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Abstract

Integral lattices invariant under the affine grodL,, (p") in its natural permutation module
of dimensiorm = mr are studied. A complete description of such lattices is given. As a consequence
we have results on automorphism groups of affine invariant codes over fields and finite residue rings
Z/p* 7.
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1. Introduction

LetF,» be a finite field ofp” elements, and’ be its additive group. Fat = mt we
consider the affine general linear groGp, = AGL,,(p") = V - GL,,(p") of V considered
as a vector space over the subfi@lg C F,» of p’ elements. The groug,, defines a
doubly transitive action o . Define a latticeA as the group rin@[ V] with the standard
scalar product. The group,, acts naturally om by permuting the basis vectors. Our goal
is to describe sublattices it invariant under the grou@,, .

An important example is that the Barnes—Wall lattices can be very simply realized by
this construction (see Section 5).

Any invariant sublatticet’ C A of full rank containg A for some integet (one can take
[=det(A)). Ifl= p'{l e pf’ is the representation as a product of integer prime numbers,
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our problem is reduced to studyirg,,-submodules inA/pf"A. The casep; # p can be
described very easily, so one needs to classify invariant submodulesifia for all k.
This shows that we need to classify invariant submodule€8i®z, A over the ring of
p-adic integers,,.

We consider the group ring,[ V1 in the form

A= {ZavX” ‘av EZP}.

veV

The natural action of the groug,, = AGL,,(p’) on A is defined as follows:

a(x")=x"*", uev,
g(X")=Xx5", geGLu(p'),

where we consideV as anm-dimensional vector space ovEy,:. Thus the problem of
describing thes ,,-invariantZ ,-submodules it is equivalent to the problem of describing
the GL,, (p")-invariant ideals of the ringt.

The very first step is the study of invariant submodulesAinpA over the field
F, =Z,/pZ,. This situation is studied in coding theory [11,14,15,17]. An extended
cyclic code of lengthp” (i.e., invariant undeGLy(p™)) is called affine invariant if it is
invariant under the group’. They were characterized by Kasami, Lin and Peterson [17].
Later Charpin reproved this result in terms of group algebras [14]. Furthermore, Berger
and Charpin proved [11] that the permutation grage(C) of any affine invariant code
is either the symmetric grouBynip™), or alternating groupAlt(p"), or satisfies the
conditionAGL,, (p") € Per(C) € AI'L,,(p") for somem, whereAI'L,, (p") = AGL, (p") -
Gal(F /I ) is the semiaffine general linear group. Moreover, Berger [12] showed that the
automorphism group of an affine invariant cadever a fieldF can be easily constructed
from the permutation group. Actuallut(C) = F* x Per(C). Therefore, determination
of AGL,, (p")-invariant codes settles the questitn calculate the automorphism groups
of affine invariant codes. This result due to Delsarte [15]. He gave a necessary and
sufficient condition (in terms of defining sets) for affine invariant codes to be invariant
underGL,, (p"). Recently Berger and Charpin [11] found another condition equivalent to
those of Delsarte. In Section 3 we give new detailed descriptiohGlf, (p)-invariant
codes and we use these results in [4,7] to get very simple description of defining sets of
such codes.

The algebraic structure of modules oWy GL, (p') is studied in [9]. We need more
detailed investigation which is done in $ieo 3. Permutation modules and lattices for
related groups are considered also in [3,19,20].

The description o¥,-submodules iA gives the description of invariant submodules in
A/p*A overtheringZ, /p*Z, = 7/ p*Z. There is growing interest in codes ov&fp*Z.

In particular, there has been much interest jidZ codes as they have been shown to be a
systematic way of constructing very good hipaodes. For example, the famous Kerdock
and Preparata codes are non-linear binarges that contain more codewords than any
comparable linear codes ently known. Recently it was shown [16] that the Kerdock



640 K. Abdukhalikov / Journal of Algebra 276 (2004) 638-662

and Preparata codes can be very simply troieged as binary images under a certain map,
called the Gray map, of linear codes ov&f4Z. This fact stimulated investigations of
linear codes over./4Z. The Kerdock and Preparata codes, considered as codes (modules)
overZ/4Z, are analogs of classical Reed—Muller codes: they have dimension (p&nk)
and they are invariant under the affine graip

The description of invariant lattices is given in Section 4, Theorems 4.4, 4.9. The
particular cases: = 1 andm = n were considered in [5,6] in detail, see also Section 3.4.
Similar constructions of lattices were studied in [1,2,13,18]. The results of the Section 4
are used in [4,7] to describ@,, -invariant codes over ringé/ p* Z.

2. Preliminaries

The overall strategy of the paper is to replace the prime figlthy a splitting fieldF
of GL,(p"), and then get the results ov8 by Galois descent. Similarly le®, denote
the ring of integers in the unramified extension of the figlg of p-adic numbers with
propertyR,/pR, =F,. So we define

A= {Zava ‘aveRp}
veV

asR,-module. The groug,, acts onA.
The Frobenius map onF,r = R, /pR, can be extended uniquely to an automorphism
of R,. Then we have

A:{aeAI&(a):a},

where the action of on A is defined by

3(Zava> = Za(av)X”.

The connection betwee@,,-invariant R ,-lattices in.4 andZ,-lattices in A will be
explained in Lemma 4.8.

3. Submodules over afield
In this section we consider the vector space
F= {Zavxv ‘av GFq}
veV

over the fieldF, of ¢ = p’ elements. Our goal is to describg-subspaces itF invariant
under the groupG,, = AGL,(¢). There are two interpretations of elements®f as
functions fromV to F, and as elements of the group algebra. As a function, an element
> a, X" is the one that assigns, to the elemenw of V. In Sections 3.1 and 3.3 we
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describe the structure of as functions and as a group algebra respectively. We will see
that the function realization is more suitable to study the invariance under the linear group
GL,, (g), and the group algebra realization is more appropriate to study the invariance under
the groupV of affine shifts.

