8 research outputs found

    Modular Medium-Voltage Grid-Connected Converter with Improved Switching Techniques for Solar Photovoltaic Systems

    Full text link
    © 1982-2012 IEEE. The high-frequency common magnetic-link made of amorphous material, as a replacement for common dc-link, has been gaining considerable interest for the development of solar photovoltaic medium-voltage converters. Even though the common magnetic-link can almost maintain identical voltages at the secondary terminals, the power conversion system loses its modularity. Moreover, the development of high-capacity high-frequency inverter and power limit of the common magnetic-link due to leakage inductance are the main challenging issues. In this regard, a new concept of identical modular magnetic-links is proposed for high-power transmission and isolation between the low and the high voltage sides. Third harmonic injected sixty degree bus clamping pulse width modulation and third harmonic injected thirty degree bus clamping pulse width modulation techniques are proposed which show better frequency spectra as well as reduced switching loss. In this paper, precise loss estimation method is used to calculate switching and conduction losses of a modular multilevel cascaded converter. To ensure the feasibility of the new concepts, a reduced size of 5 kVA rating, three-phase, five-level, 1.2 kV converter is designed with two 2.5 kVA identical high-frequency magnetic-links using Metglas magnetic alloy-based cores

    Control and grid integration of MW-range wind and solar energy conversion systems

    Get PDF
    Solar-based energy generation has increased by more than ten times over the same period. In total, worldwide electrical energy consumption increased by approximately 6340 TWh from 2003 to 2013. To meet the challenges created by intermittent energy generation sources, grid operators have increasingly demanded more stringent technical requirements for the connection and operation of grid-connected intermittent energy systems, for instance concerning fault ride through capability, voltage and frequency support, and inertia emulation. Ongoing developments include new or improved high-voltage converters, power converters with higher power density, control systems to provide ride-through capability, implementation of redundancy schemes to provide more reliable generation systems, and the use of high-voltage direct current (HVdc) links for the connection of large off-shore intermittent energy systems

    An Amorphous Alloy Magnetic-Bus-Based SiC NPC Converter with Inherent Voltage Balancing for Grid-Connected Renewable Energy Systems

    Full text link
    © 2002-2011 IEEE. This paper presents an amorphous alloy magnetic-bus-based neutral point clamped (NPC) converter for grid-connected renewable generation systems. In the proposed system, the amorphous alloy high-frequency high-power density multi-winding magnetic bus generates balanced dc supplies for the five-level (5L) NPC converter for high-quality power conversion. Compared to the traditional NPC converter topologies, the proposed magnetic-bus-based architecture does not require any control circuit for voltage balancing of the series connected capacitors. The magnetic bus inherently overcomes galvanic isolation issues and may reduce the size of the boosting inductor. In this paper, a finite control set model predictive control algorithm is derived to control the grid-connected 5L-NPC inverter for multilevel voltage synthesizing, while achieving the user-defined active and reactive power values. To verify the proposed concept, a simulation model is developed and analyzed in MATLAB/Simulink environment. To validate the technology, a scale d-down prototype test platform is developed in the laboratory with silicon carbide switching devices, which achieves high blocking voltage, low power dissipation, high switching frequency, and high-Temperature operation. Based on the simulation and the experimental results, it is expected that the proposed converter will have a great potential for widespread application in renewable generation systems including superconducting generator-based wind turbines

    A Modified Carrier-Based Advanced Modulation Technique for Improved Switching Performance of Magnetic-Linked Medium-Voltage Converters

    Full text link
    © 1972-2012 IEEE. The high-frequency magnetic link is gaining popularity due to its lightweight, small volume, and inherent voltage balancing capability. Those features can simplify the utilization of a multilevel converter (MLC) for the integration of renewable energy sources to the grid with compact size and exert economic feasibility. The modulation and control of the MLC are crucial issues, especially for grid-connected applications. To support the grid, the converter may need to operate in an overmodulation (OVM) region for short periods depending upon the loading conditions. This OVM operation of the converter causes increased harmonic losses and adverse effects on the overall system efficiency. On top of that, the size and cost of filtering circuitry become critical to eliminate the unwanted harmonics. In this regard, a modified OVM scheme with phase-disposed carriers for a grid-connected high-frequency magnetic-link-based cascaded H-bridge (CHB) MLC is proposed for the suppression of harmonics and the reduction of converter loss. Furthermore, with the proposed OVM technique, the voltage gain with the modulation index can be increased up to the range which is unlikely to be achieved using the classical ones. Extensive simulations are carried out with a 2.24 MVA permanent magnet synchronous generator based wind energy conversion system, which is connected to the 11 kV ac grid through a high-frequency magnetic-link and a five-level CHB MLC. A scaled down laboratory prototype is implemented to validate the performance of the converter

    Comparative Study of P&O and Fuzzy MPPT Controllers and Their Optimization Using PSO and GA to Improve Wind Energy System

