with:

the shapes of the modules, routablity, area and delays. All these are essential

for optimization of the circuit performance.

2.2.1 Problem Formulation

A floorplan with n modules (1 , 2 , . . . , n) is an enveloping rectangle R subdi-

vided by horizontal and vertical line segments into n or more non-overlapping

rectilinear regions [WL86] such that each region Ri must be large enough to

accommodate the corresponding module i.

A floorplan is evaluated by its packing area and interconnect cost. An nxn

matrix C can represent the interconnections between n modules. C = (cjj)nxn

with Cij > 0,1 < i,j < n, is the number of wire between each pair of modules.

The most common method is that for every pair of modules i and j , we use

dij to denote the distance between i and j. Then W, an estimate of the total

interconnection wire length, can be computed as In most

iterative methods, a floorplan is evaluated by the function A + AW. where A

is the area and W is the wire length. The overall aspect ratio of the floorplan

Chapter 2 Physical Design and Floorplanning in VLSI Circuits 25

also needs to be considered.

The aspect ratio for each module will be limited to a range so that the

routing inside each module will not be very long. For each rectangular modules

i, there are three input values Ai, ri and Si. where Ai is the area of the

module, 7\ and Si are the minimum and maximum aspect ratio of the module

respectively. The list of three tuples {Ai, ri, 5i), {A2, ”2, S2), •. -, (An, r^, Sn)

thus represent n modules to be packed. Let Wi and hi be the width and height

of module i, then Ai 二 wihi and r̂ < ^ < s^

The input for non-rectangular modules will be different. For example, an

L-shaped module will be represented by a five tuples {xi,工2, Vi, 2/2, s) to

describe the geometric figure of the module where s denotes orientation of the

module.

2.2.2 Types of Floorplan

There are two types of floorplan: slicing and non-slicing. A slicing floorplan is

a floorplan which can be obtained by recursively partitioning a rectangle into

two parts either by a vertical line or a horizontal line. An example is shown

in Figure 2.2.

A non-slicing floorplan is a floorplan which is not slicing. An example

is shown in Figure 2.3. Non-slicing floorplans are flexible and more general

that they can represent any packing. However, it is difficult to find a good

representation for non-slicing floorplan to handle shaping efficiently.

Bound-sliceline-grid [NFMK96], sequence-pair [MFNK95, KD98, MFK98],

0-tree [GCY99], B*-tree [CCWWOO] and corner block list [HHC+00] have been

proposed to represent non-slicing floorplans. Polish expression [WL86] is used

to represent slicing floorplans.

Chapter 2 Physical Design and Floorplanning in VLSI Circuits 11

A I

H

J

B C

D G

E F

Figure 2.2: A Slicing Floorplan

B

A E
C

D

F

G

Figure 2.3: A Non-slicing Floorplan

Chapter 3

Floorplanning Representations

This chapter will introduce several floorplan representations including Polish

expression(PE), Bounded-Sliceline-Grid(BSG), Sequence Pair(SP), O-tree(OT),

B*-tree(BT) and Corner Block List(CBL). For each representation, the floor-

plan construction method, moves and some extension works will be briefly

introduced.

3.1 Polish Expression(PE) [WL86

This representation is for slicing floorplans. Otten has proposed a pioneer

representation of slicing floorplan using slicing trees [Ott82]. The leaf nodes

of the slicing tree represent the modules in the floorplan. The internal nodes,

labelled either with a '+ ' or a represent the directions of the cuts in the

floorplan. If an internal node is labelled by a '+，，the cut will be horizontal.

The module represented by the left child will be below that of the right child

in the floorplan. Similarly, a '*' represents the vertical cut, and the module

represented by the left child will be on the left of that of the right child. This

is shown in Figure 3.1 and Figure 3.2. If we read the slicing tree in postorder

we will obtain an expression called the Polish expression which can represent

the floorplan structure [WL86 .

Chapter 3 Floorplanning Representations tS

氺 / \
A 八

八八。八
八7\ D 八 H

B C E F J I

Figure 3.1: Slicing Tree

B
A + B =

A

A * B = A B

Figure 3.2: Binary operations for slicing floorplans

Chapter 3 Floorplanning Representations tS

The normalized Polish expressions is used to represent a solution. This ex-

pression is particularly suitable for the method of simulated annealing such

that the floorplan can be modified by simply changing and swapping the

operands and operators. The expression is said to be normalized if and only

if there is no consecutive *，s and +，s.

The area of the whole packing can be computed recursively from the leaves

to the root of the slicing tree in linear time. The slicing tree is a binary tree.

All the leaf nodes of the slicing tree are operands which represent the modules

in the packing. The parents of the modules are the operators. For every

two modules with the same parents in the slicing tree, they are either placing

horizontally or vertically adjacent to each other to form a supermodule. The

computation is done recursively at every nodes in a bottom up manner. The

whole packing can be obtained at the root finally using this method.

There are three kinds of moves. (1) Swap two adjacent operands,(2) Inter-

change the operators '*' and '+ ' in a chain. (3) Swap two adjacent operand

and operator [WL86].The operands are from 1,2,. ••，n which represent the

rectangular modules in the floorplan. The operands are either '+，or '*' in the

Polish expression. For each iteration, one of the move will be selected and the

cost of the floorplan will be calculated. The three types of moves are enough

to transform an initial solution into any other expressions [WL86 .

3.2 Bounded-Sliceline-Grid(BSG) [NFMK96

Bounded-Sliceline-Grid(BSG) is a representation for non-slicing floorplan. This

method is based on the bounded-sliceline grid structure (shown in Figure 3.3)

with size p x q where p x q > n and n is the number of the modules of the

packing problem. We may notice that BSG suffers a major problem that there

are huge redundancies if the size of the grid structure is large.

Horizontal and vertical unit adjacency graphs can be obtained from the

Chapter 3 Floorplanning Representations tS

Figure 3.3: A 4 x 4 Bounded Sliceline Grid structure

th

_餐
Sh

Figure 3.4: Horizontal and vertical unit adjacency graphs

Chapter 3 Floorplanning Representations tS

a e

b c

I f _

Figure 3.5: One of the assignment of module into the grid

_籲.
\ Sh

Figure 3.6: Horizontal unit and vertical unit adjacency graphs of the BSG
assignment in Figure 3.5

BSG as shown in Figure 3.4. In Gh = {Vh,Eh) and Gy 二 (K,丑^；), a source

node Sh and Sy and a destination node th and t̂ are added respectively.

Given a set M with n modules, the modules are assigned into the rooms

of the BSG. Figure 3.5 gives one of the assignments of the modules in M =

{a, b, c, d, e, / } into the grid. The weights on the edges of the adjacency graphs

can be obtained from the widths and heights of the modules. We have a

weighted adjacency graph shown in Figure 3.6. The longest paths in the graph

Gh and Gy are the width and height of the final packing respectively.

Chapter 3 Floorplanning Representations tS

a
e

d 一 c :

b
f

Figure 3.7: The packing correspond to the BSG assignment in Figure 3.5

Let lh{u) be the longest path length from Sh to u in Gh- It is the x-

coordinate of the bottom left corner of u in the packing. Similarly, ly{u) is

the longest path length from Sy to u in Gy. By finding all pairs of lh{u) and

we know the positions of all the modules and the packing is obtained.

Figure 3.7 gives a packing corresponding to the BSG assignment in Figure 3.5.

Packing is changed by assigning the modules into a different set of rooms in

the BSG.

3.3 Sequence Pair(SP) [MFNK95；

A sequence-pair (r+，r—) is an ordered pair of module names. Given a set

of module M = {a.b, c, d}, {abed, dbca) is one sequence pair for the modules

in M. A sequence pair can represent all kinds of packings according to the

following two rules:

H-constraint: li s = { .. a .. b " a .. b ..), module b is on the right hand

side of module a.

V-constraint: If s = (.. a .. 6 .. b .. a ..), module b is below module a.

From the rules, we can construct the vertical constraint graph Gy and the

horizontal constraint graph Gh in O(n^) time. There is an example shown in

Chapter 3 Floorplanning Representations tS

參,参
Sv

Figure 3.8: H-constraint and V-constraint graph by the given sequence pair
(abed, chad)

a

c d

Figure 3.9: The packing corresponding to the sequence pair in Figure 3.8

Figure 3.8. The vertices of the graphs represent the modules. The directed

edges between the vertices represent the H-constraint and the V-constraint.

In Gv, an edge e{i,j) of weight y denotes that module i is below module j by

at least a distance of y. Similarly, an edge e{i,j) of weight x in Gh denotes

that module i is on the left hand side of module j by at least a distance of x.

Using the graph representations, we are able to determine the dimensions of

the packing by computing the longest paths in the graphs. From the constraint

graphs in Figure 3.8, a packing can be constructed as in Figure 3.9.

Chapter 3 Floorplanning Representations tS

There are two kinds of moves in the sequence pair representation in the

annealing process. They are exchanging two modules in the first sequence,

and exchanging two modules in both sequences.

Besides, there are some research works focusing on improving the com-

plexity of the packing construction algorithm of sequence pair using some

sophisticated data structure. The papers [TTWOO] and [TWOl] presented

the work that improved the the complexity of the algorithm to O(nlogn) and

0{n log logn) respectively. The method in [TTWOO] is based on some proper-

ties of the longest common subsequence in a sequence pair. [TWOO] improved

the method in [TTWOO] by the priority queuing technique and give a better

complexity.

3.4 O-tree(OT) [GCY99

These representations of non-slicing floorplan are based on ordered trees. So,

it is called 0-tree.

An ordered tree consists of an ordered set of subtrees T — {Ti, T2, . . . , T^}

where m > 0. The root of the tree has zero or more children, and every node

of the tree can be visited using depth-first-search.

The topology of the tree can be represented by a 2(n - l)-bits string.

Together with the sequence of nodes visited, we can represent an ordered tree

using two strings. The two tuples (T, tt) where T is a bit string and tt is

a sequence of nodes is used to represent an ordered tree. Figure 3.10 is an

ordered tree represented by the two tuples (00110100010111, dacfgeb).

A horizontal 0-tree (T, tt) can be used to represent a packing. We use Xi

and Wi to denote as the x-coordinate and width of node i on the tree. The

root of the tree represents the left boundary of the packing, i.e., Xroot — 0 and

Wroot = 0. For other nodes in the horizontal 0-tree, Xj = X i W i if node i is

the parent of node j. The x-position of module j is the sum of Wi of all the

Chapter 3 Floorplanning Representations tS

場 / A
Figure 3.10: The depth first search of an ordered tree

modules lying on the path from the root to j. The y-position of the modules

are determined by the permutation tt. Let be the set of modules Mk with

its order lower than Mi in the permutation tt and its interval (Xk,Xk + Wk)

overlaps with the interval(a;^, Xi + Wi) If there is no such tp{i) for node i, yi = 0

in which there is no module with lower order of permutation is placed at

its x-interval. The module i will then be placed along the lower boundary.

Otherwise, yi 二 ma:]CkeiKi)�yk + ^k). According to above transformation, we

can convert an 0-tree representation into its corresponding packing in linear

time. Figure 3.11 shows the packing corresponding to the tree in Figure 3.10.

However, this representation use sequence encoding that inevitably limits

the insertion position and solution quality. Besides, this packing scheme only

runs in a one-dimensional manner which may not lead to a good placement

since the modules are placed in a two-dimensional plane.

The move of the 0-tree representation consists of several steps. First, a

module Mi in the original tree is selected. Mi is removed from the tree and

Chapter 3 Floorplanning Representations tS

I

Figure 3.11: A pack correspond to the 0-tree in Figure 3.11

then inserted back to the position with the best value of cost function among

all the other possible inserting positions.

3.5 B*-tree(BT) [CCWWOO

It is based on ordered binary tree and the admissible placement 0-tree dis-

cussed previously. With the nice properties of order binary tree, it gives a

better complexity in insertion, deletion and searching in comparison with the

0-tree representation.

The packing can be constructed from a B*-tree representation using a re-

cursive method. The root node of a B*-tree corresponds to the module at

bottom left corner. Let a node n̂ in the B*-tree corresponds to the module bi

in the packing. Let Ri be the set of modules located on the right and adjacent

to hi. The left child of rii will correspond to the lowest module in Ri that is

unvisited. If a node rij is the right child of a node rii module bj will be placed

above bi. If a node rij is the right child of a node rii, module bj will be placed

on the right of bi. Figure 3.12 shows a B*-tree and its corresponding packing.

The packing can be changed by following methods: (1) Swapping two mod-

ules; (2) Delete a node from the tree and insert it to another place.

Chapter 3 Floorplanning Representations tS

A m p

g / ^ K ® - p - [I

d \ (L i
(a) (b)

Figure 3.12: An example of B*-tree and its correspond packing

3.6 Corner Block List(CBL) [HHC+00

It is a topological representation for non-slicing floorplan. The representation

consists of three tuples {S, L, T) called corner block list. 5 is a sequence

of module names, L is a list of orientations and T is a list of T-junction

information.

S is the order in which modules are inserted into the packing from the right

top corner. L consists of (n—1) bits where n is the number of modules in S that

indicates the orientations of the modules when being inserted into the packing.

There are two types of orientation: horizontal and vertical, denoted by a '1' and

a '0，respectively. For example, module g in Figure 3.13 is horizontally oriented

and the T-junction at its bottom left corner is rotated by 180 degrees. If the

T-junction is rotated by 90 degrees in anti-clockwise, the modules is vertically

oriented (like module d and e).

T is a sequence of '0' and '1' bits that counts the number of T-junctions

Chapter 3 Floorplanning Representations tS

a

d
b g

e

c
f

Figure 3.13: An example non-slicing floorplan

attached to a corner block. The number of consecutive 'I's corresponds to the

number of T-junctions attached to a corner block and the '0，s are delimiters

to separate one sequence of T s from another.

The corner block list representation of a packing can be done by removing

the corner block from the packing one by one. If the corner block is horizontally

oriented, the left segment of the module is shifted to the right boundary of

the packing. For example, in the first deletion step of Figure 3.14, the left

segment of g is shift to the right boundary such that modules a, d and e

become adjacent to the right boundary of the packing. Similarly, if the corner

block is vertical oriented, the bottom segment of the module will be shifted

to the top boundary of the packing. The attaching T-junctions will be pulled

along with the segment.

While deleting a corner block from the packing, its module's name, ori-

entation and number of attaching T-junctions will be recorded into the list

S, L and T respectively. Figure 3.14 shows the deletion step of a packing.

Therefore, for the packing in Figure 3.13, we will obtain the corner block list

(cbfedag, 010001, 0010010110). A packing can be obtained from the corner

block list by applying the procedures reversely, i.e., inserting the modules in

the sequence of S back to the packing using the information in L and T.

Chapter 3 Floorplanning Representations tS

a a

~ d
b b b

g D e l e t e D e l e t e ‘

e e e

c c c
f f f

D e l e t e

b b b
C Delete Delete f ，lete

C C C
f

Figure 3.14: Illustrates deletion of corner block of the packing in Figure 3.13

Figure 3.15: Horizontal constraint graph and vertical constraint graph of pack-
ing in Figure 3.13

Chapter 3 Floorplanning Representations tS

The horizontal constraint graph (HCG) and vertical constraint graph (VCG)

(shown in Figure 3.15) are introduced to perform the insertion and deletion of

the corner block. In HCG, the west pole (W) and east pole (E) represent the

left and right boundary of the packing respectively. The top and the bottom

boundaries of the packing is represented by the south pole (S) and north pole

(N) in VCG. In the constraint graphs, the edges represent the modules and the

nodes represent the segments in the packing. Note that the constraint graphs

are planar.

If a module is a corner block, its corresponding edges in HCG and VCG

will be pointing to the destination nodes. As we remove the corner block g

from the packing, the edges will be removed and the graph will be changed If

the source node of a deleted edge e has no outgoing edge after the removal of

e, all edges pointing this node have to be changed to point to the destination

node of e after the removal. This node can then be removed from the graph.

The corner block list representation has a disadvantage that it can only

represent mosaic floorplans. A mosaic floorplan is a floorplan without empty

room such that each room is assigned one and only one module. Also, it

is topological equivalence on segment sliding. This means that slides of a

non-crossing segment of T-junction give the same representation. Besides,

it is non-degenerate topology that the case of two distinct T-junctions meet

at the same point is not considered. Therefore, this representation cannot

represent all possible packings especially for those with empty space in the

packing. The Extended Corner Block List (ECBL) is introduced to overcome

this problem [ZDH+01；.

In ECBL, some dummy modules are introduced into the packing called

false block(FB). Their widths and heights are zero. The FB are included in

the insertion and deletion procedure in the corner block list. An extending

factor A is introduced such that the total number of rooms in the packing is

An and the number of FB is An — n. This factor will affect the quality of

Chapter 3 Floorplanning Representations tS

packing significantly.

There are three kinds of moves in CBL representation during the annealing

process. (1) Randomly exchange the order of the modules in S• (2) Randomly

change an orientation in L. (3) Randomly change a bit in T. Other moves in-

clude changing the orientations and the shape is of the modules. However, the

moves may lead to some infeasible representations which cannot be converted

to a packing.

Chapter 4

Optimization Technique in

Floorplan Design

There are two main types of optimization techniques used in our approaches for

floorplan design: deterministic and non-deterministic. For the packing process,

we used simulated annealing which is a non-deterministic method to optimize

the packing results by the cost function. Other commonly used techniques like

genetic algorithm and integer programming will also be discussed. For further

optimization of the resultant packing, we use some deterministic methods like

the shape curve computation and the Lagrangian Relaxation technique, to

compute the best dimensions of the modules and to reduce the total chip area.

These techniques will be discussed in this chapter.

4.1 General Optimization Methods

4.1.1 Simulated Annealing

Simulated annealing simulates the behavior of a complex system consisting

of a large number of interacting atoms in thermal equilibrium at a certain

temperate. This technique was widely applied to placement, floorplan design,

channel routing and layout optimization. The method can usually produce

Chapter 4 Optimization Technique in Floorplan Design 28

high quality solutions although the annealing process may take a long time.

The following is a generic simulated annealing algorithm:

Algorithm: SA

Begin

S •.二Initial solution Sq

T ：二Initial temperature Tq

While stopping criterion is not satisfied do

Begin

While not yet in equilibrium do

Begin

S, :=Some random neighboring solution of S

A := Cost{S)-Cost{S)

Prob :=mm(l, e-么“）

If random(fi, 1) < Prob then S := S'

End;

Update T

End

Output best solution

End

By applying different function Cost{S) to the simulated annealing algo-

rithm, we can optimize different aspects of the problem. In floorplanning,

Cost{S) is usually equal to the cost function A-^XW where A is the total area

of the packing, W is the wirlength and A is a constant. Area and wirelength

are the two main aspects to be optimized. The cost function equation can be

changed to satisfy the requirement of any specific floorplanning problem.