3.1. The structure of the spadéof functions over the affine group
Consider the polynomial functions

i ] 1_ l'O’” im—1 apep+-+y—1em—1
Xq X 1= Z ag a1 X m—=16m-1,

m—

Sincea? = « for @ € F,, the polynomial functions can be reduced moddfo- x,. The
monomialsxy - -x"7, 0< iy <¢g—1,s=0,1,...,m — 1, form a basis of the vector
spaceF overF,. In this subsection we are going to describg-invariant subspaces in
terms of these basis monomials.

We define the modules

1

Mo & 1)_<xioo+i01p+"'+i0vr—1p’7 ey 1
e A1) =[x

im—1,0+im—1,1p+Fim—1,-1P""
m—1

lioj +i1j+ - +im-1;<Aj, j=0,1,....,t = 1),

where 0< A ; <m(p — 1), 0<i5; <m(p — 1). Note that, in general, the monomials in
this definition may not be the basis monomials (but we can reduce them to basis ones). It
is easy to see that

M(m(p—1),...,m(p—1)=7F,
M, ...,0) = (1),
Mo, ..., A—1) D M(ho, .. A =1, 00 A).

Further, ifis; > p — 1 for somes, j, theniso+ - -- +igipl +-Fisap T =iso+- o+
(isj — p)p? + (s jo1+ Dpitt +ig,_1p'™1, s0

Mo, ..., —1) D2 Mo, .., Aj—p,Ajra+1 . A ).

Theorem 3.1. The moduleM (o, ..., A;—1) is invariant under the groupG,,. Fur-
thermore, anyG,-invariant submodule inF is equal to a sum of several modules
M()"Os LR )"l‘fl)-

Proof. For any integersj > 0 ands, d such that 0< s,d < m — 1, define linear

transformationss{ and Sfd from F to itself by giving them as follows on the basis of
monomials:

j iO im—l _ iS iO is_.j im—l
)= () »
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J io in—1\ __ is io is—]j ig+j Im—1

We recall that ’]‘ =0 for iy < j. The following lemma is taken from [8] (it also
follows from [9]).

Lemma 3.2. Let M be a subspace of. ThenM is invariant underG,, if and only if

(1) M is invariant under the transformatiorsg andeid fors #dand0<s,d<m—-1
and0<j<g-—1,and
(2) M is spanned by monomials.

In particular, the lemma says that if a modul¢ is invariant undeG,,,

1 1

igotiorp+-+ios_1p' Y irotitap+-tir1p'T im—1,0+im-1,1p+Him—1,-1p" "
XOOO 01pP 0,t—1P xllo 1P 1,t—-1P .“xm 1,0mim—-1,1P m—21,t—1P EM,

m—1
where 0< i < p—1,0<a<m—1,0<b <t —1,andi; > 0 for somes andj, then

igo+-+i0,r— =1 is0+---+( '—1)P'/+"'+i —1l7t_1 im—1,0+Fim—1,— -1
x000 0.1—1P "'-xss sj 5,1 xn'f,io m—1,t—1P EM,

oot dsot s~ D p bt 1 p' ot gD pi b1 it
x(l)00+ "‘.X'SSO sj P s,t—1P “'xddO dj P d,t—1P ”'x”rln_éll-,o e M.

Suppose & ,,-invariant moduleM contains the monomial

xioo-l----+io,z—1p’_1x!'1o+~'+i1,x—117’_1 im—1,0Fim—1,-1p' L

0 1 T m—1

such that
iopot+it0+ - +im-1,0=20, ---, lop—1tit—1+-+im-1r-1=2r—1,
where 0< i;zg < p — 1. Then by Lemma 3.2 we havet D M(Ag, ..., A;—1). O
Here is one important particular case.

Example 1. If M is thepth order generalized Reed—Muller code then

i i1 | - .
/\/l=(x6°---xmjIzo+---+lm_1<,0)= Z Mo, ..., Ar—1).
ro+Fr1pIKp

LetS = @Z’L’C’)_D S* denote the truncated polynomial ring

S(V*)/(V*(P)) >~ Fq [x0, ..., xm—l]/(xip);nz_ol
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and 5" denote the same ring but with the variablesreplaced by theip/th powers.
The modules?” is isomorphic to thg'th Frobenius twist of. Furthermore, the modules

t—1 .
SGo, - hi-1) = Q) (54) "
j=0
are simple modules ov@8L,,(¢) and oveiSL, (¢), by Steinberg’s tensor product theorem.
Theorem 3.3. The following statements hold
(i) The moduleM (rg, ..., A;—1) has a unique maximal submodule
t—1 t—1
Y MGo. oA=L D)+ Y Mo,k = poajiat L ),
j=0 j=0
where the indiceg are considered moduloand it is assumed\(..., —1,...) =0,
MC..om(p—=D+LAjio,..)=M(..,(m=D(p—1),rj42+1,...).
(i) The moduleM(ro,...,A,—1) IS indecomposable as;,,-module with the head

isomorphic toS(Ag, ..., Ar—1).

Proof. (i) Any monomial f from M (Ao, ..., A;—1) is either a monomial

ioot+ig—1p ™Y irotetine—1pt Tt im—1,0FHim_1,—1p" 2
axg xq EEP S )
with the property that
ipo+i10+ - +im—1,0=420, ..., i0—1+i1—1+ " +im-1r-1=2Ar—1,

where 0< iz < p — 1, or an element of one of the modules
Mo, ..., A =1, 0 1) and M@o, ..., Aj=p,Ajri+1 .00 1)

(in fact, these elements are obtained from the element (3) using transformations (1), (2)). In
the former casg¢ generates\ (Lo, ..., A;—1), in the latter cas¢ belongs to the required
(maximal) module.

