24,468 research outputs found

    Lattices invariant under the affine general linear group

    Get PDF
    AbstractIntegral lattices invariant under the affine group AGLm(pt) in its natural permutation module Λ of dimension n=mt are studied. A complete description of such lattices is given. As a consequence we have results on automorphism groups of affine invariant codes over fields and finite residue rings Z/pkZ

    Quantum Error Correcting Codes and Fault-Tolerant Quantum Computation over Nice Rings

    Get PDF
    Quantum error correcting codes play an essential role in protecting quantum information from the noise and the decoherence. Most quantum codes have been constructed based on the Pauli basis indexed by a finite field. With a newly introduced algebraic class called a nice ring, it is possible to construct the quantum codes such that their alphabet sizes are not restricted to powers of a prime. Subsystem codes are quantum error correcting schemes unifying stabilizer codes, decoherence free subspaces and noiseless subsystems. We show a generalization of subsystem codes over nice rings. Furthermore, we prove that free subsystem codes over a finite chain ring cannot outperform those over a finite field. We also generalize entanglement-assisted quantum error correcting codes to nice rings. With the help of the entanglement, any classical code can be used to derive the corresponding quantum codes, even if such codes are not self-orthogonal. We prove that an R-module with antisymmetric bicharacter can be decomposed as an orthogonal direct sum of hyperbolic pairs using symplectic geometry over rings. So, we can find hyperbolic pairs and commuting generators generating the check matrix of the entanglement-assisted quantum code. Fault-tolerant quantum computation has been also studied over a finite field. Transversal operations are the simplest way to implement fault-tolerant quantum gates. We derive transversal Clifford operations for CSS codes over nice rings, including Fourier transforms, SUM gates, and phase gates. Since transversal operations alone cannot provide a computationally universal set of gates, we add fault-tolerant implementations of doubly-controlled Z gates for triorthogonal stabilizer codes over nice rings. Finally, we investigate optimal key exchange protocols for unconditionally secure key distribution schemes. We prove how many rounds are needed for the key exchange between any pair of the group on star networks, linear-chain networks, and general networks

    Ideal codes over separable ring extensions

    Full text link
    This paper investigates the application of the theoretical algebraic notion of a separable ring extension, in the realm of cyclic convolutional codes or, more generally, ideal codes. We work under very mild conditions, that cover all previously known as well as new non trivial examples. It is proved that ideal codes are direct summands as left ideals of the underlying non-commutative algebra, in analogy with cyclic block codes. This implies, in particular, that they are generated by an idempotent element. Hence, by using a suitable separability element, we design an efficient algorithm for computing one of such idempotents

    Fourier-Reflexive Partitions and MacWilliams Identities for Additive Codes

    Full text link
    A partition of a finite abelian group gives rise to a dual partition on the character group via the Fourier transform. Properties of the dual partitions are investigated and a convenient test is given for the case that the bidual partition coincides the primal partition. Such partitions permit MacWilliams identities for the partition enumerators of additive codes. It is shown that dualization commutes with taking products and symmetrized products of partitions on cartesian powers of the given group. After translating the results to Frobenius rings, which are identified with their character module, the approach is applied to partitions that arise from poset structures
    • …
    corecore