In simulated annealing, one important issue is to have a concise represen-

tation and description of the solution configuration. Also, the neighbors of

Chapter 4 Optimization Technique in Floorplan Design 29

each solution have to be defined such that the optimal solution is reachable.

Any particular annealing process will include initial temperature, moves and

temperature range [WLL88]. For each representation described in the previous

chapter, they have defined the set of moves in an annealing process such that

every solution is reachable.

4.1.2 Genetic Algorithm

Genetic Algorithm is commonly use in solving a wide range of problems in-

cluding control system, function optimization and combinatorial problems. For

this algorithm, a population of solutions is maintained and is allowed to evolve

through successive generations.

The solutions in the next generation can be formed by two operations:(1)

crossover, i.e., merging two solutions from the current generation; (2)mutation,

i.e., modifying an individual solution. The algorithm can be parallelized in

order to speed up the computational time [CHMR91]. The difference between

simulated annealing and genetic algorithm method is that there can be more

that one solution in the solution set at a time for genetic algorithms while

simulated annealing only obtain one best solution. In a genetic algorithm a

population of solution is used to generate the offspring (next generation of

solution).

In the paper [CHMR91], the Polish expression is used as the floorplan rep-

resentation. There are four types of crossover operations in Figure 4.1 which

demonstrates the crossover operations: COi, CO2, CO3, CO4.

CO I： It first copy the operand from parent PI into the corresponding posi-

tions in the offspring O. Afterwards, it copies the operators ('+', '*') from P2,

by a left-to-right scan to fill up the missing spaces in O.

CO2： It is similar to COi, it copies the operators from Pi first and fill the

missing space of O with the operands in P2.

Chapter 4 Optimization Technique in Floorplan Design 30

Parent 1 + * Parent 1 1 4 5 6

O f f s p r i n g 1 4 5 6 ^ * * . * 8 7 + 3 ^ * + + Offspring 2 6 8 7 * + + 5 4 * 1 3 * + *

////y// ///I ////
Parent 2 2 6 8 * * 7 * 5 + 4 * 1 3 + + Parent 2 2 6 8 * * 7 * 5 + 4 * 1 3 + +

(a) COi (b) CO2

Parent 1 1 4 5 6 * + + 8 7 * 乂 3 2 * + *

\
Of f s p r i n g ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ * *

Parent 2 5 + 4 * 1 3 + +

, ^ Si ‘ ~ ^ , ^ Si
I 1 I I

Parent 1 1 4 5 6 * + + 8 7 * 3 2 * + * Parent 1 1 4 5 6 * + + 8 .7 * 3 2 * + *
Of fspring 6 5 4 1 * + + 8 7 * 3 2 * + * Offspring 8 7 * 3 2 * + 6 + 5 * 4 1 + +

/ ^ ^ ^ ^ z ' z : / : 舞
Parent 2 2 6 8 * * 7 * 5 + 4 * 1 3 + + Parent 2 2 6 8 * * 7 * 5 + 4 * 1 3 + +

(c) CO3 (d) CO4

Figure 4.1: Crossover operation of the genetic algorithm in [CHMR91

CO3： A subtree in Pi is selected and copied it to the correspond position

of the offspring. The spaces are filled up by operators from Pi and operands

from P2.

CO4： It uses two parents to produce two offspring by interchanging the

subtree of the parents. 5i and S2 of the same size are selected from parents Pi

and P2. It fails if there is no 5i and S2 in Pi and P2. The next procedure will

be similar to CO3. The offspring Oi will be created by copying S2 from P2 to

the correspond position of 5i in Pi. O2 is obtained similarly with the role of

Pi and P2 interchanged.

For the result shown in the paper [CHMR91], the performance is slightly

better that of the simulated annealing method. Genetic algorithm gives a faster

computation than the simulated annealing method since it can be implemented

on distribution system. Selecting, crossing over pairs of solutions and mutating

are done in parallel.

Chapter 4 Optimization Technique in Floorplan Design 31

4.1.3 Integer Programming Method

An analytical method for general floorplan design was proposed by Sutanthav-

ibul, Shargowitz and Rosen in 1991 [SSR91]. This method is based on a mixed

integer programming model and a standard mathematical software which can

be applied on both rigid and flexible modules.

Consider two modules i and j. Let (Wi, hi), {wj, hj) be the dimensions of

the modules, {xi, yi) and [xj.yj] are the coordinates of the lower left corners

of the modules. Since i and j are non-overlapping, at least one of the linear

inequalities shown below holds:

Xi -{-Wi < Xj， i is to the left of j

Xi — Wi y OC j, 1 IS to the right of j

yi + hi< yj, i is below j

Vi- hi > yj, i is above j (4.1)

Two variables Xij and yij of value either 0 or 1 are used for each pair of

blocks. Two bounding function W and H are defined where \XI - XJ\ < W

and \YI - YJ\ < H. W and H is either equal to WMAX and HMAX where the

maximal width and height. If WMAX and HMAX is not given, then W = 22I=I 川I

and H — YL^I "厂

The modules are allowed to rotate by making use of a variable Zi of value

either 0 or 1. If 二 0, module i is placed in its initial orientation. If 2：̂ = 1,

module i will be rotated by 90� . Then, equation 4.1.3 can be rewritten as

follow:

oci + Zihi + (1 - Zi)wi < Xj + M{xij + yij)

Xi — Zjhj — (1 — Zj)wj > Xj - M(1 Xij + yij)

Vi + ZiWi + (1 - Zi)hi < yj + M(1 + Xij — yij)
Vi — ZjWj - (1 - Zj)hj > yj — M(2 — Xij yij) (4.2)

Chapter 4 Optimization Technique in Floorplan Design 32

2/* > + (1 - zi)wi + Zihi (4.3)

where M — max{W, H) and y* is the height to be minimized. The model above

does not consider flexible modules and interconnect lengths, and it requires a

substantial number of variables and constraints for the optimization [SSR91 .

For a flexible blocks, its width and height Wi and hi can be varied but its

aspect ratio is bounded and its area Ai remain fixed such that Ai = wihi This

function can be linearized about the point of maximum allowable width Wmax

by applying the first two member of its Taylor series [SSR91 .

^Wi is a continuous variable for each flexible module. For a flexible module

i and a rigid module j, the set of inequalities 4.1.3 can be rewritten as follows:

Xi + Wi,max —么Wi < Xj, 1 is to the left of j

Xi — Wj > Xj, i is to the right of j

Vi + hiQ + AwiXi < yj, i is below j

yi-hi> Vj, i is above j (4.4)

where hfi 二 , \ 二 2' . The constraints on routablity can also be

formulated. A chip is mutable if the length of the available routing tracks

is 1.5 to 2.0 times longer than the actual length of the required interconnec-

tions [SSR91]. This allows the constraint to be formulated as inequalities.

A greedy procedure used to solve the floorplanning problem is given below

where k is the total number of modules.

Procedure FloorplanDesign

Begin

Select a group of m modules as a seed

Formulate a system of linear constraints for these unpositioned modules

Call an integer programming procedure to obtain the first partial floorplan

While (m < k) do

Begin

Chapter 4 Optimization Technique in Floorplan Design 33

1. Select a new group of e modules based on time consideration the

connectivity to the already fixed modules in the partial floorplan

2. Find a set of d covering rectangles for the partial floorplans,

where d < m

3. Formulate a system of linear constraints for d covering

rectangles and e unpositioned modules

4- Call an integer programming procedure to obtain a new partial

floorplan

End

Perform global routing

Adjust floorplan

End

4.2 Shape Optimization

4.2.1 Shape Curve

Shape Curve computation is used in Polish expression. The total area of

a floorplan can be computed and optimized by using shape curve as shown

in Figure 4.2. The values on the curve represent the possible dimension of a

module where x is the width and y is the height. For the curve in Figure 4.2(a),

there are only two possible dimensions: {ai, bi} and {a?, 62}. The shape curve

of a module can also be a smooth curve and the module will be very flexible

in this case as shown in Figure 4.2(b).

Shape curves can be used to compute the packing area optimally. Let

r and A be two shape curves. The new shape curve ^ that represent the

supermodule (a sub-floorplan that consists of more that one basic modules)

by combining the two modules can be computed from P and A.

Chapter 4 Optimization Technique in Floorplan Design 34

y个 y^

蘧111丨__1_鎮_1丨丨•丨丨_謹鹱丨丨丨丨;_瞧1_丨翳錢翳_翳|_鍾,翳丨丨丨I藉賴i丨簿觀餞丨翳丨丨翳__議翳丨鎮翳丨_憩____1卿_|11隳__麵丨丨丨丨

丨丨ii丨丨丨丨;1:丨_毅⑷iiii丨i丨頻丨丨錢丨丨據;t魏騎嚴丨ii竊iiii丨I丨̂̂ 丨鍾丨頭;__龍翳丨i_翳餞霾餞翳闺i翳丨_疆_翳i變丨___丨聽__翳丨議顏丨丨___籠丨翳丨議_丨議丨謹丨鎮丨議_丨韓_
b __. 一 b
1 a 1 a ,

i • • _ _ _ _ _ l l i i l i l l B
b2 … r ¥ ' ^ - - — T 一 一 一

I I ' i
I ^ 1
ai â X ai a: x

(a) (b)

Figure 4.2: Shape curve of a rectangular module

If the cut is vertical, ^ == F + A such that

^ : {{u,v -\-w)\{u,v) e r and {u,w) e A}

Similarly, if the cut is horizontal, ^ = F * A such that

屯 : { { u + V, w)\{u, w) e r and w) G A}

4.2.2 Lagrangian Relaxation

We are given n modules {Mi, M2, • •.，M }̂ where each modules Mi has an area

Ai. Let Wi and hi be the width and height of the modules Mi and r̂ and Si

be the minimum and maximum aspect ratio of Mi respectively. We denote

the minimum and maximum width of Mi by Li = y / A J n and Ui = y/Ai/si

respectively.

As mention above, we can construct a horizontal constraint graph and a

vertical constraint graph from any sequence pair. For every edge e{ij) in Gh,

we have the following constraint:

Xi + Wi< Xj

Chapter 4 Optimization Technique in Floorplan Design 35

where xi and Xj are the x positions of the low left corners of module Mi and

Mj respectively. Similarly, for every edge e[i,j) in G^ , we have the following

constraint:

Vi H——< Vj
WI

where yi and yj are the y positions of the low left corners of module Mi and

Mj respectively.

A dummy vertex labeled n + 1 is added to both Gh and Gy. For every

vertex i without any out-going edge in both G^ and Gh, an edge e(z, n + 1)

with zero weight is added. Thus, the problem can be formulated as a geometric

program(PP):

Minimize Xn+iVn+i

Subject to Xi + Wi < Xj

\fe{ij) e Gh

yi + ^.<yi M'^J) ^ GV
Li <Wi< Ui \/l<i<n

Let Xij denote the multiplier which is used for Lagrangian relaxation for

the constraint Xi Wi < Xj and fiij denote the multipliers for the constraint

Hi ^ < Vi. Let and be the vectors of all the Lagrangian multipli-

ers introduced into the constraints. Then, we can formulate the Lagrangian

relaxation subproblem associated with the multiplier and 节,denoted by

LRS/, 7t), as shown below:

Minimize Xn+iyn+i+

^E{I,3)EGH XIA工I + Û i — +

^e{i,j)eGv ^hjiVi + 念 _ 2/i)
Subject to Li < W i < Ui VI < z < n

A corresponding Lagrangian dual problem LDP of PP can be formulated for

the optimal solution , denoted by of the subproblem

for a particular pair of and as shown below:

Chapter 4 Optimization Technique in Floorplan Design 36

Maximum , 7^)

Subject to > 0 and > 0

Since the original problem PP is convex, we can imply that if (A , jt) is

the optimal solution to LDP. The corresponding solution of LRS/(A , ~jl) is

the optimal solution to PP.

Considering the Lagrangian of PP, we have

C =Xn+iyn+l + Xij{Xi~{-Wi-Xj)-{- ^ fJ^ijiVi + ^ " Vj)^

y^ Ui{Li - Wi) + ^ Vi[wi - Ui)
l<i<n l<i<n

Using the Kuhn-Tucker conditions, we can imply the ^ = 0 and 祭 = 0

for all 1 < 2 < n + 1 at the optimal solution of PP. Taking the partial

derivatives of C, we have the following optimality conditions:

eii,j)eGh e{j,i)eGh

e{i,j)eGv e{j,i)eGv

LDP is convex due to PP, so the optimal , ~j}) can be found by sub-

gradient optimization. However, the solution may not satisfy the optimality

condition and we have to project a new pair of (t , to the nearest point

(A^,/?) that satisfy the optimality conditions. These steps continue until the

solution converges.

Chapter 5

Literature Review on

Interconnect Driven

Floorplanning

This chapter will have a review of the papers related to the interconnect driven

floorplanning. They include placement constraint, timing analysis driven,

buffer block planning and congestion control. Placement constraints are use-

ful that allow some modules are constrained to be placed in some specified

positions to reduce the interconnect cost and to improve the circuit perfor-

mance. Buffer block planning optimize the delay by inserting buffers within

the deadspace of a packing. Instead of minimizing the distance of wiring, we

also conserve the problem of congestion in the floorplanning stage.

5.1 Placement Constraint in Floorplan Design

5.1.1 Boundary Constraints

Boundary Constraints in floorplan design have been applied on slicing floor-

plan [YW99a], sequence pair [LLWWOl, TWOl] and corner block list [MDH+01 .

Boundary Constraint is a constraint in which some modules required to be

Chapter 5 Literature Review on Interconnect Driven Floorplanning J^S

placed along placed at the certain boundary of the packing. This allows the

modules to be connected to the I /O pads much more easier and thus reduces

the interconnect cost. For this problem, the modules are divided in to five

sets, M^, MT, M^, MR and M^. M^ is a set of modules which can be placed

freely at any position of the packing. The other four sets of modules are under

boundary constraints such that the modules in M^, M^, M^ and M^ have

to be placed along the top, left, right and bottom boundary of the packing

respectively. Figure 5.1 illustrates the boundary constraint. The modules are

assigned to each of the five sets according to its I /O pin connection.

The papers [YW99a] and [MDH+01] use a similar technique to solve the

problem in different floorplan representation. Methods are devised to find the

modules which are located at the boundaries of the packing by just looking

at the representation. In this way, they are able to check if the boundary

constraints are satisfied. If some constraints are not satisfied, the modules

under boundary constraint will be swapped with those modules lying at the

boundary positions. There is though a problem this method which is, it may

happen that the constraint cannot be satisfied in a packing since there are only

a limit number of boundary positions for each packing. Solving this problem,

a penalty term is introduced to the cost function to penalize violating the

constraints during in the annealing process.

The paper [LLWWOl] using a different method to solve the same problem

in floorplan design. The method is based on sequence pair representation. A

set of rules are devised from the properties of sequence pair. For example, if

module x is in Ml and module y is in Mb, they have to obey the lb-property in

the sequence pair(r+, r_). The lb-property is that position of y in r+ should

be greater than that of x in r+. In this way, all the constraints can be satisfied

in every packing after apply the rules and a feasible floorplan can always be

obtained.

Chapter 5 Literature Review on Interconnect Driven Floorplanning J^S

WM £
' y / / / y / / ^ A A A A V A A A A A "Q

^ ^ ：;：;：;：;：; 隱 m R

Figure 5.1: The Boundary Constraints

5.1.2 Pre-placed Constraints

Pre—placed constraints in floorplan design have been applied on slicing floor-

plans [YW98] and non-slicing floorplans [FMK97, MK98，TWOl:

Pre-place constraints is a constraint in which some modules are required to

be placed at certain positions of the packing. It is important that a floorplanner

can handle pre-placed modules since some modules may have their on the

positions fixed in some practical problems. Figure 5.2 illustrates the pre-placed

constraints.

In the paper [YW98], a reference point ref{X) is associated with each

supermodule X if it contains at least one pre-placed module. All possible

positions of ref{X) within the supermodule X can be kept using four num-

bers, boUom{X), top{X), left{X) and right{X) (Figure 5.3) and the reference

point of a supermodule can be computed from the reference points of its chil-

dren. Figure 5.3 illustrates the steps of updating the locations of the reference

point. Simulated annealing is used and a penalty term is introduced into the

cost function such that the pre-placed modules will be pulled to the desired

positions.

The paper [MK98] use an efficient method to solve the problem based on

Chapter 5 Literature Review on Interconnect Driven Floorplanning J^S

P H I „
择丨丨丨丨j;丨;丨；丨：丨:j;丨;丨丨:丨丨丨j;丨；丨j ：：：：：：：：：：：：：：：：：：：：：：：： Pre-placed

I ^^ tiiiiiiiiiiiiiiiiiij module

Figure 5.2: The Pre-placed Constraints

w(X) +w(Y)
w(X) W(Y)

X Z = XY*
top � top(X)

Y h(Y) max{h(X) ,h(Y) }
le f t (X) 丨 right (X) ^ left (x)�i—: right (X) +w(Y)

:• L I
I bottom(X) ,, bottom(X)

(a) (b) (c)

Figure 5.3: Reference point inherit for the supermodule

Chapter 5 Literature Review on Interconnect Driven Floorplanning J^S

the sequence pair representation. An additional edge of a weight equal to the

pre-assigned coordinate is added from the source node to the pre-placed mod-

ules in the horizontal and vertical constraint graph respectively. The resultant

placement is called propped-realization. The placement may still not be a fea-

sible one since the additional edges can only constraint the pre-placed module

to be place at least as far as the pre-assigned coordinates. An adaptation pro-

cedure is devised to test the placement of a module violating the constraints

and fixed them.

5.1.3 Range Constraints

Range Constraints in floorplan design have been applied on slicing floorplans

YW99b] and non-slicing floorplans [TWOl:.

Given a rectangular region Ri = {{x,y)\xi < x < X2,yi < y < "2}，some

modules with range constraint are required to be placed within Ri in the final

packing. The range constraint is more general than the pre-placed constraint

since very pre-placed constraint can be specified as a range constraint. It

is useful to consider range constraint in the practical floorplanning problem.

Figure 5.4 shows an example of a feasible floorplan in which a module is with

range constraint is placed in the region Ri.