(i) This is clear. O

Therefore, in order to determine wheth&f (uo, ..., u—1) € Mo, ..., A—1), ONE
has to check the condition$t(uo, ..., ;—1) S Mo,..., A —1,...,%_1), 0< j <
t —1, andM(uo, ..., u—1) S M(ro, ..., A; —p,Ajy1+ 1. A1), 0<j<r - 1.
And so on.
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3.2. The structure af over the linear group

The moduleF can be decomposed as a direct sunsbf, (¢)-submodules:
qg—1
F=PF
k=0
Fr={f:V—>TF,| f(Bao.....Boem-1) =B f(eo.....am-1), B €F,}.

In particular,
FE=(x®-x" 2 ig+ - +im_1=k (modg — 1), io+ - +im—1>O)

for k > 0 and

Fork, 0<k<g—1,letk =ko+kip +--- + k,_1p' ! be its p-adic expression,
0<k; < p—1.Fork > 0 let’H[k] denote the set of alttuples(ro, ..., r;—1) Of integers
satisfying

(1) 0<rij<m -1,
(2) 0<kj+priva—r;<m(p—1).

(Subscripts mod.) Moreover, letH[0] consist of one-tuple (0, ..., 0).
Define

M[k](f)=M[ko,...,ktfl](ro,...,r,,1)=.7:kﬂ./\/l(...,kj+Prj+1—rj,~~)o
Suppose
ioot+io-1P'™t im—10t 11"t
f:x(!)oo i0-1p'"" ’!n_i,o im—1,1-1P 7
ioj ti1j+-tim-1j=kj+ prjt1—r;

forall j=0,1,...,t — 1. If0<izg < p—1foralls, d, thenf € M[k](7). Further, if
isq > p — 1forsomes, d, thenf € M[kl(ro,...,ra —1,...,r_1) € M[k](F).
Note that

F= Mlklm —1,...,m —1).

Let us consideH[k] for k = ¢ — 1. Itis easy to see thatfo, ..., r,—1) € H[g — 1] and
rj =m — 1 for somej then(ro, ...,7,—1) = (m —1,...,m — 1). Moreover, introducing

W= (@-ag ) @, = (2 x)

v#0 Fy
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we see that
FiIl=WeMg-1Um—-2,....m—2)

as a direct sum o6L,, (¢)-submodules. Therefore, we have the following decomposition
into a direct sum of5L,, (¢)-submodules:

q—2
F=WeMlg—1m-2...m-2)PF (4)
k=0

All summands (and composition fac&)rare nonisomorphic except foy = 79,

There is a natural partial ordering #[k]: (r1,...,r—1) < (r1,...,7,_y) if and only
if rj < r.;. for all j. There is a similar natural partial ordering fotuples(ko, ..., k;—1),
wherek = kg + kip + --- + k—1p'~ 1, 0< k; < p — 1, is the p-adic expression of,
0<k<qg-—-1.

The next theorem follows from results of [9], the definitions,'ef(x) and M[k](7F),
Lemma 3.2 and Theorem 3.3.

Theorem 3.4. The following statements hold

(i) For k # g — 1 any indecomposable Gl(g)-module inF* is equal to some module

MIKI(F).

(i) For k = ¢ — 1 any indecomposable Gl(g)-module inM[k](m — 2,...,m — 2) is
equal to some modul[k](7), r #(m —1,...,m — 1).

(iii) Any GL,(¢)-submodule inF* is equal to a sum of several modulés[k](7), and
possiblyw.

(iv) M[k](F) € MIk]GF) if F <7

(v) The submoduleM[k](r) is indecomposable as Gl(g)-module with the head
isomorphic toS(ko +rip —ro, ..., ki—1+rop — ri—1).

(vi) If ¥ € H(k) thenG,, M[k](7) = M(ko+rip —r0, ..., ki—1+rop —ri—1).

(vii) The moduleM (o, ..., A—1) # MO, ..., 0) is equal toG,, M[k](r), wherek > O,
k=ho+-+r_1p' 7t (modg — 1), k=ko+kip+--+k_1p'"1,0<k < p—1,
and

1 t—1 _ t—1 '
rj=—-oy 1<ij+ipl - ijJriPl)'
q i=0 i=0
3.3. The structure of the group algehfaover the affine group

In this subsection we give another formulation of results from Section 3.1 using the fact
that elements afF can be considered as elements of a group algebra.
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Let F4) be the ideal in the ringF generated by elementd — X%1)... (1 — X%),
v; € V. We have arG,, -invariant filtration:

F=FO5r057r@5... 510}

Note that7® is the unique maximal ideal of the algebfa For 0< s <m — 1,
0< d <t —1we introduce elements

Yo = Z ot_de“eS, q>2

s
ae]Fq

Yo=Y, =X% -1, ¢g=2
Lemma 3.5. The following properties hotd

() Ysa € FY;
(i) The elementﬂm T v, 0<isa < p — 1, form anF, -basis of the modulé;
(i) (Ysa)? = ,
(iv) The subspacd?q [ TTi= Yl is invariant under the diagonal subgroup of
. d
GLn(q) anddlaqala oy ) (Ysd) =Olf Ysa;

(V) §(Ysa) = Z el Yia (mod F@) for g = (g;j) € Gl (q);
(Vi) 61 (Ysq) = Y a+i (second subscriphodt);
—1

(vii) If ¢ > 2 then F, []"5 [T'=t S’jf =F, [T B R A e Y

(coovisds ) # (0, .. 0) andﬂm T 1Y§1_x0 [M"ga@a—xih.