    Get PDF
    Many academics have recently focused on wind energy installations. WECS (wind energy conversion system) is a renewable energy source that has seen significant development in recent years. Furthermore, compared to the use of power grid supply, the use of the WECS in the water pumping field is a cost-free option (economically). The purpose of this study is to demonstrate a wind-powered pumping mechanism. To obtain the best option, it considers and contrasts four distinct approaches. This research aims to improve the system\u27s performance and the quality of the generated power. The objective of the control of WECS with a permanent magnet synchronous generator (PMSG) is to carefully maximize power generation. Finally, this research employed the fuzzy logic control (FLC) and particle swarm optimization (PSO) algorithms improved using a genetic algorithm (GA). The proposed system\u27s performance was tested using the generated output voltage, current, and power waveforms, as well as the intermediate circuit voltage waveform and generator speed. The provided data show that the control technique used in this study was effective

    New Topologies and Advanced Control of Power Electronic Converters for Renewable Energy based Microgrids

    Get PDF
    Solar energy-based microgrids are increasingly promising due to their many features, such as being environmentally friendly and having low operating costs. Power electronic converters, filters, and transformers are the key components to integrate the solar photovoltaic (PV) systems with the microgrids. The power electronic converters play an important role to reduce the size of the filter circuit and eliminate the use of the bulky and heavy traditional power frequency step-up transformer. These power converters also play a vital role to integrate the energy storage systems such as batteries and the superconducting magnetic energy storage (SMES) unit in a solar PV power-based microgrid. However, the performance of these power converters depends upon the switching technique and the power converter configuration. The switching techniques can improve the power quality, i.e. lower total harmonic distortion at the converter output waveform, reduce the converter power loss, and can effectively utilize the dc bus voltage, which helps to improve the power conversion efficiency of the power electronic converter. The power converter configuration can reduce the size of the power converter and make the power conversion system more efficient. In addition to the advanced switching technique, a supervisory control can also be integrated with these power converters to ensure the optimal power flow within the microgrid. First, this thesis reviews different existing power converter topologies with their switching techniques and control strategies for the grid integration of solar PV systems. To eliminate the use of the bulky and heavy line frequency step-up transformer to integrate solar PV systems to medium voltage grids, the high frequency magnetic linkbased medium voltage power converter topologies are discussed and compared based on their performance parameters. Moreover, switching and conduction losses are calculated to compare the performance of the switching techniques for the magnetic-linked power converter topologies. In this thesis, a new pulse width modulation technique has been proposed to integrate the SMES system with the solar PV system-based microgrid. The pulse width modulation technique is designed to provide reactive power into the network in an effective way. The modulation technique ensures lower total harmonic distortion (THD), lower switching loss, and better utilization of dc-bus voltage. The simulation and experimental results show the effectiveness of the proposed pulse width modulation technique. In this thesis, an improved version of the previously proposed switching technique has been designed for a transformer-less PV inverter. The improved switching technique can ensure effective active power flow into the network. A new switching scheme has been proposed for reactive power control to avoid unnecessary switching faced by the traditional switching technique in a transformer-less PV inverter. The proposed switching technique is based on the peak point value of the grid current and ensures lower switching loss compared to other switching techniques. In this thesis, a new magnetic-linked multilevel inverter has been designed to overcome the issues faced by the two-level inverters and traditional multilevel inverters. The proposed multilevel inverter utilizes the same number of electronic switches but fewer capacitors compared to the traditional multilevel inverters. The proposed multilevel inverter solves the capacitor voltage balancing and utilizes 25% more of the dc bus voltage compared to the traditional multilevel inverter, which reduces the power rating of the dc power source components and also extends the input voltage operating range of the inverter. An improved version magnetic-linked multilevel inverter is proposed in this thesis with a model predictive control technique. This multilevel inverter reduces both the number of switches and capacitors compared to the traditional multilevel inverter. This multilevel inverter also solves the capacitor voltage balancing issue and utilizes 50% more of the dc bus voltage compared to the traditional multilevel inverter. Finally, an energy management system has been designed for the developed power converter and control to achieve energy resiliency and minimum operating cost of the microgrid. The model predictive control-based energy management system utilizes the predicted load data, PV insolation data from web service, electricity price data, and battery state of charge data to select the battery charging and discharging pattern over the day. This model predictive control-based supervisory control with the advanced power electronic converter and control makes the PV energy-based microgrid more efficient and reliable

    A Currentless submodule individual voltage balancing control for modular multilevel converters

    Get PDF

    Modular Medium-Voltage Grid-Connected Converter With Improved Switching Techniques for Solar Photovoltaic Systems

    No full text
    The high-frequency common magnetic-link made of amorphous material, as a replacement for common dc-link, has been gaining considerable interest for the development of solar photovoltaic medium-voltage converters. Even though the common magnetic-link can almost maintain identical voltages at the secondary terminals, the power conversion system loses its modularity. Moreover, the development of high-capacity high-frequency inverter and power limit of the common magnetic-link due to leakage inductance are the main challenging issues. In this regard, a new concept of identical modular magnetic-links is proposed for high-power transmission and isolation between the low and the high voltage sides. Third harmonic injected sixty degree bus clamping pulse width modulation and third harmonic injected thirty degree bus clamping pulse width modulation techniques are proposed which show better frequency spectra as well as reduced switching loss. In this paper, precise loss estimation method is used to calculate switching and conduction losses of a modular multilevel cascaded converter. To ensure the feasibility of the new concepts, a reduced size of 5 kVA rating, three-phase, five-level, 1.2 kV converter is designed with two 2.5 kVA identical high-frequency magnetic-links using Metglas magnetic alloy-based cores
    corecore