The paper [YW99b] addresses the problem of range constraint using a

similar technique for pre-placed constraint. There are four variables for each

supermodule X {right{X), left{X),top{X) and hoUom[X)) that indicates in

which X should be placed. For example, if a module Y with width w and

height h is constrained to be placed within the region {{x,y) \ Xi < x <

X2,yi < y < 1/2}, right{X) = Xi -h w,left[X) = X2 - w,top{X) = m + h

and bottom{X) = y2 - h. The range for a supermodule can be inherited from

its children. After the shape curve computation step, it can be determined

whether a certain module is placed within the desired range constraint. A

Chapter 5 Literature Review on Interconnect Driven Floorplanning J^S

Y? yb ^ ^ ^ ^
— — — — f ^ ^ ^ modules with

^ ^ ^ ^ range constraint

• - r — — — R i xl,yL

Figure 5.4: The Range Constraints

penalty term is introduced into the cost function so that the packing will

converge to satisfy the range constraint finally.

5.1.4 Symmetry Constraints

Symmetry Constraints in floorplan design have been applied using 0-tree rep-

resentation [PBLCOO .

Symmetry Constraints is a constraint in which some modules are required

to be placed symmetrically along an axis. Two terms, symmetry pair and sym-

metry groups, are introduced to define the symmetry constraints clearly in the

floorplan design problem. Symmetry pair is a pair of modules of the same

dimensions and have to be placed symmetrically with respect to an axis. Sym-

metry group is a set of symmetry pairs which share the same axis. Given a sym-

metry group, S = {(M^,, Mb,), (M^,, MftJ,. . . , (M^,, M^J} where

is a symmetry pair for z = 1 , . . . , A;, then for the case of horizontal symmetry

^ai —工 bi

Vai + Vbi + ha, = 2ys

where i/s is the position of the common symmetry axis, and yâ and hâ are

the x-position, y-position and height of module Ma- respectively. Figure 5.5

Chapter 5 Literature Review on Interconnect Driven Floorplanning J^S

a

b c
I 1 g

L _ . : _ _ s y m m e t r y
J a x i s

h
f

d e

Figure 5.5: The Symmetry Constraints

shows an example that illustrates the symmetry constraint. In the example,

module (a, b), (c, d) and (e, /) is the symmetry group with symmetry constraint

in the packing.

Symmetry Constraints is useful to handle the analog circuits. It is because

analog circuits usually use differential architectures based on electrically sym-

metric networks. In addition, symmetry is commonly used balance thermal

effects and to match interconnect parasitics and device parameters.

5.2 Timing Analysis Method

In the paper [SYTB95], the authors described the implementation of a floor-

planner that considers the timing information. The algorithm is divided into

two phases. Phase I focuses on timing optimization while phase II performs

floorplan refinement to allow the aspect ratios of the modules to be changed.

However, there are some disadvantages. The floorplanner uses the timing data

from another timing analysis program and includes the results into a fitness

function as follows:

Chapter 5 Literature Review on Interconnect Driven Floorplanning 44

Fitness{i) = ^ x + ^ x Wr + ^ x Wl

八macc 丄 max •'-'max

where L* are the area, clock speed and wirelength of the circuit respec-

tively. Amax, Tmax, Luiax are the maximum values in the given population.

Wa, Wt, Wl are the user specified relative weight of different aspects.

This equation including the area , timing and wirelength factors. However,

using another timing analysis program is time consuming. The method is

based on an iterative method and the timing value is included only in the cost

function. It does not have any scheme that directly reduce the delay of the

system during the process.

There is another paper [YSAF95] which described a similar approach. This

paper combines the force directed approach and the constraint graph approach.

It is also consisted of two phases. In Phase I, a timing and connectivity driven

topological arrangement is acquired using a force directed approach. Then, the

topological arrangement is transformed into a legal floorplan in Phase II. The

floorplan is obtained from a greedy approach is such a way that the modules

are put into the floorplan one by one. The growth of the chip will be controlled

by a given aspect ratio. A gain function is used to an unplaced module into

the floorplan in each step. The gain function of module i is computed as:

CLOCK - Ui
⑶ 减 = C L O C K

Cij + 3 (1 — Pj�costj
JEFK IEBJJENK

where CLOCK is the clock period and ui is the delay bound on net rii e N

computed from the timing analyzer. Cij is the connectivity between modules

i and module j. The approach also use the timing analyzer to analyze circuit

performance.

In the paper [VNLG95], another timing driven floorplanner is introduced.

The timing analyzing process is also done by a timing analyzer. It is not

Chapter 5 Literature Review on Interconnect Driven Floorplanning J^S

efficient since the timing information have to be analysis in each iteration and

thus the total computational time for the floorplanning step is increased

5.3 Buffer Block Planning and Congestion Con-

trol

Most of the interconnect optimization like buffer insertion/sizing, wire sizing,

etc., are done on the layout after placement. It will be more effective if inter-

connect optimization can be done in the earlier stage such as the floorplanning

stage.

5.3.1 Buffer Block Planning

Buffer insertion is a very effective and useful method to minimize the delay of

a wire. It is an active devices to break original long interconnects into shorter

ones such that the overall delay can be reduced. The first publication about

buffer block planning is [CKP99]. The concept of feasible region(FR) was

introduced. The FR for a buffer B is defined to be the maximum region where

B can be located such that by inserting B into any location in the region,

the delay constraint can be satisfied assuming that other buffers are inserted

correctly. Figure 5.6 shows the feasible region of k buffers on a wire. For a

long interconnect with k buffers inserted, the feasible region for the i-th buffer

{i < k) is Xi e [xmini,Xmaxi] wheie Xmin and Xmax can be computed using

Elmore delay model:

Chapter 5 Literature Review on Interconnect Driven Floorplanning J^S

1
< •

MA/W
^inl —I— CL

^ ^ a x l ^

M ^ •
^ X i •

feasible region

Figure 5.6: Feasible regions for inserting k buffers.

where

帅•�_ (Rb - Rd)c , r{CL-C,)+rcl

K'“k, i) = m — Treq + [Rd + + f—-二]+ - l)Cb + Cl]

rcf {i - l)c{R, - Rdf {k - i)r{C, - Cl?
+ 2{k-i + l) + L ^ 2{k-i + l)c

r, c are the unit length wire resistance and capacitance respectively, T^ is

the intrinsic delay of the buffer, C ,̂ Rb is the input capacitance and output

resistance of the buffer, and Rd, C l and I are defined in Figure 5.6.

Besides, the minimum number of buffers to meet the delay constraint Treq

for an interconnect of length I is devised as

/Cm切一 ^

where

LU 二 RBCB + TB

K, = Treq + — Cl? + '{Rb — Rdf — 叫 + cRt)l-Tb — RdCt — RbCL c r

Kq = + {tCl + cRd)l — Treq
Li

Chapter 5 Literature Review on Interconnect Driven Floorplanning J^S

^ ^ f e a s i a b l e region

〜 -

Figure 5.7: 2-D feasible regions with existing placed modules.

In a floorplan, a feasible region is bounded by two parallel lines with Man-

hattan distances from the source to be Xmim and Xmaxi respectively as shown

in Figure 5.7. For those parts of a feasible region which overlap with a module,

they have to be removed from the feasible region.

The buffer block planning is a hard problem in which the number, size and

positions of the buffers have to be determined. Besides, if there is not enough

space for the buffers to insert in order to satisfy the timing requirement, the

packing have to be expanded. The buffer block planning algorithm in [CKP99

have several limitations. First, it only makes use of the deadspace in the pack-

ing. The formulae are simplified to reduce the runtime in handling thousands

of nets. In addition, only one buffer is inserted for a single net.

Their buffer block planning algorithm first builds the horizontal and vertical

polar graphs. Each channel is divided into a set of rectangular tiles for better

manipulation and representation of buffer blocks. Finally, the algorithm will

insert as many buffers as possible by selecting the most suitable tiles for them.

The buffer block planning algorithm in [CKP99]is a direct method to ad-

dress the problem. The paper [TWOO] have presented a polynomial time opti-

mal algorithm based on network flows for solving the problem of inserting the

Chapter 5 Literature Review on Interconnect Driven Floorplanning J^S

1 . ̂

^ I ^
^

Z6 7

•••••人 ^ ^ •••_•

Figure 5.8: Buffer zones of a packing

maximum number of buffers into the free space between the modules.

Since the feasible region can overlap with the modules, buffer zones are

defined such that they are the dead spaces in which the buffer can be in-

serted. Given a placement, the buffer zones are obtained by cutting the free

space between the modules into rectangular zones with different costs accord-

ing to the routing congestion and other factors. Figure 5.8 shows buffer zones

zi, Z2,..., zg obtained by cutting the deadspace of the placement.

Given a set of buffers B = 62,.. •,〜} and the corresponding feasible

regions F = {/i, /2, •.., fn}, and buffer zone Z 二 {zi,z2,. •., Zm}, a network

flow graph is constructed. By finding the min-cut of the network flow graph,

the maximum number of buffers with the minimum total insertion cost can be

obtained.

A term buffer room is introduced. Given a set of FRs F = {/i, /2,..., fn},

buffer rooms are disjoint regions bounded by the boundaries of FRs. Let

R = {ri,r2,.. .,ryj} denote the buffer rooms, then 7\ (Irj = 0 for i _ j.

In Figure 5.9, it shows a problem containing two buffers, two nets and

seven buffer zones. The corresponding network flow formulation is given in

Figure 5.10. The vertices of the network flow graph consist of a source node,

a destination node, B, R and Z. If a buffer room belongs to a certain buffer,

Chapter 5 Literature Review on Interconnect Driven Floorplanning

: ^ m —— I �

1 _ _ 5 _ _ _ L I —
Figure 5.9: A B P problem containing two buffers, two nets and seven buffer

zones.

Figure 5.10: The corresponding network flow graph of problem in 5.9

there will be a directed edge from the buffer to that buffer room. If a buffer

room is overlapped with a buffer zone, there will be a directed edge from

that buffer room to that buffer zone. A min-cost maximum flow in the graph

corresponds to a buffer insertion solution to the buffer planning problem with

the maximum number of buffers and minimum total insertion cost. If the size

of the max-flow is n, then the buffer planning problem is feasible that all the

buffers can be inserted into the deadspace of the packing.

Chapter 5 Literature Review on Interconnect Driven Floorplanning J^S

I 丨 ！ Rath.Z.....丨 .； p2 ；

I ； p i j PathlJ I 1

Figure 5.11: L-shaped routing

5.3.2 Congestion Control

A new wirelength estimation method is used in [CZY+99]. Simple geometry

routing is used to estimate the routing length between two pins. There are

two types of routing to obtain the minimum wire length: L-shaped and Z-

shaped(shown in Figure 5.11 and 5.12). Z-shaped routing gives a more accurate

estimation than L-shaped routing. Also, the cost function is aA + I3W + ^yOF

where OF is the sum of the square of overflow in each grid. There are three

stages in estimating the wirelength W . (1) half- perimeter; (2) L-shaped global

routing and (3) Z-shaped global routing. In each stage, the value of W will be

estimated by different methods.

The cost function used is aA-i-j3W-i-jOF where OF is the sum of the square

of overflow in routings. The values of OF is zero in stage 1 but it is computed

by applying simple geometry routing to estimate the congestion/routablity of

bin boundaries. This paper described a more efficient approach in estimating

the timing information and considering the congestion during the floorplanning

stage. Since it does not use any external timing analyzer and the computational

time is reduced.

Chapter 5 Literature Review on Interconnect Driven Floorplanning J^S

: i f p2 i

； - - - - ： 1 r----；

f- ；- — 1

i i pi i ： ；....…“ i
I -, ‘ 丨 1 1

Figure 5.12: Z-shaped routing

The paper [SSKOO] takes routing congestion into consideration in the buffer

planning problem. The congestion model employed is a two dimensional rect-

angular grid based probabilistic map which assume two-bend routing for each

segment. Ch { i , j) and Cy{i,j) is the expected number of horizontal and ver-

tical routes passing through a routing tile tile{i,j) respectively. SCh{i,j) and

SCv{i,j) are defined as the probability of a horizontal and vertical route pass-

ing through tile{i,j). The following equations compute the probability matrix

for a route from (0,0) to (m, n).

Tile S(Mi,j)

0<i<m,0<j <n ^^：^ ^^^

0<z<mj = 0 ^ ^ ^ ^
Or\ ^ ' ̂ 1 m—j

z = 0,j = 0 1 1

i 二 m, j = n 1 1

A subnet is defined as the segment of a net between two consecutive buffers.

Chapter 5 Literature Review on Interconnect Driven Floorplanning 52

For each tile{j^, j), the congestion matrices Ch and Cy are computed as follows:

V subnets

N subnets

Therefore, the congestion can be considered by introducing an element into

the cost function using the congestion matrices. The congestion matrices will

be updated after each buffer planning.

Chapter 6

Clustering Constraint in

Floorplan Design

This chapter presents the work on clustering constraints in floorplan design.

Clustering Constraints is a constraint in which some modules are required to

be placed geometrically adjacent to each other to form a cluster in the packing.

In this chapter, a linear time algorithm is presented to locate all the neighbors

of a module in the packing by just scanning the Polish expression once.

6.1 Problem Definition

Clustering Constraint is considered in floorplan design. Given a set of modules

$ and a subset of modules A C we want to pack the modules in $ such

that the modules in A will be geometrically adjacent to each other. Figure 6.1

shows an example of the clustering constraint. Modules E, F and H are the

subset of modules to be clustered and they have to be placed adjacent to

each other in the final packing. The floorplanning problem with clustering

constraints is defined as follows:

Problem FP/CC Given a set ofn modules $ = {mi, 7712,..., m^}

and rrii = {Ai, r^, Si) for i = 1,…n where Ai is the area of modules,

Chapter 6 Clustering Constraint in Floorplan Design 55

H J

I K

Figure 6.1: An illustration of the clustering constraint

and Ti and Si are the minimum and maximum aspect ratio of mod-

ules i respectively. Let A be a subset of modules in 歪.The goal is to

pack the modules in ^ to minimize the total area and interconnect

cost such that the following three conditions are satisfied.

1. Every Mi in A should be geometrically adjacent to at least one

Mk E A where k ^ i.

2. Each module satisfies its area and aspect ratio constraint.

3. The aspect ratio of the whole packing is within a give range

M.

6.2 Overview

W e consider clustering constraint in slicing floorplan. One method to solve this

problem is by adding a optimizing term which is the center-to-center distance

between the cluster modules to the cost function of the annealing process. Ex-

perimental is done, however the result is poor and the constraints will usually

be violated in the final packing. A better approach will be introduced in which

Chapter 6 Clustering Constraint in Floorplan Design 55

clusters are maintained throughout the annealing process. In each iteration,

we try to give the feasible packing by fixing the violation as much as possible.

A method is devised to locate all neighbors of a target module. A target

module Mt is picked from the constraint set A. A set of M^'s neighboring

modules is obtained by this method. For each Mi G 11,, if Mi • A, we will

swap Mi with Mj where Mj e A\ This algorithm is able to maintain the

clustering constraint throughout the annealing process.

An overview of the algorithm is given as follows:

Main Program

Begin

While T > threshold do

Begin

Move by either Ml, M2 or MS

Call procedure Clustering

Compute Cost

If Cost is reduced

Accept the move

Else

Proh = min[l,e-么 c/T)

where Ac 二 change of cost.

If randomifi, 1) < Proh then

Accept the move

Else

Reject the move

Update T

End

End

Chapter 6 Clustering Constraint in Floorplan Design 55

W e have used simulated annealing to optimize the packing. After a move

of the solution, the procedure Clustering is called. The procedure Clustering

consists of two main steps. The first step is to find the neighboring modules of

a target module. The second step is to perform swapping such that the packing

will satisfy the clustering constraints as much as possible. The packing is then

evaluated. A packing with better cost is accepted, while the acceptance of a

worse one is dependent on the current temperature of the annealing processing.

6.3 Locating Neighboring Modules

An algorithm is devised to locate all neighboring modules of a target module

in a normalized Polish expression. Note that we can locate the neighbors in

linear time by just looking at the Polish expression once and no real packing

is needed.

In each iteration, a target module M , is selected randomly from A. A

neighboring set Ut is found such that Mt is surrounded by the modules in

in the packing. An example is shown in Figure 6.2. In this example Mt = F

and Ut = {A, B, C, D, E, G, H}. Note that the modules found (e.g. D and E)

may not be adjacent to Mt-

For each module Mi in the slicing floorplan, Mi is surrounded by four

cuts which correspond to four operators in the normalized Polish expression.

If those four operators are found in the Polish expression, the neighboring

structure can be located and lit can be found.

For a Polish expression a = aia2 .. .Q̂ n, we define a valid sub-expression

P = a^afc+i... Qffc+m where k > 1 and n > k + m as a sub-expression in a

such that ak must be an operand and the number of operands in (3 is equal

to the number of operators plus one. A valid sub-expression indeed represents

a sub-tree in the whole slicing tree and also represents a supermodule in the

packing.

Chapter 6 Clustering Constraint in Floorplan Design 55

D

B C
E

A
F K

_ _ _ _ _ H K

I J

Figure 6.2: The Illustration of the neighboring structure

The two operators correspond to cuts of different orientations. Let S and

7 be valid sub-expressions in the Polish expression. Some terms are defined as

follows:

Below : If 7 = CS+, Below (6,()

Above : If 7 = (5C+, Above{6,()

Left : If 7 = Left{6,()

Right : If 7 = (^C*, Right{6,()

Given a target module Mt, the algorithm Find-Surrounding finds four valid

sub-expressions a,b,c and d such that Below {Si, a), Above{S2, b), Left{6s,c)

and Right{64, d) where 5[s are some valid sub-expressions containing Mt.

Algorithm : Find-Surrounding{Mt, a)

Input : a — aia2 ... is a Polish expression of the original packing,

t is the index of the target module, i.e., at 二 Mt

Output : a is a valid sub-expression such that Below{Si, a)

b is a valid sub-expression such that Above{S2, b)

c is a valid sub-expression such that Left{Ss, c)

d is a valid sub-expression such that Right{64, d)

where 6i for i = 1.. A is the shortest valid sub-expression containing Mt

Chapter 6 Clustering Constraint in Floorplan Design 55

such that the a, b, c and d above can be found.