We will prove this lemma later. The advantage of the ba]é]$ T ohyie)is that, it
is more suitable to study ideals j. A submoduleM C F is an |deaI if and only if it is
invariant under multiplications by the elemetitg. Note that the produdf” 4 [ 1,25 Y.
is considered as productin tgeoup algebraF. In particular, the elemerit,4, considered
as a function, is equal tﬂ?’l”’d for g > 2. HoweverYyq - Ysg = Y2 # xI™~ 1-2p7,

We define the modules

zoo 101 i0,r—1 im-1,0 yim—11 im—1,t—1
R0, v s hi—1) = < Yor - Yo,—1 Yy to¥m11Yu1ia

m—1 ) ) 1
(p7171s0)+'"+(Pflfl:,tfl)l7t7
| | Xs

s=0

M(m(p -1 —2o,....,m(p—1) — )»zl)>,

where 0< A; <m(p —1), 0<iy; < p— 1. Inthe other way, it can be defined inductively:
if
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/ _ [yiooyiol i0,—1 im—1,0 y/im-1.1 Im—1,-1
R'(*o0, ... A1) —<Y00 Yo1 "'Yo,z—l"'Y Y —1,1"‘Ym—1,z—1

m—1,0"m

lioj +i1j 4+ +im-1;>4j, j=0,1,...,1 = 1),

then

t—1
R(ro, ..., A—1) =R (ho, ..., A—1) + ZR(...,M +pAjra—1,..).

j=0

In particular,

R@O,...,0) =F, R(m(p—1),...,m(p—1)):<ZX”>,
veV
and one has

RO b ) 2RC. hj 1k + L ajss.) (b <m(p—1D),
RAo, ..., ) 2RC..,Aj+p,Ajza—1,..) (Ajz1>0).

We defineGL,, (¢)-modulesF, ¥, M(2), W, where they are respectively equalfo
F*, M(%), W as the sets and the action given by

go f(x)=f(gx).

Similar to the modulesS and S(Ag, ..., A;—1) from the previous section, we define
modules

t—1

S=s/(v?),  SGor.... -0 =QRE) ",
j=0

takingV in place ofV*. Itis clear that the submodu@(ko, ..., A1) isindecomposable
asG,,-module with the head isomorphic ﬁuo, e Ar—1).

Since the moduleR(m(p — 1),...,m(p — 1)) is of dimension 1, one can define
GL, (¢)-invariant pairings

F xF—Ty, fxf—)IFq,
thus there are the following isomorphisms@i,, (p’)-modules:

S(m(p —1) =20, ...om(p—1) — 1) " =S(Ro, ..o, A=) = SCho, - -+, Ar—1)*
= S(m(p -1 —Xo,....,m(p—1)— )\,_1).

Theorem 3.6. The following assertions hold
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(i) The submodliléz(ko,...,)»,,l) is indecomposable a&,,-module with the head

isomorphic toS(Ag, ..., A—1) ES(m(p —1) — Ao, ...,m(p — 1) — Ar_1).

(i) ForanyG,-invariant submodule\t € F one hasM =R (Ao, ..., A;—1) if and only
fM=M@m(p—-—1) —ro,....m(p—21) —r_1).

(iii) Any G, -invariant submodule it is a sum of several modulés()»o_, e A1)

(iv) For any G ,-invariant submoduleM € F one hasR =} 5., M (%) if and only if
M=} 5.pMm(p—1)—2ro,....,m(p—1) — A _1).

(v) For anyG,,-invariant submodule\t € F one has

_ i00 iO,tfl imfl,() imfl,tfl . .
M= {YOO Tt YO,tfl Tt mel,O' B mel,tfl | (lSJ) €E,0< Lsj <p-— 1}
if and only if

m—1

1 . 1 r—1

M =: [T 0t ) e B, 0<iy < p— 11,
s=0

Proof. It follows from Lemma 3.5. O

Example 2. For the idealF/) in the ringF one has

FO = Z R, ..., Ar—1) = Z Mo, ..., Ar—1).

Aotrr+e+A_12] rotrit A —1<tm(p—1D)—j
The next statement are taken from [5].

Lemma 3.7. The following assertions are true
() (1—X*) 41— XP)=(1— X*F) (modF®@).

(i) A—Xx%r=0.
(iii) If {vy,..., v,} is @ basis ofV overlF,, then the elements

(1—x") . (1—x")" o<k <p-1,

form a basis ofF overF,.

Proof of Lemma 3.5. For ¢ = 2 the statements are obvious. lget- 2 and consider the
space

By = (X" |a € Fyy .
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In [5] it was proved that eIementE[;;lo Ysi;,", 0<izg < p—1, form a basis of3;
with required properties (i), (iii), (iv), (vi). Property (ii) follows from the fact =
Bo- Bi1--- By—1. Property (vii) follows from (iy and the fact [5, Proposition 9(x)]

t—1
[Tt =y xee.
d=0

ael,

It remains for us to prove the property (v). Lgie;) = Y ; gisei. Then

gYsqg) = Za*pdxa > 8isei — Zafpd (X“Zi gisei _ 1)

a#0 a0
= Zafpd (Z(Xagi.\ei _ 1)) = Z Za*pdxo(g,‘sei
a#0 i i a0
= Zg,ﬂd Zot_de“e" = Zgﬁ,ind (mod F@).
i a#0 i

Here we have used the propert¥®’ — 1) + (X* — 1) = (X' — 1) (mod F@) (see
Lemma3.7). O

3.4. Some special cases

In this subsection we consider two important extremal casesl andm = n. They
were considered in [5,6] in detail. Now we ghbse results as consequences of the present
considerations.

Letm = 1. ThenG,, = AGL1(p"). In the coding theory codes i invariant under
the groupG, are called affine invariant [8,14]. They are extended cyclic codes. Any
G1-invariant moduleM can be represented as a sum of several moduléx, ..., A,—1),
where 0< A; < p — 1. Therefore, for som® we have

n—1
M — @(XS(H‘](IP"’ +kn—1l7 >’
keD
such thatko, ..., k,—1) € D, k; > 0, implies(ko, ..., ki —1,...,k,—1) € D.

