2,897 research outputs found

    Modular Complexity Analysis for Term Rewriting

    Full text link
    All current investigations to analyze the derivational complexity of term rewrite systems are based on a single termination method, possibly preceded by transformations. However, the exclusive use of direct criteria is problematic due to their restricted power. To overcome this limitation the article introduces a modular framework which allows to infer (polynomial) upper bounds on the complexity of term rewrite systems by combining different criteria. Since the fundamental idea is based on relative rewriting, we study how matrix interpretations and match-bounds can be used and extended to measure complexity for relative rewriting, respectively. The modular framework is proved strictly more powerful than the conventional setting. Furthermore, the results have been implemented and experiments show significant gains in power.Comment: 33 pages; Special issue of RTA 201

    Quantifier-Free Interpolation of a Theory of Arrays

    Get PDF
    The use of interpolants in model checking is becoming an enabling technology to allow fast and robust verification of hardware and software. The application of encodings based on the theory of arrays, however, is limited by the impossibility of deriving quantifier- free interpolants in general. In this paper, we show that it is possible to obtain quantifier-free interpolants for a Skolemized version of the extensional theory of arrays. We prove this in two ways: (1) non-constructively, by using the model theoretic notion of amalgamation, which is known to be equivalent to admit quantifier-free interpolation for universal theories; and (2) constructively, by designing an interpolating procedure, based on solving equations between array updates. (Interestingly, rewriting techniques are used in the key steps of the solver and its proof of correctness.) To the best of our knowledge, this is the first successful attempt of computing quantifier- free interpolants for a variant of the theory of arrays with extensionality

    Non-simplifying Graph Rewriting Termination

    Get PDF
    So far, a very large amount of work in Natural Language Processing (NLP) rely on trees as the core mathematical structure to represent linguistic informations (e.g. in Chomsky's work). However, some linguistic phenomena do not cope properly with trees. In a former paper, we showed the benefit of encoding linguistic structures by graphs and of using graph rewriting rules to compute on those structures. Justified by some linguistic considerations, graph rewriting is characterized by two features: first, there is no node creation along computations and second, there are non-local edge modifications. Under these hypotheses, we show that uniform termination is undecidable and that non-uniform termination is decidable. We describe two termination techniques based on weights and we give complexity bound on the derivation length for these rewriting system.Comment: In Proceedings TERMGRAPH 2013, arXiv:1302.599

    Labelings for Decreasing Diagrams

    Get PDF
    This article is concerned with automating the decreasing diagrams technique of van Oostrom for establishing confluence of term rewrite systems. We study abstract criteria that allow to lexicographically combine labelings to show local diagrams decreasing. This approach has two immediate benefits. First, it allows to use labelings for linear rewrite systems also for left-linear ones, provided some mild conditions are satisfied. Second, it admits an incremental method for proving confluence which subsumes recent developments in automating decreasing diagrams. The techniques proposed in the article have been implemented and experimental results demonstrate how, e.g., the rule labeling benefits from our contributions

    Term rewriting systems from Church-Rosser to Knuth-Bendix and beyond

    Get PDF
    Term rewriting systems are important for computability theory of abstract data types, for automatic theorem proving, and for the foundations of functional programming. In this short survey we present, starting from first principles, several of the basic notions and facts in the area of term rewriting. Our treatment, which often will be informal, covers abstract rewriting, Combinatory Logic, orthogonal systems, strategies, critical pair completion, and some extended rewriting formats
    • …
    corecore