1 first = end = t

2 While a, b, c, d are not found and first> 1 and end< 2n — 1

3 Begin

4 If o^end+i is an operator

5 Begin

6 Find k such that

7 e = afirst-kC^first-k+l . . . O^first—l

8 is the shortest valid sub-expression

9 If aend+i is + and a is not found yet

10 a = e

11 Else if dend+i is * and c is not found yet

12 c = e

13 first 二 first — k; end — end + 1

14 End

15 Else

16 Begin

17 Find k such that

18 e = O^end+lO^end+2 • • • Oiend+k

19 is the shortest valid sub-expression

20 If aend+k+i is + and b is not found yet

21 b = e

22 Else if aend+k+i is * and d is not found yet

23 d = e

24 end 二 end + A: + 1

25 End

26 End

Chapter 6 Clustering Constraint in Floorplan Design 55

The search starts from the position of the target module Mt in the Polish

expression. W e have two position pointers first and end initialized as t (line

1). For each iteration, we will first check whether the character at the position

end + 1 is an operator or an operand in the Polish expression. If it is an

operator, the supermodule that shared the same slicing cut with the target

module is located before the position of first in the Polish expression (line

4-14). The supermodule is either on the left or below the target module. W e

will then search for the shortest valid sub-expression starting from the position

first — 1 to the left. If the character at the position end + 1 is an operand,

the supermodule that shared the same slicing cut with the target module is

located after the position of end in the Polish expression (line 16-25). The

supermodule is either on the right or above the target module. W e will then

search for the shortest valid sub-expression followed by an operator starting

from the position end+1 to the right. The position pointer first and end will

then updated accordingly and the process will be repeated until a, b, c and d

are all found.

The complexity of this algorithm is 〇(n). Figure 6.3 illustrates the steps

of the algorithm. Sub-expression a, b, c and d are valid sub-expressions repre-

senting sub-trees in the slicing tree. For the example in Figure 6.2, a 二 二

c 二 A,d = H and Mt = F. The shortest valid sub-expression can

be obtained by counting the number of operators and operands. Note that not

all the basic modules in a, b, c and d belong to the neighboring set n^ of Mt.

If the supermodule of a sub-expression b is above Mt, only the modules lying

at the bottom of the supermodule belong to 11̂ . Figure 6.4 shows an example

that b = BC * ED + * but D does not belong to Ut in this case. A recursive

procedure can be used to find efficiently given a, b, c and d. The procedure

shown in the following is for sub-expression below the target module only, i.e.,

sub-expression a. Procedures for sub-expressions above, to the left and to the

right of the target module can be done similarly.

Chapter 6 Clustering Constraint in Floorplan Design 55

n w n . w
八 K 3 C E 八 K

/ 0 \ ^ I L N " K / (� \
… A I J 7 \

A A ——^ A A ^ — — ^
/、 y \ , \ IJ*AGF + H*BC*ED + *+* +K * p/ V IJ * AOF + H * B C * ED + *+» +K*
G (f) B CE D filt n r) B CE D tot Id

W end â W

(a) (b)
n H z \ L L W

+ K B C + K ^ p

Z \ A Z \ A—
* * A * * A

(pjB CE D It el CE d)̂ 1 ii

(c) _ _ _ _ _ ⑷

I I I M I z \ B r

八 K A — T 二
* * 六 《

I ^ y V i T ^

(fl^f^b if
a (e)

Figure 6.3: A n illustration of the algorithm Find_Surrounding

Procedure •• Marking.Neighhor-Below{first, end)

Input : first is the first index of the valid sub-expression a

end is the last index of a where first < end

Output: n is the set of module at the bottom of the supermodule

represented by a

1 If first = end

2 n = UUafirst

3 Else

4 Begin

Chapter 6 Clustering Constraint in Floorplan Design 55

D
B C

E b

I
D

B C

A
F K H K
G

I J

Figure 6.4: D does not belong to where Mt is F

5 Find k such that e = aend-k(^end-2 . . . Q^end-l

6 where e is the shortest valid sub-expression

7 If aend is *

8 Marking-Neighhor-Below{first, end — k — 1))

9 Marking-Neighhor-Below{end — k, end — 1)

10 Else if aend is

11 Marking^Neighhor-Belowiend — k, end — 1)

12 End

The above procedure is a recursive procedure locating all the modules at

the top boundary of a given supermodule. The input of the procedure are two

position pointers corresponding to a supermodule in the Polish expression.

Therefore, the character at the position end should be an operator. W e check

whether this operator is corresponding to a horzontial cut or a vertical cut in

the packing. Since we want to locating the modules at the top boundary of

the supermodule, the supermodules on the both sides of the cut have to be

considered if the cut is a vertical cut. Both supermodules will contain modules

Chapter 6 Clustering Constraint in Floorplan Design 55

at the top boundary. However, if the cut is horzontial, only the one at the top

will be considered. All the modules at the top boundary will be marked as

neighboring modules of the target module.

6,4 Constraint Satisfaction

In the annealing process, all the constraints have to be satisfied to make the

floorplan feasible. Modules in the constraint set A will be swapped with the

neighboring set until the conditions A C {Mt} U IT亡 is satisfied.

In the first iteration, Mt is randomly selected from A. An intersect set

T is defined to be A fl n ^ If |A| > |T| + 1, swapping is needed to satisfy

the clustering constraints. If |A| > \Ilt\ + 1, there is not enough space for

swapping, the whole process will be repeated recursively by selecting another

module which is already in the cluster as the new target module until all the

constraints are satisfied. All three moves in the simulated annealing can affect

the neighboring structure and give an infeasible packing. However we will swap

operands in the Polish expression to maintain a feasible one.

There is only one case in move M l that does not affect the neighboring

structure of the packing, i.e., if two adjacent operands to be swapped are both

in A or both in 屯一A. Modification is not required in this case and the

clustering constraint will not be violated after the move.

The following algorithm describes the swapping strategy such that the clus-

tering constraints are satisfy throughout the annealing process.

Algorithm : Clustering[a, A)

Input:a = •.. ttn is a Polish expression of the problem.

A is the set of modules having clustering constraint.

1 For each Mi e A

2 Begin

3 Call Find_Surrounding[Mi,a)

Chapter 6 Clustering Constraint in Floorplan Design 55

4 Call Marking.Neighbor.Below{first{a), end{a))

5 Call Marking-Neighbor-Above{first{b), end{b))

6 Call Marking-Neighbor-Left{first{c), end{c))

7 Call Marking.Neighbor.Right{first{d), end{d))

8 Ti = A n n,

9 //|T| + 1 = = |A

10 All clustering constraints satisfied

11 Return

12 End

18 count = 0
14 While count < |A| _ 1

15 Begin

16 Take i where |Ti| is maximum and Mi is not marked

11 / m i > iAi-i

18 Begin

19 For each Ma； G A fl II^ find Mj eUiD^

20 swap{Mj,Mk)

21 count = |A| — 1

忍忍 End

23 Else

24 Begin

25 For each Mj e A nlU find MkeUiH^

26 swap{Mj,Mk)

21 count — count +

28 End

29 Mark Mi

30 End

Chapter 6 Clustering Constraint in Floorplan Design 55

If iriil < |A| - 1 (lines 24-28), the number of positions in Hi is not enough

for swapping all the constrained modules into the neighboring positions. The

other target module will be selected from and the process is repeated until

all the constraints are satisfied. The algorithm can handle even very large

cluster size.

6.5 Multi-clustering Extension

Multi-clustering constraint allows us to have more than one cluster in the

final packing. The algorithm described above handles only one cluster. Multi-

clustering constraints can be resolved by invoking the above algorithm several

times. However, the major problem of addressing multi-clustering constraint

is that the neighboring sets can overlap. Infeasible packing will be resulted

if modules are swapped randomly. For example, given two clustering sets Ai

and A2. A target module Mt^ and Mt^ is found from each clustering set. Let

Ut^ and 11̂ 2 be the neighboring sets of Mt^ and Mt^ respectively. If a module

Mk, where M k G Ut^ and Mk G 11̂ 2 exists, the module M k should be removed

from either Ht^ or lit?.

Besides, while locating the neighboring modules, the module found earlier

is probably nearer to the target module. It is thus better to swap into those

positions first. This property make sure that the modules under clustering

constraints will be placed as close to each other as possible.

6.6 Cost Function

The cost function is defined as ̂ + XW + pC where A is the total area of

the packing, W is the half perimeter estimation of the wirelength, and C

is a penalty for the clustering constraint. The penalty term C is the sum

of center to center distances between the modules within the same cluster.

Chapter 6 Clustering Constraint in Floorplan Design 55

The penalty term helps to give packings in which the modules with clustering

constraints will be packed closely together. A and /S are constants that control

the weighting between the importance of the three terms.

6-7 Experimental Results

Our method is tested with three M C N C building blocks examples (ami33,

ami49 and playout). Ami33 has 33 modules and 123 nets. Ami49 has 49

modules and 408 nets. Playout has 62 modules and 1161 nets. In the first set

of experiment, 20% of the modules in each benchmark are selected randomly

to have clustering constraint, i.e., ami33, ami49 and playout have 7, 10 and

12 modules respectively. For each benchmark, we repeat the experiment three

times by selecting different modules into the constraint set. The results are

given in Table 6.1.

In the second set of experiment, we tested our method with multi-clustering

constraints. In each benchmark problem, we picked 3，4 and 5 clusters and

each cluster has 2 to 7 modules. The results are given in Table 6.2. All

the data are shown in the appendix A. A control experiment is performed

without clustering constraint for each data set and the results are shown in

Table 6.3. The temperature decreases with a constant rate (0.9), and the

number of iterations at one temperature step is one hundred times the number

of modules. All experiments were done on a UltraSPARC-II 400MHz processor.

Figure 6.5 and 6.6 shows a result packing of ami33 with three clusters and

a result packing of ami49 with four clusters respectively. Figure 6.7 and 6.8

shows the improvement in interconnection by imposing clustering constraints.

In Figure 6.7, we observed from the data set that modules 15, 18, 19, 20, 21,

24 and 25 are heavily connected with each other, so we impose clustering con-

straint between them. Figure 6.8 shows the result packing without imposing

any clustering constraint. One can see that the interconnect cost in Figure 6.7

Chapter 6 Clustering Constraint in Floorplan Design 55

is smaller than that in Figure 6.8.

Data Set n Cluster Size % Dead-space Time (sec)

a m i 3 3 - c c l ^ 7 m

ami33-cc2 33 7 2.80 18.4

ami33-cc3 7 ^ 22.6

ami49-ccl49 10 ^

ami49-cc2 49 10 3.53 53.2

ami49-cc3 49 10 ^ 51.9

playout-ccl^ 12 ^ 146.5

playout-cc2 62 12 7.43 147.8

playout-cc3 62 12 6.57 146.4

Table 6.1: Results of testing with one cluster for the M C N C examples

Data Set n # of Clusters (Cluster Size) % Dead-space Time (sec)

ami33-mcl 3(4,4,3) ^ ^

ami33-mc2 33 4(3,3,3,2) 3.16 21.4

ami33-mc3 33 5(3,2,2,2,2) ^ 21.9

ami49-mcl 3(6,5,5) ^ ^

ami49-mc2 49 4(4,4,4,4) 2.77 56.7

ami49-mc3 49 5(4,3,3,3,3) ^ 57.1

playout-mcl 3(7,7,6) ^

playout-mc2 62 4(5,5,5,5) 7.18 154.6

playout-mc3 62 5(4，4，4，4，4) 5.87 151.8

Table 6.2: Results of testing with multi-clusters for the M C N C examples

Chapter 6 Clustering Constraint in Floorplan Design 55

Data Set n % Deadspace Time (sec)

^ a m i 3 3 2.45 12.7

ami49 3.00 37.5

playout ^ 4.35 124.4

Table 6.3: Results of the control experiments

10 2fi

沖 ‘ ‘

23 4

U ' ' 21
17

i ‘ n .
33 J '脚 .. “ 効

0 进

I I 3
« 沖 W

Figure 6.5: A result packing of ami33 with three clusters (Ci:5,7,ll,13;

(72:14,27,30; ̂ 3:19,22,25,29)

n 41 41
“ 25 42

46 , - ' •- 1 iliPi'iiiiiiliililiiii ：；1|1；：||1；|；1||||：||§| I讓禱1_丨|翳___隱_敦翳繁丨i丨丨IliilliyîiiiiilPIII ̂^̂ m
4 J3 10

3

p il
丨lii丨:iii丨;iiiiiii®ii_l;lii籠讓ii 丨丨丨：議i:i:丨•丨lill 丨ifl _
•“ “ • .V « - « ““

_ J 〜：；.,• — L -
*••_••， • “

» » IIJI'I-. “
~ "‘、。，. - - .1，、- ： -

• ‘‘ thiniti,?mr,丨 40
- '：̂ ,

J" • « 丨
— 丨 载 _ _ _ ^ 3.

» •； 2
- - - • - - ‘ 26

_ 30 35
37 29 2S

Figure 6.6: A result packing of ami49 with four clusters (Ci:6,7,8,9;

C2:10,n，12,13; ̂ 3:15,16,17,18; 04：18,19,20,21)

Chapter 6 Clustering Constraint in Floorplan Design 55

_
^̂ ^̂ ^ I I I . 里 _

Figure 6.7: A result packing showing the improvement in interconnection by

imposing clustering constraints (wirelength = 0.1472xl0^units).

圖
Figure 6.8: A result packing of the same problem in Figure 6.7 without clus-

tering constraints (wirelength = 0.1596xl0^units).

Chapter 7

Interconnect Driven Multilevel

Floorplanning Approach

In this chapter, a multilevel framework for floorplanning is presented. The

Clustering and Refinement methods in the multilevel approach are described

in details. The experimental results of the multilevel floorplanner are compared

with those without applying the multilevel technique. Experimental results are

shown and compared with some results recently published. The runtime of the

implementation and the wirelength of the resultant packings are improved.

7.1 Multilevel Partitioning

Multilevel is a technique used in circuit partitioning to speed up the runtime

KK95, AHK98, WA98, KAKS99]. Circuit size is growing rapidly to millions

of gates nowadays and the runtime will be too slow if use traditional parti-

tioning methods are used to handle huge problems. Multilevel partitioning use

a divide and conquer technique to reduce the problem size. Figure 7.1 illus-

trates the flow in multilevel partitioning. It consists of two phases: coarsening

(clustering) and refinement (uncoarsening).

Chapter 7 Interconnect Driven Multilevel Floorplanning Approach 7丄

\ ^ projected partition \ \

\ refined partition /

C T \ /
0 y) j、 y Z Unclustering &

Clustering Z Refinement Phase
Phase

Initial Partitioning Phase

Figure 7.1: Multilevel Partitioning

7.1.1 Coarsening Phase

In the Coarsening Phase, the nodes (gates) are recursively grouped until the

number of node (gates) is smaller than a certain threshold. This Coarsening

step is illustrated in Figure 7.2.

Several nodes are grouped together to form a new node in the next level

of the Coarsening Phase. The nets within the group will be removed. The

net between two groups will be combined to form one net and the weight of

the net will be updated. Therefore, the number of nodes and nets will be

reduced in the next level of the Coarsening Phase. There are many different

ways to group the nodes and these method are usually different in the way

they consider the netlist information. These methods included Heavy Edge

Matching [KK95], Random Matching, Hyper Edge Coarsening [KAKS99], etc.

Most of the multilevel partitioners are using more than one methods.

7.1.2 Refinement Phase

After the Coarsening Phase, the problem size will be significantly reduced.

Traditional partitioning methods are the applied to perform partitioning on

this smaller problem instance. The solution will then be projected to the

Chapter 7 Interconnect Driven Multilevel Floorplanning Approach 7丄

一 一 - - \

\ — z

Figure 7.2: Coarsening Step

next level by ungrouping the nodes and adding the nets back to the graph.

The partitioning algorithms will then be applied to this projected solution

again. These steps are repeated in each level until all the nodes and nets

are uncoarsened. Since the initial solution at the beginning of each level is a

projected solution from the previous level and it is thus already a pretty good

solution and the number of iterations needed to reach a good solution in each

level can be reduced. Therefore, the total runtime will be reduced and can be

used to handle larger problems.

Many research works have been done on applying and comparing different

the kinds of partitioning methods in the Refinement Phase [KAKS99, AHK98,

WA98, KAKS99

However, using multilevel frameworks on placement and floorplanning is

new and there are only a few publications on this topic. [CCKSOO] presented

a pioneer work of applying this multilevel framework on the circuit placement

problem based on the constrained nonconvex nonlinear programming method

to solve the problem.

The major difference between the work in [CCKSOO] and ours' is that our

multilevel framework is based on simulated annealing. Some techniques are

used to determine the initial temperature in each stage and also, we will handle

the sizing problem by the Lagrangian Relaxation technique.

Chapter 7 Interconnect Driven Multilevel Floorplanning Approach 7丄

o o W 一 夢 。 ’

\ o^A — 产。1/
C l — 。 2 驅 o. /

rnrri Level i| I Reftrlement Phase

Level 0

Figure 7.3: Illustration of a Multilevel Floorplanning

7.2 Overview of Multilevel Floorplanner

Multilevel approach can also be applied in the floorplanning problem. Fig-

ure 7.3 illustrates the steps of a multilevel floorplanner. There are two Phases

in the multilevel floorplanner: Clustering and Refinement. In each level of

the Clustering Phase, modules which are heavily connected with each other

will be clustered together to form a new module. These new modules, each

indeed is a collection of modules, will go through the same clustering process

in the next level and this clustering process will repeat recursively until the

number of modules remaining is small enough to be handled efficiently. Af-

terward, the Refinement Phase will perform refinement and packing. In each

level of the Refinement Phase, the modules (each may be a cluster of modules

itself) in a cluster will be unclustered and packed using some basic floorplan-

ning algorithm. This refinement and packing step will be repeated in the next

level using the results obtained from the current level as the initial solution.

Chapter 7 Interconnect Driven Multilevel Floorplanning Approach 7丄

The process of refinement and packing will be repeated recursively in each

successive level until all the basic modules are unclustered.

In the following, we will discuss the clustering and Refinement Phase in

more details.

7.3 Clustering Phase

The Clustering Phase performs grouping between the modules recursively in

order to reduce the problem size and minimize the interconnect cost. In each

level of the Clustering Phase, modules which are heavily connected with each

other will be clustered together to form a new module for the next level. The

area of the new modules will be the sum of the module areas in that cluster.

The netlist information should also be reconstructed. The nets connecting

modules in the same cluster can be removed, while those connecting modules

in different clusters or connecting to an I/O pin will remain. The size of the

circuit will thus be reduced successively during this Clustering Phase.

7.3.1 Clustering Methods

Given the netlist information, we consider two clustering methods, the Hyper-

edge Clustering Method and the Heavy Edge Matching Method:

Hyperedge Clustering [KAKS99]: In this clustering method,

the hyperedges representing the nets are first sorted according to

their weights. They are then scanned in descending order of their

weights and modules belonging to the same independent net will

be clustered together. A net is independent if and only if all the

modules in it are still unclustered. Using this method, we can take

care of the heavily weighted nets.