In terms of the group algebra realization, aGy-invariant module M can be
represented as

ky—
M= D) (Yod¥o1 - Yo la):
keD’

such thatko, ..., k,—1) € D', ki < p— 1, implies(ko, ..., ki +1,...,ky,—1) € D'.
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Now letm = n. Thens = 1 andG,, = AGL, (p). We have that ang ,-invariant module
M can be represented as a sum of several modulésp), therefore

M=MO) ={xx 3 [io+ - +in1<A)
for somea, which means thaM is a generalized Reed—Muller code.
In terms of the group algebra realization, amy,-invariant module M can be
represented a81 = R (k) for somek.

We have proved the following

Theorem 3.8 [6,8]. A codeM is invariant underG, = AGL,(p) if and only if M is a
generalized Reed-Muller code.

3.5. Submodules over a prime field

In this subsection we are going to determine thg-invariantF ,-submodules in the
module

A= { Zava ‘av GFP}.

veV

The following well known lemma (see also [5]) allows us to describe invariant
submodules over a prime field.

Lemma 39. Let U = Y7 ; Fg; be a vector space over a finite field with a basis
{g1,...,gn} andlet a groupH act on the modul& . Let a finite fieldk be an extension of
F andt: K — K be a generator of the Galois group G&l/F). Letid =Y 7 ; Kgi DU
be a vector space over the figkdwith the same basis and the actiongbfind GalK, F)
are extended t®f in the natural way. Then the map

w:C—CNnU

defines a bijective correspondence between the s€taibspaces df that are invariant
underH andrt, and the set of -subspaces i/ that are invariant under .

Define
t—1
MQo..... ) =ANY 6(Mo, ..., k1))
i=0

Introducing the madr: F — A by

T =f+fP 4t P
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we see that
Mo, ..., M—1) =Tr(M(o, ..., 0—1) ={Tr(f) | f € M(ho,.... :—1},
M(Ao, ..., At—1) = M(As—1, X0, .., At—2).
Now from Lemma 3.9 and Theorem 3.1 we obtain the following result.

Theorem 3.10. Any G,,-invariant submodule im is equal to a sum of several modules
M()"Oa . 'a)"l—l)'

4. Submodulesover R, and Z,

In this section we will give a description of th@&,, -invariantR ,-lattices in.A andZ,-
lattices inA. We are going to lift the invariant ideals &f into A, describe allG,,;-invariant
lattices inA, and then write them in terms of functions. Finally, Galois descent completes
our investigation.

4.1. The structure of the group ring

In this subsection we study the structure4fvith the help of a special basis, which is
a lifting of the basis from Lemma 3.5. First we introduce some notations.

The groupRy, = R, \ pR), of invertible elements of the ring;, has a unique subgroup
isomorphic tdf;. This subgroup is called the group of muligative representatives and is
the set of all solutions of the equatiefi-1 = 1. Also it is the set of all invertible elements
in R, of finite order. The Teichmiller representatides R, of an elemenix € IF, is
defined as follows: it is 0 itx = 0, and it is(¢ — 1)st root of unity inR, whose residue
class (modulg) is « if @ #0.

Let AY) be the ideal in the ringl generated by elements— X1) ... (1— XVi), v; € V.
The next lemma gives a construction of our special basis (compare with Lemma 3.5).

Lemma4.1. There exist elemen,; € A, 0< s <m—1,0<d < t— 1with the following
properties

(i) Zsae AD andZyy = Yyq (Mod A@);
(i) The element§]” 5 [1,6 254, 0< isa < p — 1, form anR,,-basis of the modulel;
(iii) (Zsq)? = —pZs 441 (Second subscrip’nodt);
(iv) The subspacer, [T [1/=6 2 is invariant under the diagonal subgroup of
GLu(g) anddiag(az, . . ., an)(Zsq) = ds” Zga;
d
(V) 8(Zsa) =X &l Zia (MOd A®) for g = (gij) € GLa(9);
(Vi) 6'"(Zsq) = Zs 4+i (second subscriphodt);
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Proof. Consider space
BS = (Xaes | o e Fq>Rp'

For g = 2 we takeZ;; = Y4 = X% — 1. It was proved in [5] that foy > 2 there
exist elementsZ,,;, such that the elemenﬁ;;lo Z;fj, 0<izg < p—1, form a basis
of B, with required properties (i), (iii), (iv), (vi). Property (ii) follows from the fact
A=Bp-B1---B,—_1. It remains for us to prove only the property (v). It follows from
Lemma 3.5(v). O

We recall that a modulé C A is invariant under the grouy if and only if £ is an ideal
in A. Therefore, by the previous lemmajs invariant undeW if and only if it is invariant
under multiplications by all elemeng,.

We define a module

A0 = { ZaUX”

veV

ay € Ry, Zav =0} =AD

veV

and introduce an element

w:ZX” —p"x°

veV

Let K be the extension field of degre®f the p-adic numbers such th& > R,. The
G,,-module K A decomposes as the direct sum of the trivial modkilend the module
K A°. So we start with the description of invariant latticesAR.

Lemma 4.2. Let £ be aG,,-invariant sublattice in4° and £ ¢ p.A°. Thent > w and
£ > p" A, In particular, there are only finitely many similarity classes of @hg-invariant
sublattices in4°.

Proof. Forv e V let I, € R, be the ideal of alla, occuring in the decompositions
a =) a,X" of vectorsa € L. Then I, does not depend on. If I, = p"R,, r > 1,
then£ c p” A%, which is a contradiction. Henck = R,. Therefore, there is an element
a=>Y a,X" e L with ap = 1. Note that) " a, =0.

