2,165 research outputs found

    Modular and composable extensions to smalltalk using composition filters

    Get PDF
    Current and future trends in computer science require extensions to Smalltalk. Rather than arguing for particular language mechanisms to deal with specific requirements, in this position paper we want to make a case for two requirements that Smalltalk extensions should fulfill. The first is that the extensions must be integrated with Smalltalk without violating its basic object model. The second requirement is that extensions should allow for defining objects that are still adaptable, extensible and reusable, and in particular do not cause inheritance anomalies. We propose the composition filters model as a framework for language extensions that fulfills these criteria. Its applicability to solving various modeling problems is briefly illustrated

    Mapping Aspects to Components

    Get PDF
    This document defines a representation of aspects in the component model. Such a representation requires modeling the available (primitive) components, defining the composition mechanism, and representing aspects as enhancements of components

    Multimethods and separate static typechecking in a language with C++-like object model

    Full text link
    The goal of this paper is the description and analysis of multimethod implementation in a new object-oriented, class-based programming language called OOLANG. The implementation of the multimethod typecheck and selection, deeply analyzed in the paper, is performed in two phases in order to allow static typechecking and separate compilation of modules. The first phase is performed at compile time, while the second is executed at link time and does not require the modules' source code. OOLANG has syntax similar to C++; the main differences are the absence of pointers and the realization of polymorphism through subsumption. It adopts the C++ object model and supports multiple inheritance as well as virtual base classes. For this reason, it has been necessary to define techniques for realigning argument and return value addresses when performing multimethod invocations.Comment: 15 pages, 18 figure

    Memoizing a monadic mixin DSL

    Get PDF
    Modular extensibility is a highly desirable property of a domain-specific language (DSL): the ability to add new features without affecting the implementation of existing features. Functional mixins (also known as open recursion) are very suitable for this purpose. We study the use of mixins in Haskell for a modular DSL for search heuristics used in systematic solvers for combinatorial problems, that generate optimized C++ code from a high-level specification. We show how to apply memoization techniques to tackle performance issues and code explosion due to the high recursion inherent to the semantics of combinatorial search. As such heuristics are conventionally implemented as highly entangled imperative algorithms, our Haskell mixins are monadic. Memoization of monadic components causes further complications for us to deal with

    An Object-Oriented Model for Extensible Concurrent Systems: the Composition-Filters Approach

    Get PDF
    Applying the object-oriented paradigm for the development of large and complex software systems offers several advantages, of which increased extensibility and reusability are the most prominent ones. The object-oriented model is also quite suitable for modeling concurrent systems. However, it appears that extensibility and reusability of concurrent applications is far from trivial. The problems that arise, the so-called inheritance anomalies are analyzed and presented in this paper. A set of requirements for extensible concurrent languages is formulated. As a solution to the identified problems, an extension to the object-oriented model is presented; composition filters. Composition filters capture messages and can express certain constraints and operations on these messages, for example buffering. In this paper we explain the composition filters approach, demonstrate its expressive power through a number of examples and show that composition filters do not suffer from the inheritance anomalies and fulfill the requirements that were established

    Liberating Composition from Language Dictatorship

    Get PDF
    Historically, programming languages have been—although benevolent—dictators: fixing a lot of semantics into built-in language constructs. Over the years, (some) programming languages have freed the programmers from restrictions to use only built-in libraries, built-in data types, or built-in type checking rules. Even though, arguably, such freedom could lead to anarchy, or people shooting themselves in the foot, the contrary tends to be the case: a language that does not allow for extensibility, is depriving software engineers from the ability to construct proper abstractions and to structure software in the most optimal way. Instead, the software becomes less structured and maintainable than would be possible if the software engineer could express the behavior of the program with the most appropriate abstractions. The new idea proposed by this paper is to move composition from built-in language constructs to programmable, first-class abstractions in the language. As an emerging result, we present the Co-op concept of a language, which shows that it is possible with a relatively simple model to express a wide range of compositions as first-class concepts

    Integrating CLIPS applications into heterogeneous distributed systems

    Get PDF
    SOCIAL is an advanced, object-oriented development tool for integrating intelligent and conventional applications across heterogeneous hardware and software platforms. SOCIAL defines a family of 'wrapper' objects called agents, which incorporate predefined capabilities for distributed communication and control. Developers embed applications within agents and establish interactions between distributed agents via non-intrusive message-based interfaces. This paper describes a predefined SOCIAL agent that is specialized for integrating C Language Integrated Production System (CLIPS)-based applications. The agent's high-level Application Programming Interface supports bidirectional flow of data, knowledge, and commands to other agents, enabling CLIPS applications to initiate interactions autonomously, and respond to requests and results from heterogeneous remote systems. The design and operation of CLIPS agents are illustrated with two distributed applications that integrate CLIPS-based expert systems with other intelligent systems for isolating and mapping problems in the Space Shuttle Launch Processing System at the NASA Kennedy Space Center

    Examples of Reusing Synchronization Code in Aspect-Oriented Programming using Composition Filters

    Get PDF
    Applying the object-oriented paradigm for the development of large and complex software systems offers several advantages, of which increased extensibility and reusability are the most prominent ones. The object-oriented model is also quite suitable for modeling concurrent systems. However, it appears that extensibility and reusability of concurrent applications is far from trivial. The problems that arise, the so-called inheritance anomalies or crosscutting aspects have been extensively studied in the literature. As a solution to the synchronization reuse problems, we present the composition-filters approach. Composition filters can express synchronization constraints and operations on objects as modular extensions. In this paper we briefly explain the composition filters approach, demonstrate its expressive power through a number of examples and show that composition filters do not suffer from the inheritance anomalies

    Matchmaking for covariant hierarchies

    Get PDF
    We describe a model of matchmaking suitable for the implementation of services, rather than their for their discovery and composition. In the model, processing requirements are modelled by client requests and computational resources are software processors that compete for request processing as the covariant implementations of an open service interface. Matchmaking then relies on type analysis to rank processors against requests in support of a wide range of dispatch strategies. We relate the model to the autonomicity of service provision and briefly report on its deployment within a production-level infrastructure for scientic computing
    corecore