W e restrict the number of modules that can be put into one cluster

Chapter 7 Interconnect Driven Multilevel Floorplanning Approach 7丄

O Cluster / J) Net Weights Sorted L i s t
C ""ster ^ I I A 二 3 C , B , F , A , D , E

〇 • ^ ^ ^ c： ? t t
。 D = 3 rejected rejected

\ # / p - ^ V t o o l a r g e V n o t

‘ = 4 —

i g w " f C l u s t e r s i z e < = 4

Figure 7.4: Illustration of The Hyperedge Clustering Method

to be within an upper bound (four in our case) because large clus-

ter size is not good for the Refinement Phase. In the Refinement

Phase, we will directly expand a cluster in the sequence pair repre-

sentation by replacing a cluster name by a list of the modules in the

cluster. This corresponds to packing the modules inside the cluster

horizontally from left to right. This simple expansion will create

deadspace in the packing and small cluster size can minimize this

undesirable effect. Those modules which are not selected to be in

any cluster will each be a cluster on its own. Figure 7.4 illustrates

this method.

Heavy Edge Clustering: In this clustering method, modules

will be clustered in pairs. From the netlist information, a simple

graph G is built. In G, the vertices represent the modules and the

edges represent the interconnection. A weight on an edge e{i,j)

represents the total number of nets connecting between module i

and j. The edges are sorted in descending order of their weights.

W e will then scan the sorted list of edges. A pair of modules

connected by an edge will form one cluster if both of them are

not clustered yet. Figure 7.5 illustrates this heavy edge clustering

Chapter 7 Interconnect Driven Multilevel Floorplanning Approach 7丄

F o r c l u s t e r v e l o c i t y = 0.7
6 M o d u l e s a r e p u t i n t o c l u s t e r

繼
Figure 7.5: Illustration of The Heavy Edge Clustering Method

method.

7.3.2 Area Ratio Constraints
In the Clustering Phase, we need to control the area ratios between the mod-

ules in a cluster in order to obtain a tight packing at the end. For example,

we should prevent very large modules from clustering with very small ones

because packing modules of very different size is difficult due to the modules'

aspect ratio bound. W e impose two constraints on the area ratios during the

Clustering Phase. The first constraint ensures that the clusters are formed

progressively in the Clustering Phase:

Xm� Area[Mi) < ^ ̂ ！徵� < i for each clusters C
AREA - -

where Area{Mi) denotes the area of module M“ AREA is the total area of

all the modules, r is a constant and level is the current level in the Clustering

Phase. By imposing this constraint, small modules can be clustered together

to form larger ones and clusters of similar size will be formed progressively.

This is good since packing of modules with very different sized is difficult and

should be avoided. The second constraint prevents very large modules from

clustering with very small ones:

Chapter 7 Interconnect Driven Multilevel Floorplanning Approach 7丄

amin < < Ĉ mao： for all pairs of M , and M, which belong
to the same cluster

where amin and amax are the minimum and maximum area ratio allowed. These

ratios are set to r and s in our implementation where r and s are the aspect

ratio bounds of the modules. By imposing this constraint, large modules are

prevented from clustering with small ones and packing within a cluster will

thus be made easier.

7.3.3 Clustering Velocity

Clustering velocity is the percentage of modules that are being grouped into

clusters at each level. If the clustering velocity is high (the number of levels

will be small), the packing quality will be lower but the algorithm will be more

efficient. O n the other hand, if the clustering velocity is low (the number of

levels will be large), the packing quality will be higher but the algorithm will

be less efficient. It is important to control the velocity in order to yield a good

result in a short runtime.

W e will use a mixture of the Hyperedge Clustering method and the Heavy

Edge Clustering method because each method has its own pros and cons. The

Heavy Edge Clustering method gives clusters of size two only and a simple

graph has to be built. However, it can control the clustering velocity accurately.

On the other hand, the Hyperedge Clustering method can only give very few

number of clusters at one level especially at those later stages. However, we

can take cares of several nets with heavier weights by putting all the member

of the nets into a cluster.

In each level of the Clustering Phase, we will first apply the Hyperedge

Clustering method. If the percentage of modules being grouped into clusters

is less than the required clustering velocity, we will apply the Heavy Edge

Clustering method to increase the number of clusters to the required threshold.

Chapter 7 Interconnect Driven Multilevel Floorplanning Approach 7丄

The Clustering Phase is summarized as follows:

Algorithm: Clustering

Input: A set C — {Mi, M2,..., M^} of n modules

A set N 二 {Ni, 7V2,... ,Nm} of m nets

Clustering velocity v

Maximum number of clusters at the highest level K

Output: A set of clusters C^ at each level 1 < k < L where L is the

highest level number

A set of coarsened nets N^ at each level 1 < k < L

1 C^ = C

2 N^ = N

3 k=0

4 while > K

5 Perform Hyperedge Clustering on (C^, N^) to give

6 < X V

7 Augment (7左+1 with clusters obtained by performing

Heavy Edge Clustering on the remaining unclustered modules.

8 Merging nets for the new set of dusters (7於+1 to get iY^+i

9 k=k+l

7.4 Refinement Phase

After the Clustering Phase, we have all the information about the clusters and

their interconnections at every level. W e will then perform packing successively

at each level starting from the coarsest one, i.e., the one with the fewest number

of clusters. The packing at each level is done by simulated annealing using the

sequence pair representation. The solution will be passed from one level to

another by using the result packing at one level as the initial solution for the

Chapter 7 Interconnect Driven Multilevel Floorplanning Approach 7丄

^ ^ , 1 I I 1 I 1 I I I 1
a I ^ 1 ^

c 1 . i
N - 车 丁 - - 3 I

^ — — ^
b ；

d 2 5 6 7丨 8

a->l,4

(abed,bade) (14256378,25614783)
d->7.8

Figure 7.6: Illustration of the Sequence Pair Refinement

next. One advantage of using sequence pair is that refinement can be done

directly on the representation. The sequence pair of the result packing at

level i can be unclustered naturally by expanding each cluster into a list of

modules it contains (as illustrated in Figure 7.6) which is then used as the

initial solution for the next level.

Since the initial solution of the annealing process at one level is obtained

from the result packing at the previous level, we expect that the number of

iterations at each level to obtain a good packing will be reduced and the whole

process can be sped up.

Algorithm: Refinement

Input: A set of clusters C^ at each level 1 < k < L where L is the

highest level

A set of coarsened nets N^ at each level 1 < k < L

Output: A sequence pair s^ for the modules in (7°

1 k二 L

2 while k>0

Chapter 7 Interconnect Driven Multilevel Floorplanning Approach 7丄

3 If k==L

4 = •.. C；�CfCf . • • C》）where {C^ C^ C � }

is the set of clusters in C^

5 else

6 Expand to s^ by replacing each cluster Cf+i in by

a sequence of dusters from C^ contained in Cf+i

1 Perform simulated annealing on C^ and N^ using s^ as

the initial solution

8 k=k-l

7.4.1 Temperature Control

In most simulated annealing process, the initial temperature is very high to

allow random moves in the solution space and avoid being trapped in a local

minimum. In our multilevel floorplanner the initial solution at each level of the

Refinement Phase is already pretty good because it is obtained from the previ-

ous level by unclustering. A high initial temperature will, on the contrary, ruin

the initial packing and waste the effort spent in the previous levels. In order to

determine an appropriate initial temperature for the annealing process at each

level, we will perform a certain number (proportional to the number of modules

at the beginning of the annealing process) of random moves and an average

change in cost is obtained from those iterations. The initial temperature is

then computed according to the following equation:

^ SC
T 二一厂 inr

where T is the initial temperature, 6C the average change in cost in the set of

random moves and r is the probability to accept worse solution. This approach

allows us to well control the starting temperature according initial probability

of accepting a worse solution we want to have at the beginning of each level.

Chapter 7 Interconnect Driven Multilevel Floorplanning Approach 7丄

The initial probability of accepting a worse solution should decreasing during

the refinement process since the packing is expected to be converging towards a

good solution. In our implementation, it will be decreased linearly throughout

the whole Refinement Phase.

7.4.2 Cost Function

Traditional floor planners usually assume a die area with an unlimited size and

pack the modules as tightly as possible. However, in fact, the die size is already

chosen before floorplanning, so the packing should be performed in a fixed die

regime. W e use a better cost function that focuses more on optimizing the

interconnect cost while constraining the final packing to within the fixed die

regime. W e compute the cost function in the annealing process as follows:

Cost = Wirelength + X{[W - + [H-丑']+)

where 二 rr if is positive and 0 otherwise, Wirelength is the half perimeter

estimation of the interconnect cost, W and H are the width and the height

of the current packing solution, W and H' are the width and height of the

fixed die regime and A is the weight. Notice that we are trying to minimize

the interconnect cost as long as the modules are packed within the fixed die

regime. Usually, A is set to a large value to ensure that the constraint of fixed

die regime can be satisfied. Packing outside the die regime will lead to a high

cost and the solution will be rejected.

7.4.3 Handling Shape Flexibility

Many modules still have large flexibility in shape in the floorplanning stage and

we can make use of this flexibility to improve the packing quality. W e apply

the Lagrangian relaxation technique in [YCLWOO] to handle soft modules by

invoking the shaping procedure once after the Refinement Phase. The soft

Chapter 7 Interconnect Driven Multilevel Floorplanning Approach 7丄

modules have fixed areas but their widths and heights can be changed as long

as their aspect ratio are lying within a given bound. The shaping procedure

is time consuming but there is no need to invoke it in every iteration of the

annealing process to minimize the area. The runtime will be extremely long

for large problem size if the shaping procedure is invoked in every iteration of

the annealing process.

W e should minimize the interconnect cost as much as possible while main-

taining the packing within the fixed die regime. Applying the shaping proce-

dure once to the last result packing of the Refinement Phase (which should

already be quite good) can further reduce the deadspace by 4% to 8% to give

a very tight packing. Note that the interconnect cost will not change much

after the shaping procedure.

7.5 Experimental Results

The algorithms are written in C language. All experiments were done using

Sun Enterprise E4500 with twelve UltraSPARC-II 400MHz processor and 8GB

Memory running in Solaris 7 operating system. It is tested with three M C N C

building blocks examples (ami33, ami49 and playout) and some randomly gen-

erated data set. Ami33 has 33 modules and 123 nets. Ami49 has 49 modules

and 408 nets. Playout has 62 modules and 1161 nets. Data sets with 100,

200, 300, 400 and 500 modules and 888, 2388, 2888, 3388 and 3888 nets are

generated randomly for testing purpose (for detail in appendix B). For those

soft modules their aspect ratios are bounded to [0.5，2.0] for problems with

less than 400 modules. The soft modules in the data set with 500 modules has

an aspect ratio bound of [0.1, 10.0 .

Chapter 7 Interconnect Driven Multilevel Floorplanning Approach 7丄

7.5.1 Data Set Generation

In order to test the scalability of our floorplanner, we have randomly generated

some data sets with up to hundreds of modules (data_100, data_200, data一300,

data_400, data_500). The generator is given the number of modules, number

of pins and number of nets and it will generate the area of each module, pin

positions and netlist information automatically. For each data set, we define

several ranges of area. The areas of each module is generated randomly so

that the distribution of areas in each range is uniform. The pin positions

are assigned uniformly at the boundary of the chip. The net information is

also generated randomly. W e will first determine whether a net is connected

to a pin. Then, we will decide randomly the number of modules a net is

connected to according to the distribution of nets and these modules will be

picked randomly. All the module's number are resulting from a uniformly

random number times some constants which according to number of modules

of the problem set.

7.5.2 Temperature Control

As we mention before the initial temperature (T) is calculated using the change

in cost. Figure 7.7, 7.8 and 7.9 plot of T at different level of the Refinement

Phase for ami33, ami49 and playout respectively. The graphs also plot the

number of nets that are unclustered at that level. The acceptance rate of a

worse solution will change uniformly from 0.9 to 0.1 in the Refinement Phase.

W e can see from Figure 7.7, 7.8 and 7.9 that T is low at the first few levels

because there are only a small number of clusters to be packed at the beginning

of the Refinement Phase. T increases to its highest at some intermediate stages

which is dependent on the interconnect structure of the individual data set. T

is computed from the change in cost and the acceptance rate. Notice that the

total areas of the modules will remain unchanged in the refinement process.

Chapter 7 Interconnect Driven Multilevel Floorplanning Approach 7丄

x10®
8 | I — 1 1 ^ 1 1

Temprature
...Change in Cost / \

1 1 1 1 1 1 1
0 1 2 3 4 5 6 7

Level

Figure 7.7: Initial temperature in the Refinement Phase for ami33

The cost of the packing will increase due to the uncoarsening of nets. T is

lowest at the last level because the solution is already good.

7.5.3 Packing Results

Table 7.1 shows the packing results of our multilevel floorplanner for all the

data set. Table 7.2 shows the results of the experiments using the original

simulated annealing method using sequence pair representation without mul-

tilevel approach and shape flexibility. All experiments are done using the same

set of parameters. The original algorithm can only handle up to two hundreds

modules in practical time and the results for the problems with more than 200

modules is thus not shown (cannot be obtained in practical runtime).

The best result of ami33 and ami49 are compared with the result in [MK98 .

It is shown in table 7.3. [MK98] used a quadratic programming method to

perform area and wirelength optimization. Their results are nearly optimal

but the runtime is very long and is unable to solve problem with large size in

practical time.

Figure 7.10, 7.11, 7.12, 7.13 and 7.14 shows some result packings of the

Chapter 7 Interconnect Driven Multilevel Floorplanning Approach 7丄

X10”
5| I I 1 1 1 1

Temprature
• Change in Cost

_ i 1 1 1 1 1 1
0 1 2 3 4 5 6 7

Level

Figure 7.8: Initial temperature in the Refinement Phase for ami49

multilevel floorplanner. The deadspace of the packings are very small, from

0% to 4%.

rr . n.. J ^^T J % Dead- Wlen r T T T i m e \ I t e r Time
Data set # M o d #Net ^^^^^ (^mUlO^*^''' (s e c) x l Q - 3 (sec)

ami33 ^ m 0 . 7 0 0.0587 441987 0.3373 149.1
ami49 49 408 2.05 0.8573 579307 0.7975 462.0
playout 62 1161 8.51 0.5216 774369 1.9220 1488.4
data.lOO 100 1888 1.84 2.8909 1020917 3.6225 3698.3
data_200 200 2388 4.28 4.5768 2350453 8.5513 20100.7
data_300 300 2888 4.31 6.7701 3804513 15.8206 60189.7
data_400 400 3388 5.44 8.8815 609360 38.9537 23740.5
data-5Q0 500 3888 3.57 15.8380 922474 39.3843 36331.0

Table 7.1: Results of the multilevel floorplanner

Chapter 7 Interconnect Driven Multilevel Floorplanning Approach 7丄

X10®
3| t ~ r 1 1 1 1 1

Temp rat u re
Change in Cost

2.5 - 产 -

r: \ -
V ^ —命 —“ —“

-0 5' ‘ ‘ ‘ -L— ‘ ‘ ‘
• 0 1 2 3 4 5 6 7 8

Level

Figure 7.9: Initial temperature in the Refinement Phase for playout

rr 」 U M . % Dead- Wlen r T T Time\Iter Time
Data set # M o d #Net ^ c e (輝）xl06 # Iter (sec)x lQ-3 (sec)

ami33 ^ m 5 . 2 2 0.0680 529322 0.4682 247.9
ami49 49 408 4.58 1.0673 878082 1.0495 921.6
playout 62 1161 9.29 0.5855 1061642 2.6347 2797.2
data_100 100 1888 3.55 3.1716 1948002 4.5363 8836.9
data_200 200 2388 7.76 5.7849 4744002 13.0356 61845.2
data_300 300 2888 - — — 一 一
data_400 400 3388 一 一 一 一 一
data-500 500 3888 一 [j；； - | - -

Table 7.2: Results of original algorithm without multilevel

\\n r ^ II Area Wlen lime

Data set = 2 、 = = ； ™ ; in [MK98] in [MK98] in [MK98]
) ” (secj (" 肌 2) (sec)

ami33 1143430 5 6 4 7 9 1 1 5 9 9 2 9 53393 75684
ami49 367Q92Qo| 775486 447.1 || 35581225 775104 612103

Table 7.3: Results of comparison with [MK98:

Chapter 7 Interconnect Driven Multilevel Floorplanning Approach 7丄

國：
Figure 7.10: A result packing of ami33 (area = 1143430/im^, wlen = 56479/xm)

B
Figure 7.11: A result packing of ami49 (area = 35543600^m^, wlen =

907515/xm)

Chapter 7 Interconnect Driven Multilevel Floorplanning Approach 7丄

Figure 7.12: A result packing of data_100 (area = 8733540/im^ wlen =

2811010/im)

•
Figure 7.13: A result packing of data_200 (area = 17567900//m^, wlen =

4506900/im)

Chapter 7 Interconnect Driven Multilevel Floorplanning Approach 7丄

— r I •• —J -

瞧 l i

Figure 7.14: A result packing of data_500 (area = 49626700評2, wlen 二

14559800/im)

Chapter 8

Study of Non-slicing Floorplan

Representations

This chapter will analyze the complexity of different floorplan representations.

W e proved that if a floorplan is non-slicing there will be at least one super-

module in the packing with its four T-junctions at the corners in four different

orientations, i.e., a wheel. A new representation for mosaic floorplan called

twin binary tree is proposed by [YCCGOl] and we have derived an efficient

algorithm to generate pairs of valid twin binary trees and to convert this rep-

resentation to its corresponding packing efficiently.

8.1 Analysis of Different Floorplan Represen-

tations

In this section, we will discuss five popular floorplan representations: Polish ex-

pression (PE), Bounded-Slice-Grid(BSG), Sequence Pair(SP), O-tree(OT) and

Corner Block List (CBL).

Chapter 8 Study of Non-slicing Floorplan Representations 100

8.1.1 Complexity

Before we discuss the complexity of each representation, we need to know the

enumeration of trees, because most of the representations make use of the

trees.

An ordered binary tree is a binary tree in which the two children of each

node are ordered. Let K be the number of different ordered binary tree with n

nodes. For a binary tree with n nodes, each parent have at most two children.

Therefore,

bn = bobn-l + hK-2 + . . . + K-I^o

where n > 1. It is derived in [Knu93] that:

1 f2n\
K = —r

n + 1 \ n

By Stirling's approximation,

n!记 \lliin f —)
Ve/

Therefore
— (2 n) !