Now let H be a subgroup i5L,,(¢) acting cyclically on nonzero vectors &f. We
have

> sa=anfp = X%+ (L) (LX) =aolp” - 93— o L x*)

geH v#0 v#0 v#0
—agp" X° — ao(ZX”) =p"x°- Y X'=—welL

Thereforep”X* — Y XV e L foranyu € V andp”(X° — X*) e £. SoL > p"A°. O
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We define ideals
_ i00 01 iO,tfl imfl,() imfl,l imfl,tfl
Lo, hi-1) = (Zoo Zot Loy Ly 10211 Lm—11
lioj +itj+ - Fimv;=pj, j=0,1,....,1 =1 R(k) SR(R)).
In the other way, it can be defined inductively: if
/ __[7i00~i01 i0,/—1 im-1,0 7im-11 In—1,-1
Loy ) = (Zg0Zgt - Zoy 1 Zy1.0Zm 11" Zm 11

‘i01+il]+"’+il/ﬂfl,]>)"‘]v j=0711"'7t_1>7

then
t—1
LO0 M) =L o, )+ Y LG A+ podipa— 1),
i=0
In particular,
LO,...,00=A4
Note that

(Lo, ..., —1)) =L(A-1, ko, ..., A—2).

The modulesZ(X) can be considered as lifts and analogs of the modRIes. It is
clear that

t—1 t—1
LK)2Y LOo o hj+ L)+ Y LO0 A+ oA=L ).
j=0 j=0

If iy > p— LthenZ) = —pz./ "z} .| by Lemma 4.1(ii), thus
£()_») DpL(ro,..., j—p,rjpa+1,..),
where we assume
E(Ao,...,m(p—1)+1,)\j+2,...) :pﬁ()»o,...,m(p—1)+1—p,)\j+2+1,...).

In particular, in cas@ = (m(p — 1), ...,m(p — 1)) we have
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LA)2pLm(p—D) —p.m(p—D+Lm(p—1....m(p—1)
:pzﬁ(m(p—1)—p,m(p—1)+1—p,m(p—1)+1...,m(p—1))

=p'L((m—-D(p—1),....(m—D(p—1)).
Lemma 4.3. The moduleC (1) is invariant underG,,.

Proof. It is clear that£()) is invariant underV. Let us prove its invariance under
elementsg € GL,, (¢). Consider the variabl&€g ;1 (another variables can be considered
similarly). The elementu = g(Zo;—1) has the property didg,...,@)(a) = &Pt*la,
thus g(Zo,-1) is a linear combination of elements; ;_1, Zy, 1—2Zs, -2+ Zs, 1-2,
Zsy1-3 Ly, 1-3Z1y,1—2-++ Z1, ,1—2, @nd so on. It is sufficient to prove that, for any
monomial f € £(), by substituting one variablgg ,—1 in the monomialf by elements
Zsi-1, Zsy1—2Zsy -2 Zsp1-2, Zsy1-3+* Zsyp1—3Z1y0-2" Z1, ,.1—2, ..., We Will get
again an element from the modul®). All these substitutions can be obtained as
combination of the following elementary substitution8y,—1 — Z;;—1, Zs:-1 —
Zsgi—2Zsy1-20 Zsy—2 —> Zsy1-3" L5, 1-3, and so on. It is easy to see that under

these elementary substitutions we will get again monomial ffgn). O
We introduce some types of lattices.

e Lattices of type I:
L= pllotLig, ... hoy),

that is,£ is a sum of several latticgs L(Ao, ..., Ar—1).
e Lattices of type Il

L=Rpw +p° L0+ prA°,

where£lis of type I, 1< s < n.
Now we set

ﬁr,l,b — Rp(w +prbxo) + Rpplw + Rppr—i-lXO_i_pmin(n,r)AO’
where 1< 1 < min(n,r), b € R*, and eitherr # n or b # 1 (mod p'). Note that
L£rhb = £rleif and only if b = ¢ (mod pt).
e Lattices of type IlI:
L=L0+p A,

where£? is a lattice of type I > 0.
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e Lattices of type IV:
L= Er,l,b + pSEO’

where£0 is a lattice of type I] < s < min(n, r).
e Lattices of type V:

E=<ZXU>+pSEO+pn+1A,
veV
where£0 is a lattice of type |, K I <.
The next theorem gives a description of invariant lattices.

Theorem 4.4. The following assertions hold

(i) AnyG,,-invariant lattice£ in A%, £ ¢ p.A°, is equal to a lattice of typkor II.
(i) AnyG,,-invariant full lattice L in A, L Z pA, is equal to a lattice of typBI, IV or V.

We need a couple of lemmas to prove this theorem. First we introduce some modules.
Let L= L(Ao, ..., A—1) and define

Li=pL(o,.... A —p,hiza+1,..)

if A; > p, andL; =0 otherwise. Recall that; c L. Define
t—1 t—1
L= Lo ..oohj+ L)+ Y LG hj+phjpa—1.0).
j=0 j=0

Composition factors of £ + pZA)/(L~2+ p2A) are §(A0, ..., A1) (it comes from the
head of £) and S(Ao, ..., Ai — pohiss + L, ..o ihi_1), i =0, ..., ¢t — 1 (they come
from the heads ofZ;). Therefore, there is a module extensionfﬁﬁo,...,x,_l) by
§(Ao, oA —poAivr+ 1, ..., A1), and we want to show that it does not split. To this
end, we introduce

L'=L+) Lj+p°A
j#i

L=(L+L)/L Li=(Li+L)/L
Note that

(£ + pZA)/(ZJr > oLi+ p2A> =50, ..., h—1),

Li =800, hi = pohigt+ Lo, A1)
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Lemmad4b.LetL=L(Ag,..., Ar—1).
@) If A; = p, Air1 <m(p — 1) then the sequence
0—Li—>L— (£+p2A)/<Z+ZEi +P2A) -0
of GL,, (¢)-modules, which can be written as
0> SA0s..shi — pohigi+1, ..., h—1) = L—> SO0, ..., A—1) — 0,

does not split.
(i) FA=@m(p—1),...,m(p— 1)) then

L)L =)@ (qL((m-D(p-1),....(m—D(p—D)+L)/L,
wherew is a image ofw in £/L.

