1,878 research outputs found

    Modular Coordination of Multiple Autonomic Managers

    Get PDF
    International audienceComplex computing systems are increasingly self-adaptive, with an autonomic computing approach for their administration. Real systems require the co-existence of multiple autonomic management loops, each complex to design. However their uncoordinated co-existence leads to performance degradation and possibly to inconsistency. There is a need for methodological supports facilitating the coordination of multiple autonomic managers. In this paper we propose a method focusing on the discrete control of the interactions of managers. We follow a component-based approach and explore modular discrete control, allowing to break down the combinatorial complexity inherent to the state-space exploration technique. This improves scalability of the approach and allows constructing a hierarchical control. It also allows re-using complex managers in different contexts without modifying their control specifications. We build a component-based coordination of managers, with introspection, adaptivity and reconfiguration. We validate our method on a multiple-loop multi-tier system

    Preliminary specification and design documentation for software components to achieve catallaxy in computational systems

    Get PDF
    This Report is about the preliminary specifications and design documentation for software components to achieve Catallaxy in computational systems. -- Die Arbeit beschreibt die Spezifikation und das Design von Softwarekomponenten, um das Konzept der Katallaxie in Grid Systemen umzusetzen. Eine Einführung ordnet das Konzept der Katallaxie in bestehende Grid Taxonomien ein und stellt grundlegende Komponenten vor. Anschließend werden diese Komponenten auf ihre Anwendbarkeit in bestehenden Application Layer Netzwerken untersucht.Grid Computing

    Asynchronous Coordination of Stateful Autonomic Managers in the Cloud

    Get PDF
    International audienceCloud computing is now an omnipresent paradigm in modern programming. Cloud applications usually consist of several software components deployed on remote virtual machines. Managing such applications is a challenging problem because manual administration is no longer realistic for these complex distributed systems. Thus, auto-nomic computing is a promising solution for monitoring and updating these applications automatically. This is achieved through the automation of administration functions and the use of control loops called au-tonomic managers. An autonomic manager observes the environment, detects changes, and reconfigures dynamically the application. Multiple autonomic managers can be deployed in the same system and must make consistent decisions. Using them without coordination may lead to inconsistencies and error-prone situations. In this paper, we present our approach for coordinating stateful autonomic managers, which relies on a simple coordination language, new techniques for asynchronous controller synthesis and Java code generation. We used our approach for coordinating real-world cloud applications

    Asynchronous synthesis techniques for coordinating autonomic managers in the cloud

    Get PDF
    International audienceCloud computing allows the delivery of on-demand computing resources over the internet on a pay-for-use basis. From a technical point of view, cloud applications usually consist of several software components deployed on remote virtual machines. Managing such applications is a challenging problem because manual administration is no longer realistic for these complex distributed systems. Thus, autonomic computing is a promising solution for monitoring and updating these applications automatically. This is achieved through the automation of administration functions and the use of control loops called autonomic managers. An autonomic manager observes the environment , detects changes, and reconfigures dynamically the application. Multiple autonomic managers can be deployed in the same system and must make consistent decisions. Using them without coordination may lead to inconsistencies and error-prone situations. In this article, we first present a simple language for expressing coordination constraints given a set of auto-nomic managers. Second, given a coordination expression written with that language, we propose new synthesis techniques for automatically generating an asynchronous controller. These synthesis techniques work in two steps by successively generating a model of the controller and a Java object corresponding to this model. This Java code is finally used for deploying the generated controller. As far as evaluation is concerned, we validated our approach by using it for coordinating real-world cloud applications

    Programming distributed and adaptable autonomous components--the GCM/ProActive framework

    Get PDF
    International audienceComponent-oriented software has become a useful tool to build larger and more complex systems by describing the application in terms of encapsulated, loosely coupled entities called components. At the same time, asynchronous programming patterns allow for the development of efficient distributed applications. While several component models and frameworks have been proposed, most of them tightly integrate the component model with the middleware they run upon. This intertwining is generally implicit and not discussed, leading to entangled, hard to maintain code. This article describes our efforts in the development of the GCM/ProActive framework for providing distributed and adaptable autonomous components. GCM/ProActive integrates a component model designed for execution on large-scale environments, with a programming model based on active objects allowing a high degree of distribution and concurrency. This new integrated model provides a more powerful development, composition, and execution environment than other distributed component frameworks. We illustrate that GCM/ProActive is particularly adapted to the programming of autonomic component systems, and to the integration into a service-oriented environment

    Autonomic Management of Reconfigurable Embedded Systems using Discrete Control: Application to FPGA

    Get PDF
    This paper targets the autonomic management of dynamically partially reconfigurable hardware architectures based on FPGAs. Such hardware-level autonomic computing has been less often studied than at software-level. We consider control techniques to model the considered behaviours of the computing system and derive a controller for the control objective enforcement. Discrete Control modelled with Labelled Transition Systems is employed in this paper. Such models are amenable to Discrete Controller Synthesis algorithms that can automatically generate a controller enforcing the correct behaviours of a controlled system. A general modelling framework is proposed for the control of FPGA based computing systems. We consider system application described as task graphs and FPGA as a set of reconfigurable areas that can be dynamically partially reconfigured to execute tasks. We encode the computation of an autonomic manager as a DCS problem w.r.t. multiple constraints and objectives e.g., mutual exclusion of resource uses, power cost minimization. We validate our models and manager computations by using the BZR language and an experimental demonstrator implemented on a Xilinx FPGA platform.Nous traitons de la gestion autonomique des architectures matérielles dynamique- ment et partiellement reconfigurables á base de FPGAs. Cette forme d'informatique autonomique au niveau matériel a été moins souvent étudié qu'au niveau logiciel. Nous considérons des tech- niques de contrôle pour modéliser les comportements du système de calcul et pour dériver un contrôleur pour le maintien de l'objectif de contrôle. Nous utilisons des techniques de contrôle discret modélisé avec des systèmes de transition étiquetés. Ces modèles se prêtent à une algorith- mique de synthèse de contrôleurs discrets (SCD) qui peut générer automatiquement un contrôleur qui force les comportements corrects d'un système contrôlé. Un cadre général de modélisation est proposé pour le contrôle des systèmes informatiques à base de FPGA. Nous considérons que l'application est décrite par un graphes de tâches, et le FPGA comme un ensemble de zones reconfigurables, qui peuvent être dynamiquement et partiellement reconfigurées pour exécuter des tâches. Nous formulons le calcul d'un gestionnaire autonomique comme un problème de SCD concernant des contraintes et objectifs multiples, par exemple, l'exclusion mutuelle de l'utilisation des ressources, la minimisation du coût en énergie. Nous validons nos modèles et les calculs du gestionnaire en utilisant le langage BZR et un démonstrateur expérimental mis en œuvre sur une plate-forme FPGA Xilinx
    corecore