(n + l)(n!)2

_ 广
(n + l) 2 ™ (尝广

(n + l)y7m

(92n \ —

1. Polish Expression

Each Polish expression corresponds to a slicing tree in which every inter-

nal nodes has two children. The n leaf nodes are operands and the n — 1

internal nodes are operators and the number of such slicing trees with

different structures is equal to bn-i. There are two types of operators and

n leaf nodes. Therefore, there are 2几一i possible assignments of operators

Chapter 8 Study of Non-slicing Floorplan Representations 100

to the internal nodes, and n! possible assignments of operands to the leaf

nodes for each tree structure. The total number of combination of Polish

expression is thus 几 几 1 . 5) 乂 2 几 x n!，i.e.,

2. Baseline-Slice-Grid(BSG)

For a B S G with size n x n, n room are selected for putting the mod-

ules. The total number of selection is C(n^,n). The total number of

combination using B S G is thus C(n^,n) x nl, i.e., 0(n!C(n^, n)).

3. Sequence Pair

There are two sequences of module names in a sequence pair. The num-

ber of possible assignments for each sequence is nl. The complexity is

thus 0((n!)2).

4. Q-tree

An ordered tree is a rooted tree in which the children of each node are

ordered. Since every ordered tree can be converted to an ordered binary

tree with a single child root uniquely, the number of ordered trees with

n vertices is equal to the number of order binary tree with n — 1 vertices,

i.e., hn-i [Knu93]. 0-tree is an order tree with n vertices. The number of

such trees is 2加_2/in}\ The total number of combinations using 0-tree

representation i s 、 2 加 x n!，i.e., 0(n!22几—Vni.”.

5. Corner Block List

5 is a sequence of n modules and L is a sequence of n — 1 bits. The total

number of T s in the list T should be less than or equal to n — 2 and the

number of 'O's should equal to n—1. The paper [ZDH+01] has shown that

the total number of T is The total number of combination

using corner block list representation is thus nl x x 2加/i.e.,

0(n!23“/ni-5).

Table 8.1 summarizes the complexity of different floorplan representations and

Chapter 8 Study of Non-slicing Floorplan Representations 100

Figure 8.1 plots these complexity measures (normalized by n!) in logarithmic

scale. W e can see that B S G has the largest solution space.

Solution Space Construction Time

"Polish Expression(PE) — ^^^^^ — n
Sequence Pair(SP) (n!)̂ n^

Baseline-Sliceline-Grid(BSG) n\{C{n', n)) n ?
~0-tree and B*-tree — “ n
— Corner Block List(CBL) ^ ^ ^ ri

Table 8.1: Complexity of different floorplan representations

8.1.2 Types of Floorplans

A mosaic floorplan is a floorplan without any empty room such that each

room is acquired by one and only one module. Mosaic floorplan is introduced

by [ZDH+01] and slicing floorplan is a subset of it. In the paper [YCCGOl

the complexity of slicing floorplan and mosaic floorplan are derived. The exact

number of slicing floorplan is a Schroder Numbers An given as below:

A) 二 1

Ai 二 1

An = (3(2n - 3)An-i — (n — 2)/n

The exact number of mosaic floorplan is a Baxter number B{n) as given below:

/n + l y Vn + 1\ ^ /n + 1\ fn + 1\ /n + 1\

二 L 1 M 2 ； ^ U - l A k J U + i;
The redundancies of a representation can be shown by comparing the exact

number of packings and the complexity of the representation. Figure 8.2 and

8.3 plots the complexity of C B L with the exact number of mosaic floorplan.

According to the plots, we can conclude that the redundancies in P E is greater

Chapter 8 Study of Non-slicing Floorplan Representations 100

350 r
+ SP

BSG
PE & CBL

300 J * OT ,_
/

I .肩.

•I /
•1 250- / M

I / y
I 200 - y

I Z
.gi5o- /

i / Z .-'

‘ ‘
0 50 100 150 n

Figure 8.1: Complexity of different floorplan representations

Chapter 8 Study of Non-slicing Floorplan Representations 100

300 r

• •“ Mosaic
• CBL 肩

250 -

m
200 -

肩.
o5

I
活 150 -c
I ,
5 ^ •

• . r

1 0 0 -

5 0 -

- I -

. . ： ： : . 一
qU-'̂ *̂ 1 1 ‘

0 50 100 150
n

Figure 8.2: Complexity of CBL comparing with exact number of mosaic floor-

plan.

than that in CBL. The redundancies in Polish expression can be reduced by

using normalized Polish expression. A normalized Polish expression is an ex-

pression in which all consecutive operators are different, i.e., no，，++，，nor

，，**，，in the expression. Besides, redundancies CBL may also give infeasible

representations (representation that does not correspond to a packing) during

the moves.

The paper [LWOl] introduced the concept of maximally compact place-

ment. A packing with set of modules is maximally compact if no module

in the packing can be moved horizontally to its left nor vertically downward

without moving any other modules. An illustration is shown in Figure 8.4.

Theorem 1 in the paper [LWOl] have proved that for any maximally compact

placement P, there will exist a slicing tree T such that performing compaction

of the slicing placement Pt of T can generate P.

The complexity of maximally compact floorplan is difficult to obtain. A

Chapter 8 Study of Non-slicing Floorplan Representations 100

300 r
- • - P E

I • • • • S l i c i n g ,
/

/

250 - /
/

/

d
/

200 - /
•

f / ？ /

I 150 - /
'3 ^
E /
o / O /

M
100 - /

/

/
/

/ Ji
50- /

/

z
/

• •.….,.....•…...
一 Z • _ 匾 _ 僅 • • • i"' ‘ I

50 100 150
n

Figure 8.3: Complexity of P E comparing with exact number of slicing floor-

plan.

Figure 8.4: The illustration of Maximally Compact Placement

Chapter 8 Study of Non-slicing Floorplan Representations 100

• •
•

Figure 8.5: The illustration of slicing floorplan is not necessarily to be maxi-

mally compact

floorplan which is maximally compact depends on the dimensions of the mod-

ule. Slicing floorplan may not be maximally compact. For example, Figure 8.5

give a slicing floorplan which is maximally compact even we force all the mod-

ules placed along the left and bottom boundaries of its room.

In the paper [ZDH+01], the authors consider a representation called Extend

Corner Block List to represent maximally compact floorplans using C B L by

introduce some d u m m y blocks into the list. An of d u m m y blocks are introduced

for a problem with n modules. The complexity of E C B L will become (An +

n)!23(入几+几)—3/(An + n)i.5 which is larger than that of CBL.

According to above factors, slicing floorplans with smaller complexity but

it may not be maximally compact. For those non-slicing floorplans represen-

tation which able to give maximally compact floorplans but they with larger

complexity than slicing floorplan. Therefore, it is difficult to draw a conclusion

about the complexity of maximally compact floorplan.

W e can categorize four types of floorplan: slicing, mosaic, maximally com-

pact and general. Table 8.2 shows the relationships between these popular

representations and different kinds of floorplans.

Chapter 8 Study of Non-slicing Floorplan Representations 100

Slicing Mosaic Max. Compact General

Expression (PE) y/

Sequence Pair(SP) \J \J V \l

iseline-Sliceline-Grid(BSG)- \l — \l \j ~~ \j

0-tree and B*-tree sj yj 丄
"Corner Block List (CBL) | | 〉 I

a/ : can represent

Table 8.2: Relationship between representations and different kinds of floor-

plans

8.2 T-junction Orientation Property

At each corner of a module, a T-junction is formed between the modules.

Definition 8.1 T = {—, —, T,丄} represents the set of all four possible ori-

entations of a T-junction at the corner of a module. For each module i

in a packing, there is a corner sequence s : (̂̂；二召,ôi口, a;丑了,) where

• OLiLB corresponds to the lower left corner of the module.

• OiLT corresponds to the upper left corner of the module.

• otiRT corresponds to the upper right corner of the module.

• ai貼 corresponds to the lower right corner of the module.

Definition 8.2 If a module is surrounded by four T-junctions in different

orientations, it is said to be '4T'.

Definition 8.3 For a T-junction h, the is said to be the 'edge' and the

is said to be the 'dash'.

Definition 8.4 Given an edge of a module, if the orientation of two T-junctions

at its two ends are opposite, i.e., T and 丄 or 卜 and H. the module is said to

have an T structure.

Chapter 8 Study of Non-slicing Floorplan Representations 100

Lemma 8.5 In a corner sequence s 二 , , of a module i:

• h should not be assigned to or

• H should not be assigned to ai^^ or ai^^.

• T should not be assigned to ai^^ or ai^^.

•丄 should not be assigned to ai^^ or

Proof: For the T-junction 卜,the edge is on the left hand side. Therefore,

the module should be on the right hand side of the T-junction and 卜 can only

be assigned to ai^^ or ai^^ but not to ai^^ nor ai只召 for module i. For the

T-junction of the other three orientations, similar argument follows. •

From Lemma 8.5, we have the following Corollary:

Corollary 8.6 For module i,

• aiLB is either h or _L.

• aiLT is either 卜 or T.

• aiRT is either H or T.

• aiĵ B is either H or 丄.

Lemma 8.7 The T-junction at the diagonal corners of a module should not

have the same orientation.

Proof: Consider and aj灯 which are in diagonal positions. According

to Corollary 8.6, ai^^ is either 卜 or 丄 and is either H or T. So, the

orientation of ai^^ should not be the same as that of 〜？. It can be similarly

proved for all other cases. •

Chapter 8 Study of Non-slicing Floorplan Representations 100

Lemma 8.8 If a module is not '4T', there is at least one T structure on one

side of the module.

Proof: From L e m m a 8.7, the T-junctions at the diagonal corners of module i

should not have the same orientation. Therefore, if module i is not '4T', there

is at least two T-junctions with the same orientation in its corner sequence

s. The two T-junctions with the same orientation can only be at the two

end points of one of its edges. Without lost of generality, we can assume

that these T-junctions are at the two ends of the upper edge, we have 二

aiRT 二 T. From Corollary 8.6, a;⑶ is either 卜 or 丄 and ai只丑 is either H or

丄.Therefore, there will exist two T-junctions on one side of the module with

opposite orientations. Hence, an T structure exists. •

Lemma 8.9 If a module has an T structure, the module is either obtained

by a slicing cut or there exists a '4T' module (or supermodule) in the packing.

Proof: Without lost of generality, we consider the case that module M j has

an T structure at its right edge, i.e., a)灯 = T and a知丑 二 丄-Then, there

exists a set of modules TV 二 {Mq, Mi,..., M̂；} on the right hand side of Mj

such that one of their â ^̂ 's and ai^^ 's where i 二 …，k share the T-junction

T and 丄 with Mj. There are two cases for the placement of the modules in

N:

• |7V| = 1, i.e., k = 0. W e have ao^^ 二 ajj^T = 丁 and ao^^ = ajj^^ =丄.

The T structure is a slicing cut between module MK and Mq.

• |7V| > 1, Since \N\ > 1，there exists at least one T-junction h such that

its edge is on the right edge of Mj, i.e., along the T structure. From

the horizontal segment at the top and bottom of the T structure, there

should be a falling edge and a rising edge (Figure 8.6 and 8.7). There

are two cases:

Chapter 8 Study of Non-slicing Floorplan Representations 100

falling edge falling edge

— r — r — H - ^
Mj - Mj -

Figure 8.6: A falling edge from the top of the T structure.

IVT • • Mh •
] rising edge 」 rising edge

z z

Figure 8.7: A rising edge from the bottom of the T structure.

Chapter 8 Study of Non-slicing Floorplan Representations 100

Mj m Mj _ i

• m JL • _ iMM̂I

Mj ••丨 Mj "Pi

^La mSm Ja —•

Figure 8.8: The four possible cases when the rising and falling edges are one

vertical segment.

- T h e falling edge and the rising edge is the same vertical segment.

There will be four possible cases as shown in Figure 8.8. Note that

the modules in the shaded area will form one supermodule and

this case will thus be the same as that when |7V| 二 1, i.e., the T

structure is a slicing cut between Mk and the supermodule in the

shaded region.

— T h e falling edge and rising edge are not the same vertical segment.

Consider the top segment of the T structure, it should terminate

in one of the two possible ways as shown in Figure 8.9. These

two cases are further elaborated in Figure 8.10. For case 1 in Fig-

ure 8.10, the top segment of the T structure terminates at a corner

of the floorplan. The bottom segment from the T structure (edge

d) must not meet edge b. Therefore, it must meet with another

vertical edge e. Edge e must not meet edge a, so it must meet with

Chapter 8 Study of Non-slicing Floorplan Representations 100

End with upper right corner .， . .
c 丄 T 1 1 • End with a T-junction

of the whole packing . 」

^ T — — i Z “ " "“ T — — l | Z

Mj Mj

CASE 1 CASE 2

Figure 8.9: Two possible cases for the top segment of the T structure

CASE 1 CASE 2

a a

T
c b b

Mj c ^ ^ - r Mj c

e ^ 2) Edge e m u s t \ D E d g e b m u s t

/ d not m e e t edge a ^ ^ not m e e t edge d

’ ^ l)Edge d m u s t not 2) If edge f meets
3) If edge f m e e t s m e e t edge b edge c, a 4T is formed,
edge c, a 4T is formed .

Figure 8.10: The illustration of formation of 4T modules

another horizontal edge /. If edge f meets edge c, a '4T' super-

module is formed; otherwise, the argument will repeat until a '4T'

supermodule is formed finally. For case 2 in Figure 8.10, the top

segment of the T structure terminates at a H T-junction. Edge b

must not meet the bottom segment of the T structure, so it must

meet with another horizontal edge /. If edge f meets edge c, a '4T'

supermodule is formed; otherwise, the argument will repeat until a

'4T，supermodule is formed. •

Theorem 8.10 A floorplan which is not slicing, will have at least one '4T'

Chapter 8 Study of Non-slicing Floorplan Representations 100

module.

Proof: Assume that a floorplan which is not slicing has no '4T' module. From

L e m m a 8.8, there exist at least one T structure in every module of the floor-

plan. From Lemma 8.9, if a module has an T structure, the module is either

obtained by a slicing cut or there exists a '4T' module within the floorplan.

The second case will contradict with the assumption that the packing has no

'4T' module. That means, all the modules are obtained by slicing cuts and

this contradicts with the fact that the packing is not slicing. Therefore, we

can conclude that a floorplan which is not slicing should have at least one '4T'

module. •

8.3 T w i n Binary Tree Representation for M o -

saic Floorplan

8.3.1 Previous work

The paper [YCCGOl] have proposed a twin binary tree representation for mo-

saic floorplan. However, they only devised the algorithm to convert a packing

to its twin binary tree representation and proved that for any given mosaic

floorplan, there exists a unique twin binary tree representation. In this sec-

tion, we will describe an efficient algorithm to construct the packing from a

twin binary tree representation.

Twin binary tree T B T ^ = { { h M) I h M ^ Tree几 and 6(61) = 6^(62)}

where Tree。is the set of binary trees with n nodes and 9(6) is the labeling

of a binary tree b. The labeling of a binary tree is a sequence of '0' and '1'

bits obtained by an in-order traversal of the tree in such a way that a bit '0' is

appended to the sequence when a node with no left child is visited and a bit

'1，is appended when a node with no right child is visited. The first and the

Chapter 8 Study of Non-slicing Floorplan Representations 100

Q Q 。

B C

2l"'"XQ I)

A ：

i D

丄 E
"•… * (

i F

k

(a) Packing

K ^ � 、 1 , < 、

。 ^ '''、.i °
/ N � N

f 、 / \
, 、 身 、

‘ 、.1 ‘‘ 、* 1 0 1 0 丄

(b)e(6i) 二 00110 (c)e(&2) = 11001

Figure 8.11: A packing and its twin binary tree representation

last bit can be omitted since they are the same for all binary trees. G^b) is

the complement of 6(6) by changing all the bits '1' to '0' and '0' to '1'.

The paper [YCCGOl] have proved that for a mosaic floorplan there exists

a unique twin binary tree representation. Figure 8.11 shows an example of the

representation. The roots of the twin binary tree will correspond to the top

right corner block and the bottom left corner block of the packing, and these

two blocks will be leaf nodes in the other tree of the pair.

In the binary tree bi, the root node corresponds to the the module at the

Chapter 8 Study of Non-slicing Floorplan Representations 100

bottom left corner of the packing. The two branches from this root will travel

upward and to the right until they reach another T-junctions which are the

bottom left corners of some other modules, then new nodes are formed corre-

sponding to the modules reached. Note that the bottom left corner of all the

modules can be reached in this way. The construction of 62 is similar, except

that the root node now corresponds to the module at the top right corner of

the packing and the branches of the tree travel downwards and towards the

left.

The method [YCCGOl] described above shows the conversion from a pack-

ing to the twin binary tree representation. However, another important step

is to generate valid twin binary trees and to convert an arbitrary twin binary

tree representation to its packing efficiently. In the following section, we will

describe an algorithm to achieve this purpose.

8.3.2 Twin Binary Tree Construction

From the twin binary tree in Figure 8.11, we observe that the in-order walk of

the two twin trees are the same, while their labelling are complements of each

other.

Lemma 8.11 For the in-order traversal of and 62, where bi and 62 are the

twin binary tree constructed from a packing by the method described in Sec-

tion 8.3.1, the first node in the two traversals are the same and it corresponds

to the module at the top left corner of the packing.

Proof: In bi, the first node visited in an in-order traversal is the left most
child which is reached by traveling upward from the bottom left corner until

there is no more module on the top. Therefore, it is the module at the top left

corner of the packing. For 62, the first node visited in an in-order traversal is

the left most child which is reached by traveling towards the left from the top

Chapter 8 Study of Non-slicing Floorplan Representations 100

right corner until there is no more module on the left. Therefore, it is also the

module at the top left corner of the packing. •

Theorem 8.12 Given a packing and its twin binary tree representation bi

and 62, the sequences obtained by in-order traversals of the trees including

the bits labeled at the nodes with either no right child or no left child (we

call this sequence an in-order sequence) will be the same except that, the bits

in the two sequences are complemented, for example, AIBICODOFIEI and

AOBOCIDIFOEO is a pair of twin binary tree of a feasible packing.

Proof: The proof is done by induction. The proof for the base case with only

one module is trivial and is not shown here. Assume that the statement is true

for any packing with k modules where k > 1. Consider a packing with A: + 1

modules. Let module Ui be the top left comer of the packing, and bi and 62

are the corresponding twin binary tree. From lemma 8.11, node Ui is the left

most child in both bi and 62. There are two possible cases:

• Case 1: rii has a right child in 61.