Proof. The casey = 2 was actually proved in [6], so we lgt> 2.
(i) Without loss of generality we can assuine 0. We have to prove tha&, G, (a) 2 £

for any element: eLl,a¢ Lo. Writex; =1;(p— 1 +dj,1<dj < p—1forall j. Since
S(A) is irreducible asGL,, (¢)- module we can assume that

a=b+b+ L0,

1

-1 -1 1 di—
b=(Zgo -+~ Zp_ ozzoo) (25212 Z, )

;11,171 _1,t—-1)
l/:pZoqu,
J

whereZ’ denotes a monomial i,;. Let T be the diagonal subgroup &L, (¢). Since
everyGL, (¢)-module is a direct sum of it§-isotypic components, we may assume that

a is T-stable. Let us study when two elemeats [, Zirs andc = pll., zJs belong to
one isotypic component @f. In this case we have

Zirsps — ersp" =0 (modp'—1)
S S
for all , therefore we have

b=2'[]Zro-Zr-0?™  c=pZ' [[Zro-+ Zri-0)P 7,

rely relp

wherel; N Ir =@, and

Y i =Y s =1ll(p =D —Ll(p—1) = (11l - 2]} (p — D)
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for all s. On the other hand, we have

iopo+i10+ -+ im—1,0= Ao,

i0—1+i1—1+ - +im-1r-1=2A—1,
and

joo+ jio+ -+ jm—1,0=2x0 — p,
Joi+ jii+ -+ jm—11=r1+1,

Jot—1+ Jre—1+ -+ jm—11-1= As—1.

Such element does not exist unless= 1. But the case = 1 was considered in [6].
Thereforea = b + £0.
Now consider an elemegte GL,,(¢) defined by

8(Zipa) = Zig-1.4 + Zip,a  (mod A@),
8(Zsa)=Zsa  (ModA®), s 1o

(we recall thathg = lo(p — 1) + do). Writing

ilg—1,0 ilg—11-1 il9,0 ilg,1—1

/
b=2 (Zlofl,o e Zlofl,tfl> (ZIO,O " 'Zlo,tfl>’
wherei;, 0 = do, ij,—1,0 = p — 1, Z' contains no variableg;,_1 ; andZ;, 4, we see that
A ilg—1,0 ilg-1,-1 ;
8b)= Z/(Zzoo—l,o‘ . Zloofl,tt—l>(210*1s0 + Zip.0)"0°
c(Zig-1.1-1+ Zig—1)0t (mod £0).

Henceg(b) — b + £° is a nonzero element ifig, which generatesg.
(ii) From [5, Proposition 9(x)] we know that

p=1,p-1 p—1 _ —1 3 0
ZS,O Zs,l T Zs,[_l = (_1) < Z X%es — qX ) (5)
aclf,
Therefore
m—1t-1 m—1 t—1

1—[ l—[ Zfd_l = (—1)"=Dyy _ g (—1) =D Z l_[ l_[ z;’d_l +4%(..).

s=0 d=0 j=0s%jd=0
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On the other handw € £ by Lemma 4.2. The element Y"1, [T/=6 2% *

= s#EJj
generateg L((m — L)(p —1),...,(m — 1)(p — 1)) moduloL. O

Remark. It might be noticed that the previous lemma is similar to Theorem 6.1 from
[9]. Moreover, it can be proved that t&l,, (¢)- moduIeL(A)/ﬁ(A) is isomorphic to the
(unique) indecomposable modulett with the headS(%) for

A#(m(p—=1,....m(p-1)
(wherek =" A;p' (modgq — 1)), and is isomorphic to
Fil=WeoeMg-—1Um-2,....,m—2)
fora=(m(p—1),...,m(p—1).

Lemma 4.6. Leta be a monomial irZsy,a € L=L(A),a ¢ L+ > L;. Thena generates
L) overR,Gy.

Proof. Denote

LYR)= > LOo+ro.... k1t =A"L(2).

ro4--Ar_1=r

Lemma 4.5 and Theorem 3.4 imply thagenerates all elements 6{1) modulo£™(%).
Multiplying a by Z;4 and applying Lemma 4.5 again, we see thgenerate£ (1) modulo
L£+2(1), and so on. But there exists a numbeuch thatC+" (1) € p" A° C R,Ga. O

Proof of Theorem 4.4. (i) By induction. Let£ be aG,,-submodule in4°. If £ 2 p.A°
then the statement follows from Theorem 3.6.

Suppose now 2 p* A°. Theorem 3.6 implies that + p.A4%)/p.A is equal to a sum
of several module® (1). First we assume that

(C + pAO)/pAO %E(m(p -D,....,m(p— 1)).
Leta=b+ceLl,be L), b¢ A°L(R), b¢ pA°, c ¢ L()). Consider modules

Lo=LA)NpA+Y Lo, hj+ L)+ Y LG hj+prjpa—1..0),
j j

It is clear that there is only one submodulehisomorphic to§(X) and it is a direct
summand in’’. Thereforeh € L.

Continuing such reasoning we see thatis a sum of several module§(x) and
(possibly) a module Ly, £1 2 p*~1.A°. Induction finishes the proof.
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If (C+ pA%)/pA°=Sm(p—1),...,m(p— 1)) then we can write = (w) + p?L1
for some moduley, d > 0.

(i) Let £ ¢ A°. The difference of this case from the previous is thatGhg (¢)-module
A/p A= F contains two isomorphic factors.

If £+ pA/pAZESm(p —1,....m(p— D) thenL' = AL =", Z;L is an
invariant submodule ind°. Thereforew € £ (see Lemma 4.2) and is of type III.

