17,928 research outputs found

    Satisfiability in multi-valued circuits

    Full text link
    Satisfiability of Boolean circuits is among the most known and important problems in theoretical computer science. This problem is NP-complete in general but becomes polynomial time when restricted either to monotone gates or linear gates. We go outside Boolean realm and consider circuits built of any fixed set of gates on an arbitrary large finite domain. From the complexity point of view this is strictly connected with the problems of solving equations (or systems of equations) over finite algebras. The research reported in this work was motivated by a desire to know for which finite algebras A\mathbf A there is a polynomial time algorithm that decides if an equation over A\mathbf A has a solution. We are also looking for polynomial time algorithms that decide if two circuits over a finite algebra compute the same function. Although we have not managed to solve these problems in the most general setting we have obtained such a characterization for a very broad class of algebras from congruence modular varieties. This class includes most known and well-studied algebras such as groups, rings, modules (and their generalizations like quasigroups, loops, near-rings, nonassociative rings, Lie algebras), lattices (and their extensions like Boolean algebras, Heyting algebras or other algebras connected with multi-valued logics including MV-algebras). This paper seems to be the first systematic study of the computational complexity of satisfiability of non-Boolean circuits and solving equations over finite algebras. The characterization results provided by the paper is given in terms of nice structural properties of algebras for which the problems are solvable in polynomial time.Comment: 50 page

    General Relativity, the Cosmological Constant and Modular Forms

    Full text link
    Strong field (exact) solutions of the gravitational field equations of General Relativity in the presence of a Cosmological Constant are investigated. In particular, a full exact solution is derived within the inhomogeneous Szekeres-Szafron family of space-time line element with a nonzero Cosmological Constant. The resulting solution connects, in an intrinsic way, General Relativity with the theory of modular forms and elliptic curves. The homogeneous FLRW limit of the above space-time elements is recovered and we solve exactly the resulting Friedmann Robertson field equation with the appropriate matter density for generic values of the Cosmological Constant %Lambda and curvature constant K. A formal expression for the Hubble constant is derived. The cosmological implications of the resulting non-linear solutions are systematically investigated. Two particularly interesting solutions i) the case of a flat universe K=0, Lambda not= 0 and ii) a case with all three cosmological parameters non-zero, are described by elliptic curves with the property of complex multiplication and absolute modular invariant j=0 and 1728, respectively. The possibility that all non-linear solutions of General Relativity are expressed in terms of theta functions associated with Riemann-surfaces is discussed.Comment: LaTeX file, 34 pages plus 9 EPS figures, Accepted for Publication in Classical and Quantum Gravit

    Propagators and Solvers for the Algebra of Modular Systems

    Full text link
    To appear in the proceedings of LPAR 21. Solving complex problems can involve non-trivial combinations of distinct knowledge bases and problem solvers. The Algebra of Modular Systems is a knowledge representation framework that provides a method for formally specifying such systems in purely semantic terms. Formally, an expression of the algebra defines a class of structures. Many expressive formalism used in practice solve the model expansion task, where a structure is given on the input and an expansion of this structure in the defined class of structures is searched (this practice overcomes the common undecidability problem for expressive logics). In this paper, we construct a solver for the model expansion task for a complex modular systems from an expression in the algebra and black-box propagators or solvers for the primitive modules. To this end, we define a general notion of propagators equipped with an explanation mechanism, an extension of the alge- bra to propagators, and a lazy conflict-driven learning algorithm. The result is a framework for seamlessly combining solving technology from different domains to produce a solver for a combined system.Comment: To appear in the proceedings of LPAR 2

    Move-minimizing puzzles, diamond-colored modular and distributive lattices, and poset models for Weyl group symmetric functions

    Full text link
    The move-minimizing puzzles presented here are certain types of one-player combinatorial games that are shown to have explicit solutions whenever they can be encoded in a certain way as diamond-colored modular and distributive lattices. Such lattices can also arise naturally as models for certain algebraic objects, namely Weyl group symmetric functions and their companion semisimple Lie algebra representations. The motivation for this paper is therefore both diversional and algebraic: To show how some recreational move-minimizing puzzles can be solved explicitly within an order-theoretic context and also to realize some such puzzles as combinatorial models for symmetric functions associated with certain fundamental representations of the symplectic and odd orthogonal Lie algebras
    corecore