If rii has a right child in h, then n^ in 62 will have no right child. Fig-

ure 8.12 illustrates this case. The in-order sequences of bi and &2 are

niOT2Ti and n^lTs respectively. However, T2T1 and T3 are the in-order

sequences of the twin binary tree b[and 63 for the packing P丨 obtained

from P by sliding the edge a (Figure 8.12) to the left boundary of the

whole packing to remove ly from P. By the induction hypothesis, T2T1

and Ts are the same except that the bits are toppled, so n^OTsTi and

riilTs also have the same property.

• Case 2: rii has no right child in bi

If m has no right child in 61, then rii in 62 will have a right child. Fig-

ure 8.13 illustrates this case. The in-order sequences of 61 and 62 are

mlTi and rijCXTsTV 了 1 and T3T2 are the in-order sequences of the twin

Chapter 8 Study of Non-slicing Floorplan Representations 100

/

Figure 8.12: The illustration of case 1 in the proof of Theorem 8.12

binary tree b[and 63 for the packing P' obtained from P by sliding edge

b (Figure 8.13) to the top boundary of the whole packing to remove rii

from P. By the induction hypothesis, Ti and T3T2 are the same except

that that the bits are toppled, so nJTi and niOTsT2 also have the same

property. •

A binary tree bi is given in Figure 8.14 and its in-order sequence is CODIBIAOE.

Using Theorem 8.12, we can obtain the in-order sequence of its twin binary tree

by complementing all the bits in the sequence, i.e., CIDOBOAIE. Then, we can

construct the twin binary tree according to this in-order sequence. Note that

there may be more than one trees with that in-order sequence (Figure 8.14),

and these are the possible twin binary trees of bi. Note that a leaf node of bi

will be the root node of 62, and a leaf node of 62 will be the root node of 61.

Each 62 can pair up with bi to generate a packing using the method described

in Section 8.3.3.

All possible 62 of a given bi can be obtained from the in-order sequence of

62 since the positions of all the internal nodes and leaf nodes are known.

Chapter 8 Study of Non-slicing Floorplan Representations 100

A A m

。 汽 4 [U
/

/

/

0

Figure 8.13: The illustration of case 2 in proof of Theorem 8.12

/ �
/ ^

0 1

Figure 8.14: A example of binary tree bi

Chapter 8 Study of Non-slicing Floorplan Representations 100

, . < > \ �P v
M 尸\ 0 1 0 1

(a) (b)

Figure 8.15: The possible 62 for the hi in Figure 8.14

8.3.3 Floorplan Construction

When we have a pair of twin binary tree, we can construct the packing from

the two trees. The binary trees hi and 62 in Figure 8.14 and Figure 8.15(a) are

used as an illustration.

Consider a node A in a binary tree hi. The right child E of node A corre-

sponds to the module on the right of A. The left child B of node A corresponds

to the module on top of A. Therefore, we have the following equations from

the binary tree bi：

OCj^ — X j I U) j

where module i is the right child of module j, and

Vi 二 Vj + hj

where module i is the left child of module j, wj and hj are the width and

height of module j, and Xi and i/i are the x-coordinate and y-coordinate of the

bottom left corner of module i respectively.

Chapter 8 Study of Non-slicing Floorplan Representations 100

\ 广 1 “ \
严、、 0' 1 b2
0 1

Figure 8.16: The twin binary tree labeled with the corresponding width and

height.

Similarly, consider a node L) in a binary tree 62. The right child B of node

D corresponds to the module below D. The left child C of node D corresponds

to the module on the left of D. Therefore, we have following equations from

the binary tree 62:

x'i 二 oc'j - Wj

where module i is the left child of module j, and

y�i = y'j - hj

where module i is the right child of module j, y\ is the x-coordinate and

y-coordinate of the top right corner of module i respectively. Also, we have

the following constraints:

x[- Xi> Wi

and

y'i -yi> hi

for module i. Figure 8.16 illustrates the twin binary tree labeled with correct

widths and heights.

Chapter 8 Study of Non-slicing Floorplan Representations 100

Figure 8.17: The vertical constraint graph from the example in Figure 8.16

The vertical constraint graph and horizontal constraint graph can be con-

structed from the twin binary tree. In if node A is the left child of its parent

B, there is an edge from ^ to A in the vertical constraint graph. If A is not

the left child of its parent, then we have to search for a node along the path

from A to the root which is a left child of its parent. For example, in bi of

Figure 8.16, node D is not the left child of its parent, and we will search along

the path towards the root until we find node C which is the left child of its

parent and an edge will then be added from B to D in the vertical constraint

graph. A similar method is applied to 62 except that the direction is reversed.

If a node A is the right child of its parent B, we will add an edge from A to

B in the vertical constraint graph. Figure 8.17 shows the vertical constraint

graph constructed from the twin binary tree in Figure 8.16.

For the horizontal constraint graph, the graph can be constructed using

the same method. If node A is the right child of its parent B in 61, there is

an edge from B to A in the horizontal constraint graph. For 62, if node A is

the left child of its parent B, there is an edge from ^ to 5 in the horizontal

constraint graph. The weight of each edge is the corresponding width or height

of its source node module. Figure 8.18 shows the horizontal constraint graph

obtained from the twin binary tree in Figure 8.16.

Finally, we will add a source node s and a destination node t to the vertical

constraint graph and the horizontal constraint graph. Edges of weight '0，are

inserted into the constraint graphs from s to every other vertices with no

Chapter 8 Study of Non-slicing Floorplan Representations 100

Figure 8.18: The horizontal constraint graph from the example in Figure 8.16

incoming edge; and edges of weight equal to the width or height of its source

node module are also inserted from every vertex with no outgoing edge to t.

Node s and t correspond to the boundaries of the packing. The coordinates

of the lower left corner of module Ui can be obtained from the longest path

length from node s to node rii in the constraint graphs.

The resultant floorplan corresponding to the twin binary tree in Figure 8.16

is shown in Figure 8.20.

Chapter 8 Study of Non-slicing Floorplan Representations 100

HCG C ^ /
^ / VCG

Figure 8.19: The final vertical and horizontal constraint graph for the example

in Figure 8.16

C D

B E

A

Figure 8.20: The resultant mosaic floorplan of the twin binary tree shown in

the Figure 8.16

Chapter 9

Conclusion

9.1 S u m m a r y

This thesis gives an overview of floorplanning in C A D of VLSI physical de-

sign. Important problems in floorplanning are described. These problems are

due to the advance in the deep sub-micron technology and the scaling down

of the feature size in the IC technology. Two important issues in floorplan-

ning are scalability and interconnection optimization. There have been many

studies and research on these problems. W e have studied and investigated the

methods of imposing clustering constraints and applying multilevel approach

in floorplanning to address these two issues. In additions, we have studied

the properties and different representations of non-slicing floorplans in order

to achieve a better understanding of this important problem.

A technique to handle clustering constraints is implemented on top of a

slicing floorplanner. An algorithm is devised to find all the neighboring mod-

ules of a target module from the Polish expression. All the result packings

satisfy the given clustering constraints and the deadspace is small on average.

Multilevel approach is introduced to floorplan design. W e have imple-

mented an interconnect driven floorplanner by applying the multilevel tech-

nique. The interconnect cost is optimized in the clustering phase of the multi-

level process and the placement of the modules is performed in the refinement

Chapter 9 Conclusion 115

phase. The applicability of this approach is supported by the promising ex-

perimental results in which the interconnect cost is reduced significantly and

the runtime is shortened.

A study on non-slicing floorplan is given in the last chapter. W e have

analyzed different floorplan representations in terms of complexity and repre-

sentation power. A proof is given to show that for a non-slicing floorplan there

exists at least one module (or supermodule) with four T-junctions of different

orientations at its corners. A mosaic floorplan representation call twin binary

tree has been proposed recently. W e have devised an efficient algorithm to

generate pairs of valid twin binary trees and to convert a pair of such trees to

its corresponding packing.

Bibliography

-AHK98] Charles J. Alpert, Jen-Hsin Huang, and Andrew B. Kahng. Multi-

level circuit partitioning. IEEE Transactions on Computer-Aided

Design, 17(8), August 1998.

CCKSOO] Tony F. Chan, Jason Cong, Tianming Kong, and Joseph R. Shin-

nerl. Multilevel optimization for large-scale circuit placement. In

Prvccssiug of the International Conference on Computer-Aided

Design, pages 171 -176, 2000.

C C W W O O] Y. C. Chang, Y. W . Chang, G. M . W u , and S. W . W u . B*-trees:

A new representation for non-slicing floorplans. In Proceedings of

the 37th ACM/IEEE Design Automation Conference, pages 458—

463, 2000.

CHMR91] J. P. Cohoon, S. U. Hegde, W . N. Martin, and D.S. Richards.

Distributed genetic algorithms for the floorplan design problem.

IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, 10(4):483—492, April 1991.

CKP99] Jason Cong, Tianming Kong, and David Zhigang Pan. Buffer

block planning for interconnect-driven floorplanning. In Proceed-

ings of the IEEE/ACM International Conference on Computer-

Aided Design, pages 358—363, 1999.

;CZY+99] H. M . Chen, H. Zhou, F. Y. Young, D. F. Wong, Hannah H. Yang,

and Naveed Sherwani. Integrated floorplanning and interconnect

planning. In Proceedings of the IEEE International Conference

on Computer-Aided Design, 1999.

FM82] C. M . Fiduccia and R. M . Mattheyses. A linear-time heuris-

tic for improving network partitions. In Proceedings of the

19th ACM/IEEE Design Automation Conference, pages 175-181,

1982.

FMK97] K. Fujiyoushi, H. Murata, and M . Kaneko. Vlsi/pcb placement

with obstacles based on sequence-pair. In Proceedings of Interna-

tional Symposium on Physical Design, pages 26-31, 1997.

GCY99] P. N. Guo, C. K. Cheng, and T. Yoshimura. An 0-tree represen-

tation of non-slicing floorplan and its applications. In Proceedings

of the 36th ACM/IEEE Design Automation Conference, pages

268-273, 1999.

HHC+00] Xianlong Hong, Gang Huang, Yici Cai, Jiangchun Gu, Sheqin

Dong, Chung-Kuan Cheng, and Jun Gu. Corner block list: An ef-

fective and efficient topological representation of non-slicing floor-

plan. In Proceedings of the IEEE/ACM International Conference

on Computer-Aided Design, pages 8-12, 2000.

KahOO] Andrew B. Kahng. Classical floorplanning harmful? In Processing

of International Symposium on Physical Design, pages 207 一 213,

2000.

KAKS99] George Karypis, Raj at Aggarwal, Vipin Kumar, and Shashi

Shekhar. Multilevel hypergraph partitioning: Applications in

vlsi domain. IEEE Transactions on Very Large Scale Integra-

tion(VLSI) Systems, 7(1), March 1999.

KD98] M . Z. Kang and W . W . M . Dai. Arbitrary rectilnear block packing

based on sequence pair. In Proceedings of the IEEE/ACM Inter-

national Conference on Computer-Aided Design, pages 259-266.

IEEE Computer Society Press, 1998.

KK95] G. Karypis and V. Kumar. Multilevel graph partitioning schemes.

In Processing of International Symposium on Physical Design,

pages 113 - 122, 1995.

KL70] B. W . Kernighan and S. Lin. An efficient heuristic procedure for

partitioning graphs. Bell Syst Tech. J., 49(2):291-307, Feb 1970.

Knu93] Danald E. Knuth. The Art of Computer Programming Vol 1:

Fundamental Algorithms. Addison-Wesley, 2 edition, 1993.

LLWWOl] Jianbang Lai, Ming Shiun Lin, Ting-Chi Wang, and Li-C. Wang.

Module placement with boundary constraints using the sequence-

pair representation. In Proceedings of IEEE Asia South Pacific

Design Automation Conference, pages 515-520, 2001.

LWOl] Minghorng Lai and D. F. Wong. Slicing tree is a complete floor-

plan representation. In Processing of Design Automation and Test

Conference in Europe, pages 228-232, 2001.

MDH+01] Yuchun Ma, Sheqin Dong, Xianlong Hong, Yici Cai, Chung-Kuan

Cheng, and Jun Gu. Vlsi floorplanning with boundary constraints

based on corner block list. In Proceedings of IEEE Asia South

Pacific Design Automation Conference, pages 509-514, 2001.

MFK98] H. Murata, K. Fujiyoshi, and M . Kaneko. VLSI/PCB place-

ment with obstacles based on sequence-pair. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems,

17(1):60-68, January 1998.

:MFNK95] Hiroshi Murata, Kunihiro Fujiyoshi, Shigetoshi Nakatake, and

Yoji Kajitani. Rectangle-packing-based module placement. In

Proceedings of the IEEE/ACM International Conference on

Computer-Aided Design, pages 472-479, 1995.

MK98] H. Murata and Ernest. S. Kuh. Sequence-pair based placement

method for hard/soft/pre-placed modules. In Proceedings of In-

ternational Symposium on Physical Design, pages 162-172, 1998.

NFMK96] S. Nakatake, K. Fujiyoshi, H. Murata, and Y. Kajitani. Mod-

ule placement on BSG-structure and IC layout applications.

In Proceedings of the IEEE/A CM International Conference on

Computer-Aided Design, pages 484-493, Washington, Novem-

ber 10-14 1996. IEEE Computer Society Press.

Ott82] R. H. J. M . Otten. Automatic floorplan design. In Proceedings

of the 19th IEEE/ACM International Conference on Computer-

Aided Design, pages 261 - 267, 1982.

PBLCOO] Yingxin Pang, Florin Balasa, Koen Lampaert, and Chung-Kuan

Cheng. Block placement with symmetry constraints based on

the 0-tree non-slicing representation. In Proceedings of the

37th ACM/IEEE Design Automation Conference, pages 464-467,

2000.

She99] N. Sherwani. Algorithms for VLSI Physical Design Automation.

Kluwer Academic, 3 edition, 1999.

SSKOO] Probir Sarkar, Vivek Sundararaman, and Chaeng-Kok Koh.

Routability-driven repeater block planning for interconnect-

centric floorplanning. In Proceedings of the International Sym-

posium on Physical Design, pages 186-191, 2000.

SSR91] S. Sutanthavibul, E. Shargowitz, and J. Rosen. An analytical ap-

proach to floorplan design and optimization. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems,

10(6):761—769, June 1991.

SYTB95] S. M . Sait, H. Youssef, S. Tanvir, and M . S. T. Benten. Timing

influenced general-cell genetic floorplanner. In Proceedings of the

ASP-DAC，95/CHDL ,95/VLSL，pages 135-140, 1995.

TTWOO] Xiaoping Tang, Ruiqi Tian, and D. F. Wong. Fast evaluation of

sequence pair in block placement by longest common subsequence

computation. In Pivccssing of Design Automation and Test Con-

ference in Europe, 2000.

TWOO] Xiaoping Tang and D. F. Wong. Planning buffer locations by

network flows. In Proceedings of the International Symposium on

Physical Design, pages 180—185, 2000.

TWOl] Xiaoping Tang and D. F. Wong. Fast-sp: A fast algorithm for

block placement bsed on sequence pair. In Proceedings of IEEE

Asia South Pacific Design Automation Conference, pages 521-

526, 2001.

VNLG95] G. Vijayan, V. Narayananan, D. LaPotin, and R. Gupta. PEP-

PER: A timing driven early floorplanner. In International Con-

ference on Computer Design, pages 230-235, Los Alamitos, Ca.,

USA, October 1995. IEEE Computer Society Press.

WA98] S. Wichlund and E. J. Aas. On multilevel circuit partitioning. In

Processing of the International Conference on Computer-Aided

Design, pages 505 一 511, 1998.

WL86] D. F. Wong and C. L. Liu. A new algorithm for floorplan de-

sign. In ACM/IEEE, editor, Proceedings of the 23rd A CM/IE EE

Design Automation Conference, pages 101-107, Las Vegas, N V ,

June 1986. IEEE Computer Society Press.

WLL88] D. F. Wong, H. W . Leong, and C. L. Liu. Simulated Annealing

for VLSI Design. Kluwer Academic, 1988.

YCCGOl] Bo Yao, Hongyu Chen, Chung-Kuan Cheng, and Ronald Gra-

ham. Revisiting floorplan representations. In Processing of Inter-

national Symposium on Physical Design, pages 138-143, 2001.

YCLWOO] F. Y. Young, Chris C. N. Chu, W . S. Luk, and Y. C. Wong.
Floorplan area minimization using lagrangian relaxation. In Pro-

ceedings of International Symposium on Physical Design, 2000.

YSAF95] H. Youssef, S. M . Sqit, and K. J. Al-Farra. Timing influenced

force directed floorplanning. In Proceedings of the EURO-VHDL,

Proceedings EURO-DAC '95, pages 156-161, 1995.

YW98] F. Y. Young and D. F. Wong. Slicing floorplans with pre-

placed modules. In Proceedings IEEE International Conference

on Computer-Aided Design, pages 252-258, 1998.

YW99a] F. Y. Young and D. F. Wong. Slicing floorplans with boundary

constraints. In Proceedings of IEEE Asia South Pacific Design

Automation Conference, pages 17-20, 1999.

YW99b] F. Y. Young and D. F. Wong. Slicing floorplans with range con-

straints. In Proceedings of the International Symposium on Phys-

ical Design, pages 97-102, 1999.

;ZDH+01] S. Zhou, S. Q. Dong, X. L. Hong, Y. C. Cai, C. K. Cheng, and

J. Gu. ECBL: An extended corner block list with solution space

including optimum placement. In Proceedings of International

Symposium on Physical Design, 2001.

