16,114 research outputs found

    System-level assessment of a C-RAN based on generalized space–frequency index modulation for 5G new radio and beyond

    Get PDF
    Index modulation (IM) has been attracting considerable research efforts in recent years as it is considered a promising technology that can enhance spectral and energy efficiency and help cope with the rising demand of mobile traffic in future wireless networks. In this paper, we propose a cloud radio access network (C-RAN) suitable for fifth-generation (5G) and beyond systems, where the base stations (BSs) and access points (APs) transmit multidimensional IM symbols, which we refer to as precoding-aided transmitter-side generalized space–frequency IM (PT-GSFIM). The adopted PT-GSFIM approach is an alternative multiuser multiple-input multiple-output (MU-MIMO) scheme that avoids multiuser interference (MUI) while exploiting the inherent diversity in frequency-selective channels. To validate the potential gains of the proposed PT-GSFIM-based C-RAN, a thorough system-level assessment is presented for three different three-dimensional scenarios taken from standardized 5G New Radio (5G NR), using two different numerologies and frequency ranges. Throughput performance results indicate that the 28 GHz band in spite of its higher bandwidth and higher achieved throughput presents lower spectral efficiency (SE). The 3.5 GHz band having lower bandwidth and lower achieved throughput attains higher SE. Overall, the results indicate that a C-RAN based on the proposed PT-GSFIM scheme clearly outperforms both generalized spatial modulation (GSM) and conventional MU-MIMO, exploiting its additional inherent frequency diversity.info:eu-repo/semantics/publishedVersio

    A baseband wireless spectrum hypervisor for multiplexing concurrent OFDM signals

    Get PDF
    The next generation of wireless and mobile networks will have to handle a significant increase in traffic load compared to the current ones. This situation calls for novel ways to increase the spectral efficiency. Therefore, in this paper, we propose a wireless spectrum hypervisor architecture that abstracts a radio frequency (RF) front-end into a configurable number of virtual RF front ends. The proposed architecture has the ability to enable flexible spectrum access in existing wireless and mobile networks, which is a challenging task due to the limited spectrum programmability, i.e., the capability a system has to change the spectral properties of a given signal to fit an arbitrary frequency allocation. The proposed architecture is a non-intrusive and highly optimized wireless hypervisor that multiplexes the signals of several different and concurrent multi-carrier-based radio access technologies with numerologies that are multiple integers of one another, which are also referred in our work as radio access technologies with correlated numerology. For example, the proposed architecture can multiplex the signals of several Wi-Fi access points, several LTE base stations, several WiMAX base stations, etc. As it able to multiplex the signals of radio access technologies with correlated numerology, it can, for instance, multiplex the signals of LTE, 5G-NR and NB-IoT base stations. It abstracts a radio frequency front-end into a configurable number of virtual RF front ends, making it possible for such different technologies to share the same RF front-end and consequently reduce the costs and increasing the spectral efficiency by employing densification, once several networks share the same infrastructure or by dynamically accessing free chunks of spectrum. Therefore, the main goal of the proposed approach is to improve spectral efficiency by efficiently using vacant gaps in congested spectrum bandwidths or adopting network densification through infrastructure sharing. We demonstrate mathematically how our proposed approach works and present several simulation results proving its functionality and efficiency. Additionally, we designed and implemented an open-source and free proof of concept prototype of the proposed architecture, which can be used by researchers and developers to run experiments or extend the concept to other applications. We present several experimental results used to validate the proposed prototype. We demonstrate that the prototype can easily handle up to 12 concurrent physical layers
    • …
    corecore