If L+ pA/pAZ §(m(p —1),....m(p — 1)) thenw + p"bX° € £ for somer and
b (note that(w) and (X%) are isomorphic assL,,(¢)-modules). Ifr =n, b = 1 then
w+ p'bX0 = > XV. The last element is invariant undéy,,, so we have that is of
type V. Suppose now thatis not of type V. TherC is of type IV, and is determined as the
minimal number such thatw e £. Furthermore] < n and! < r, sincew + p"bX% ¢ L
follows £ 2 p" A%. Also we havd < s sincel D p*£9, £0is of type|l. O

The next theorem is very important because of its coding theory consequences. We
identify p?—1.A4/p? A with F by dividing by p?—1.

Theorem 4.7. Let £ be anR ,-submodule ind°, My = (£ N p4=t A+ p? A)/p? A. Then
L is invariant underG,, if and only if the following conditions hoid

(i) Forall d >0, Mg is equal to a sum of several modulé$(ig, ..., Ar—1).
(i) Foralld > 0, the conditionM (g, ..., —1) S Mg, A; <(m—1D(p—1),1;11>0
impliesM(..., A +p,Ajr1—1,..) S Mgy,
(i) Forall d > 0, the conditionM (Ao, ..., A—1) SMg,Aj=Aj1="=Ajyq—1=0,
Ajta >0,a>0impliesM(...,Aj_1,p—1, ..., p =L Ajpa—1,..) S Myya.

Proof. The statement of the theorem is a consequence of Theorems 4.4 and 3.6. If
PIL(o, ..., wi—1) S L, uj = p, pjs1 <m(p — 1) then

PLC = popja+ 1l ) EL,

which reflects condition (ii). Ifu; > p, pjr1 = =pjra—1=m(p — 1), pj4q <
m(p — 1) then

pLC = pori L)
=p"2LC. =i+ l—popjr2+ 1)
==pL( = p, m=D(p=D, ..., m—=D(p—1D,pjsa+1,...),

SO

PL( = p m=D(p=D,....m=D(p -1, pjra+1...) S L.

But this inclusion can be obtained by several consecutive considerations:
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EdeJ“lE(...,m(p—1),m(p—1)—p,y,j+a—i—l,...)
2 pPL(.m(p =D —p.m—D(p—D. pjra+1....)

DpiTL( =P m=D(p=1),....m=D(p—1D,pjta+1,...).

Finally, if p?L(no, ... p—1) S L pj =" =pjra1=m(p—1), wjya <m(p—1)
then, applying multiplications b¥,;, we see that
EQpdﬁ(...,uj_l,m(p—1)+1,m(p—1),...,u./+a,...)
2 pL( e, =D (=D m(p =D+ 1 s )

D pML( e, = D(p=1), ..., (m=D(p—1), pjra+1,.. ),

which reflects condition (iii). O
4.2. Lattices over,

The next lemma, which follows from Lemma 3.9 by Nakayama’s lemma, explains the
connection between lattices it and A (see also [5]).

Lemma 4.8. LetU be a freeZ ,-module with basisgs, ..., g,} and let a groupH act on
the modulel. Lettd = Y7 ; R,gi 2 U be a free module over the ring, with the same
basis and the action aff is extended té/ in the natural way. Then the map

w:L—LNU

defines a bijective correspondence between the set,e$ubmodules ot/ that are
invariant underHd ando, and the set of.,-submodules it/ that are invariant unded .

Define

LE)=An tfa(z:(i)), A= AN A,

and we call a latticd. € A of type X if L € A is a lattice of type X and

t—1
L=AN Z&(c).

i=0

Lemma 4.8 and Theorems 4.4, 4.7 imply the following theorems.
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Theorem 4.9. The following assertions hold

(i) AnyG,,-invariant latticeL in A°, L & pAQ, is equal to a lattice of typeor II.
(i) AnyG,,-invariantfull lattice L in A, L £ pA, is equal to a lattice of typHI, IV or V.

Now we identify p¢~1A/p? A with A by dividing by p¢—1.

Theorem 4.10. Let L be aZ,-submodule inA%, M, = (L N p4=1A + p?A)/p?A. Then
L is invariant underG,, if and only if the following conditions hold

(1) Forall d > 0, M; is equal to a sum of several modul&ig, ..., Ar—1).

(2) Forall d > 0, the conditionM (Ao, ..., A—1) S My, Aj <(m—D(p—1),1j41>0
impliesM(...,A; +p,Ajr1—1,..) C Myq1.

(3) Forall d > 0, the conditionM (Ao, ..., Ar—1) S Mg, Aj =Ajt1="-=Aj4ya-1=0,
Aita >0,a >0, impliesM(..., j—1,p—1,...,p—LAjra—1,...) €S Myyqa.

5. Barnes-Wall lattices

This section gives a construction for the Barnes—Walll latticesple2,7 =1, m = n.
Then G,, = AGL,(2). Let AY) be the ideal in the ringAd = {3, .y @ XV | ay € Z}
generated by elements — X"1) ... (1— X"), v; € V. Let

= A® 12402 4 92 4(1=8) | 28 ;0=6) | | pln+1)/2] 4(O)
= A"D 424073 1 22409 L A=) 4y /A 4O

These lattices are similar to the Bara®¢dall lattices [10], since the codes
Ci — (F] ﬂp'A +pi+lA)/pi+lA
form a nested sequence of binary Reed—Muller codes of lerfgtim 2act,

1

Starnyzz! 1 and

Sln—Dr22 ! 2

are isometric to the Barnes—Wall lattices. They are unimodular fomoaldd modular of
level 2 for evem. The minimal norm of the Barnes—Wall lattice of rariki€ equal to £/2.

It is clear that latticed™ and I'> are invariant unde6,,. Recall that the automorphism
group of the Barnes-Wall lattice is isomorphic §2" 25 (2).
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