Appendix A

Clustering Constraint Data Set

A.l ami33

A.1.1 One cluster
Data Set Cluster (module's number)

ami33-ccl 5 7 8 11 15 19 22

ami33-cc2 5 7 8 26 29 30 31

ami33-cc3 11 19 20 26 29 30 31

A.1.2 Multi-cluster
Data Set Number of Clusters Cluster (module's

number)

ami33-mcl 3 1) 5 7 11 15 2) 19 22 25 29

3) 14 27 30

ami33-mc2 4 1) 5 7 8 2) 11 14 18

3) 21 24 27 4) 29 30

ami33-mc3 5 1) 5 7 11 2) 8 14

3) 21 27 4) 24 29

5) 18 30

Appendix A Clustering Constraint Data Set 124

A.2 ami49

A.2.1 One cluster
Data Set Cluster (module's number)

ami49-ccl 6 7 8 9 10 11 12 13 14 15

ami49-cc2 16 17 18 19 20 21 22 23 24 25

ami49-cc3 26 27 28 29 30 31 32 33 34 35

A.2.2 Multi-cluster
Data Set Number of Clusters Cluster (module's

number)

ami49-mcl 3 1) 6 7 8 9 10 11 2)12 13 14 15 16

3) 17 18 19 20 21

ami49-mc2 4 1) 6 7 8 9 2) 10 11 12 13

3) 14 15 16 17 4) 18 19 20 21

ami49-mc3 5 1) 6 7 8 9 2) 11 12 13

3) 14 15 16 4) 17 18 19

5) 20 21 22

A.3 playout

A.3.1 One cluster
Data Set Cluster (module's number)

playout-ccl 1 2 5 6 7 10 11 12 13 16 18 19

playout-cc2 21 23 24 25 26 27 28 29 31 32 33 34

playout-cc3 40 42 43 44 45 46 48 49 50 51 52 53

Appendix A Clustering Constraint Data Set 125

A.3.2 Multi-cluster

Data Set Number of Clusters Cluster (module's

number)

playout-mcl 3 1) 1 2 5 6 7 10 11 2) 13 16 18 19 21 22 26

3) 27 28 31 33 36 37

playout-mc2 4 1) 1 2 5 6 7 2) 10 11 13 16 18

3) 19 21 22 26 27 4) 28 31 33 36 37

playout-mc3 5 1) 1 2 5 6 2) 7 10 11 13

3) 16 18 19 21 4) 22 26 27 28

5) 31 33 36 37

Appendix B

Multilevel Data Set

B.l data_100

Number of Modules 二 100

Minimum Aspect Ratio 二 0.5

Maximum Aspect Ratio 二 2.0

Size of modules:

49849 98183 75071 95600 61093 85791 94347 85135

78336 94340 62177 61581 41382 99532 94960 47531

17784 41769 81607 43630 92959 30494 32491 13738

86207 66031 42056 7716 20099 79035 86148 96014

38409 35077 37906 56472 5299 69761 76492 54874

56713 8817 77678 70900 81432 73361 74732 97500

72091 33468 62268 27015 30187 83107 11759 99749

39775 52890 65317 70480 96060 6462 26557 45240

37057 88023 92981 42521 80755 39158 91122 16340

22721 82037 59121 21774 76069 36677 29755 11156

8744 54602 66333 77751 44148 76537 93282 46083

77292 63238 99290 78738 27599 75777 13260 89496

53376 9258 34519 20102

Appendix B Multilevel Data Set 1 们

Number of Pins 二 48

Distribution of Pins: Evenly distributed on the boundaries of the chip.

Number of Net = 1888

Distribution of Nets:

2 pins net 80%

3 pins net 10%

4 pins net 5%

5 pins net 2%

6 pins net 2%

7 pins net 1%

B.2 data 一 200

Number of Modules = 200

Minimum Aspect Ratio 二 0.5

Maximum Aspect Ratio = 2.0

Size of modules:

49512 227393 37432 14075 31679 263100 70330 99589

563849 68630 7696 45066 36529 55383 67717 24267

61930 86274 56472 71641 66955 71334 70564 60843

71862 55045 253651 31469 51235 89834 80542 68640

47478 61358 67609 525336 8679 55534 11501 65751

52472 34681 39490 99456 515465 220744 14244 70758

33803 67233 73427 65442 14616 38343 97917 14938

45814 298641 99873 49070 6216 48042 7296 14793

57940 18350 37940 9219 27676 96835 34779 74304

96375 37068 27264 25307 31642 75425 21993 48884

22151 64927 56091 62132 37254 11159 9282 44031

Appendix B Multilevel Data Set 1 们

18633 88938 39397 243075 86149 47893 592217 50642

43424 56213 21036 69840 97930 19091 555659 91701

39575 229577 98443 83352 25528 15693 53856 25686

22381 61616 31077 57560 60267 99223 38337 264629

99181 27568 99968 77475 46112 33769 45347 90047

39805 52184 23737 61923 76325 565236 31892 573411

583072 18901 61245 61484 98607 89696 74416 9399

87174 8532 54656 5445 24014 64099 64306 18360

67196 53917 68570 74507 50801 91963 42561 35542

89985 44949 94307 43378 290768 41243 67751 67688

54875 24031 56680 73997 263831 41454 27027 53531

47481 10228 90674 59992 12481 32352 45799 5563

204886 40683 48937 78682 507568 298473 12149 59532

28026 80425 25021 25664 15040 18361 85714 59836

Number of Pins 二 42

Distribution of Pins: Evenly distributed on the boundaries of the chip.

Number of Net 二 2388

Distribution of Nets:

2 pins net 80%

3 pins net 10%

4 pins net 5%

5 pins net 2%

6 pins net 2%

7 pins net 1%

Appendix B Multilevel Data Set 1 们

B.3 data—300

Number of modules = 300

Minimum aspect ratio 二 0.5

Maximum aspect ratio = 2.0

Size of modules:

597414 42925 79706 38579 54275 19606 5713 68993

62969 92758 57253 23444 35047 59669 15719 11233

65746 83647 90266 45558 7135 25518 50242 38166

44181 53308 41576 32945 41132 8975 50861 94472

30015 65421 515948 28767 85220 63182 5930 33658

66813 6309 51035 31224 93275 88451 278662 63951

224079 11311 15293 73073 48201 58508 556329 267487

68567 91902 76272 34718 44344 44539 50239 41597

94646 84437 21610 63363 18501 8024 48360 13346

36455 61679 50103 78333 86074 29257 229049 68987

79076 98038 10905 45842 24643 65113 52936 30680

85148 70849 26719 90154 92351 14476 87445 39924

65999 54065 74159 71082 99893 69418 53029 97009

28640 56625 93609 58748 70650 94271 598820 73482

86588 41824 268538 84172 44864 86723 252851 34368

59685 78665 8260 40730 13400 89708 30279 12438

74167 17000 99336 71500 72423 43311 60833 5212

69032 89748 88047 96094 17810 53467 42025 50202

56919 81230 36676 8935 82033 54082 81624 26849

11282 30152 53178 64499 34441 95918 40547 15313

30352 82345 72061 61981 89056 93799 284082 88473

34533 92260 581304 57420 81593 77140 51327 99468

Appendix B Multilevel Data Set 1 们

76157 38636 51123 62021 72277 553566 20668 89173

79545 90360 57964 28829 29472 555051 53203 88561

44792 58746 92183 227273 32500 14742 51196 54215

28403 88984 23337 58847 253697 292499 29846 59080

44260 71750 85043 74265 42367 548255 51484 26289

72658 82357 543143 47204 59430 87671 8766 25083

80732 502550 54952 51089 96214 32803 49125 40272

230333 15927 76203 86166 240266 21295 9631 74996

48751 93018 97356 29152 76092 62595 56401 71566

62686 7034 15892 33694 547689 560142 20836 46305

76241 86996 22817 90198 564816 70010 55513 14415

33989 20639 15780 80055 63232 58668 34054 25990

63252 66786 44780 55643 75434 72715 95607 53044

16905 80612 65898 93022 73484 21544 16489 6758

528737 68551 75741 76492 64854 32128 97258 21982

54513 90135 80381 18392

Number of Pins = 64

Distribution of Pins: Evenly distributed on the boundaries of the chip.

Number of Net = 2888

Distribution of Nets:

2 pins net 80%

3 pins net 10%

4 pins net 5%

5 pins net 2%

6 pins net 2%

7 pins net 1%

Appendix B Multilevel Data Set 1 们

B.4 data—400

Number of modules = 400

Minimum aspect ratio = 0.5

Maximum aspect ratio = 2.0

Size of modules:

83841 94654 82060 8914 23925 27070 31236 296471

60089 73214 542710 12909 57208 38003 54217 225471

49445 86582 19044 279003 74646 87587 12570 84632

19404 73132 517704 81661 71442 9959 62882 77301

49511 47385 11392 54169 82660 31978 23798 40505

56368 38159 95949 574061 40114 26773 28136 12714

24312 16620 17520 277075 98361 62851 98207 9746

67325 549357 11011 96448 11330 17007 19834 48464

84679 11778 59105 44058 51646 93056 10079 81271

58364 48696 20304 77430 95808 47947 61734 17529

25897 53413 46452 37637 33863 23611 529530 49472

8958 269130 276831 73456 13074 509347 55772 563808

66583 21630 43769 78154 55320 6241 14688 41450

20722 578033 14416 16259 52489 88389 72704 25064

290743 28661 62579 57168 10342 17176 10924 32614

525948 84226 88679 60303 22029 69460 64924 67291

47954 93429 93185 47621 89013 38491 43133 94299

14063 74248 33129 47004 97004 62904 81323 31254

56029 81660 13446 18164 564292 63849 81791 57066

20454 275410 78915 93984 98475 8661 54464 28533

70941 73320 96300 99992 88822 53476 72094 25173

13901 29253 54020 54639 526986 5813 81832 98922

Appendix B Multilevel Data Set 1 们

67908 48281 99136 31222 7456 67756 81666 503539

69761 35962 88277 54148 85670 98042 72834 8235

86147 17825 29825 45404 37342 99318 519684 50386

94628 41483 82629 28583 41532 27598 88367 70249

78419 47324 5306 92628 22625 5116 94523 94641

47048 90940 86718 78381 53831 49696 45082 89662

55540 39770 44350 95709 56872 52180 22994 64021

96135 534470 538864 71734 9728 75196 21194 81043

95246 47583 43313 224953 94181 11896 40841 47516

32742 8742 83408 12119 26225 92927 41286 36154

7083 97975 7945 21707 18915 48963 53596 45030

21850 44163 86385 77841 76919 89406 32914 63217

96039 53303 76441 63727 18959 15330 83839 53306

53913 23341 72963 82580 596925 78935 17274 97786

55444 97629 541108 8494 64620 60788 25785 23447

23956 22761 77790 96892 89299 42024 82130 58897

46078 34028 34091 217398 232381 11664 46423 42760

73766 65136 62228 543568 10066 507077 47489 74953

30267 547820 73848 52264 97210 41500 30441 29174

58795 62461 32641 94675 10435 68461 27634 66973

94706 82241 232058 13951 98444 76235 275279 9642

34992 76589 63409 44091 79857 212082 23763 39981

61740 21164 37254 93601 97700 96054 17064 249978

86663 45947 42444 584686 9115 41660 75406 25011

80248 5788 58446 65356 70314 83355 25542 26052

37882 43079 90828 51126 21435 39471 86937 15940

20420 54362 17252 20637 75564 88434 71993 23428

78379 17667 64949 31689 17986 75873 68150 15062

Appendix B Multilevel Data Set 1 们

Number of Pins = 64

Distribution of Pins: Evenly distributed on the boundaries of the chip.

Number of Net = 3388

Distribution of Nets:

2 pins net 80%

3 pins net 10%

4 pins net 5%

5 pins net 2%

6 pins net 2%

7 pins net 1%

B.5 data—500

Number of modules 二 500

Minimum aspect ratio 二 0.5

Maximum aspect ratio 二 2.0

Size of modules:

70268 46383 84415 79249 93575 34533 56758 23949

57208 53670 84034 68566 90972 40959 248764 35223

87656 7419 54440 67740 48375 29617 518006 43746

88565 8099 91227 10013 86973 84632 45626 48162

92769 42918 49372 35190 22763 84414 75080 79077

9506 85589 97086 49004 60272 67821 46766 84672

9162 523729 38856 23649 77501 37906 63163 267163

30147 30120 16623 87941 89670 95129 46688 527762

20416 23564 81681 22748 54519 268368 584046 93180

41513 17562 14316 94211 506009 582808 27750 94867

64369 521884 522579 58654 33832 64981 7581 68514

Appendix B Multilevel Data Set 1 们

242654 55298 91975 21390 35265 18689 55814 47614

290308 56576 38324 558294 583008 272025 31824 48353

83170 86660 79479 87214 58501 51676 27748 78860

65815 37676 20364 21101 99046 34083 17673 25473

12346 287911 49212 99568 22144 21740 69858 87034

23741 5603 75667 42955 27765 22915 79464 76510

5960 10857 576198 72341 20621 12305 555138 82090

90215 27393 46552 573616 81958 87284 29625 20669

43892 53527 501033 76775 93616 26714 59537 74578

30619 10928 83844 22871 55715 15813 35543 77202

50621 27685 76832 60299 264197 21686 33969 257926

47150 42635 49730 14844 74160 27533 49162 13960

47725 78757 53244 18137 7523 57723 80112 8377

527151 76066 23488 44421 10964 11787 65918 550840

29270 72759 227321 23983 58763 83446 91690 266233

14471 46394 559129 58968 72591 27874 45903 42077

34666 94209 64671 31678 28543 5112 44440 39075

83110 78277 30416 63422 58367 75491 37542 18194

60219 24692 18411 17275 20189 84711 46112 90304

74300 79793 5684 18925 32479 79592 34013 85657

90098 76942 47343 5341 96648 20511 547996 65453

63037 292374 7493 36059 58654 81534 81902 22775

22050 93624 27136 26827 585032 54273 46780 45145

88896 9058 23169 590395 53719 96471 53562 235977

46842 72020 37637 94194 85067 91338 39924 17189

96610 18110 81379 569693 63444 8647 97999 60234

62476 39105 541195 33179 224807 83618 84550 17824

36412 22050 44705 510633 554582 20271 53613 73165

27015 21197 213614 25473 9845 92092 74153 82062

Appendix B Multilevel Data Set 1 们

68245 19807 65489 544136 39397 35978 23081 298904

96420 82396 42412 12478 32987 23357 61168 37800

74224 94805 88250 69480 74788 21833 14857 75190

64411 89338 81193 13081 28577 81973 13925 52577

92621 19006 94077 51947 11193 97297 62864 10196

51866 21329 223798 43077 53431 33954 17816 56458

90221 76773 92157 91228 31256 69182 94029 29389

29962 13423 13861 23534 54403 579709 31246 31024

35446 65737 91996 90489 6768 55758 289916 57861

14621 39819 14030 88018 54209 299208 40079 95058

71724 37683 16290 49341 56294 39703 17743 72660

34490 66677 21080 74238 271568 60158 81909 29729

78193 6937 80891 42996 19217 35157 41375 46166

21905 52858 11334 587295 85026 10756 45460 26977

97378 69616 19443 15293 84521 579223 57793 48752

15923 30750 58986 13192 21188 27221 257305 83685

27821 69421 70529 60943 35568 596960 40703 68160

80148 502716 36728 84610 94098 24151 586685 59416

82151 50670 94363 8311 81137 543098 30416 67027

6105 265723 82345 81469 79569 38551 9195 21062

79838 75438 12758 5757 81449 5940 60974 79203

63632 585727 5324 509270 55494 525374 47877 523088

21112 53180 70783 86904

Number of Pins = 72

Distribution of Pins: Evenly distributed on the boundaries of the chip.

Number of Net = 3888

Distribution of Nets:

Appendix B Multilevel Data Set 1 们

2 pins net 80%

3 pins net 10%

4 pins net 5%

5 pins net 2%

6 pins net 2%

7 pins net 1%

Publications

Full Length Conference Papers

• W . S. Yuen and F. Y. Young, "Slicing Floorplan with Clustering Con-

straints" in Proceeding of IEEE Asia South Pacific Design Automation

Conference, pp. 503-508, 2001.

• W . S. Yuen and F. Y. Young, "Scalable and Interconnect Driven Multi-

level Floorplanner" in progress.

0

f

-

V

^
 .

.

.

！

.

.

.

.

 .
.
)
：
.
.
.
.

,.,•

...V

........

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

•

 •

 —
— .

.

.

.

.

.

.

.

-

:
「
，
：
，
V

:

；
.
.
，
>
害
：

:
.
-
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

：

：

f
•
「
，
「
.
；
、
.
：
•

.

:.、：：：；l§:

〜〕一..-....二.
 ..

、

I
.
"
.
 ..

f

.
:

、

.

.

.

.

.

-

‘

.
」
、
.
：
.
.
/
.
:
•
.
:
.

一

:

.

:

」

-

.

.

.

:

-

.

•

、r".?.。：.：「.(
 V.
.
.

」
、

.

.

.
：
.
.
.
.
.
.
.
•

.

.

.

.

i

._.

二 .
〈
.
，
.
.
.

「

.
V
.

 一；：

;
-
:
.
.

、
r

..........,——

.

.

-

,

.

.

.

.

 .

 •

 ‘

.-.,...:.;-,

〕

-

<

.

.

:

.

:

-

.

〕

"

-

>

.

.

"

.

.

:

,

.

.

.

.

.

:

.

.

.

‘

•

 •

V-.-

..:

 -
 .

 ..::.、：..-...•

 .

 .:.-

 •

I,

.
:
、
：
：
.
.
.
.
：

...

:!-:、A.

變：麵、？：，：；：
 ：：

：

.......•’
 ：
.
-
.
.
.
.
二
：
/

 ：；广“？

’

>
.
「
；
.
s
l

 二

 ：：

.

：

 •

.

.

.

.

 ..1-.

...

 "s....,」….〜.：.......

•

 、：：.：—：.....-.「.-

f
 A
C
:
T

;
.
:
」
，

囊
謹
聲
：
(
：
輪
"
.
.
.
：
：

.

 .
广
：
：
.
：
：
雇
禱
霞
_

•

..f

二
 ；.-、：

 .,々
-,..:...-:...•

•

 :
•

•

、

-

.

.

.

/

、

 、：
...J

‘：：..、..：.(...？¥§:.

J..:.,:.?

 V

.J:.:"..-.-

•

.i,

、，；，"-{’"v.;;,f
 ;,...-「....."--.--

,

.

:

.

.

:

-

.

.

.

-

.

.

.

.

.

.

.

.

•
 .
.
,
.
.
.
,
.
,
-
-
:
.
-
.

 .

i

........
 v
i
i
.
-
.
+
v
-

_..:

：
二

^

 .s_、：.i,si

•

.

-

：

〉」..V〔""..；.，.
 ..>....、..

 ：
〈
-
.
.
.
-
.

-

 ••

〕".二

.
"
.
i
:
,
终
。
括

...

 ..

 ..

:

.

.

"

.

.

.

.

、

.

.

.

 ..

.

.

.

.

.

.

.

—

.

.

 ••..

 .
:
.
:
.
:
.

,

 .
、
二

".：

,

 -

 「
V
/
.
-
;
.
.
:
:

.
「
V
:

广

•-.:..

-

.

.

-

;

-

.

:

.

/

.

:

.

.

.

、

-

.

.

.

—

—

.

.

：

.

.

.

.

.

,v

-

-
I

•

 ..

 ：̂
"

 "(？：...-、.：".

 .:",、

:.:....-.:-...‘.：.：.

 •

 -

.̂
••..•.....̂

.̂v

CUHK L i b r a r i e s

l _ P _ l l l l l
003fl71b7T

