1,609 research outputs found

    Mitigating the effects of atmospheric distortion using DT-CWT fusion

    Get PDF
    This paper describes a new method for mitigating the effects of atmospheric distortion on observed images, particularly airborne turbulence which degrades a region of interest (ROI). In order to provide accurate detail from objects behind the dis-torting layer, a simple and efficient frame selection method is proposed to pick informative ROIs from only good-quality frames. We solve the space-variant distortion problem using region-based fusion based on the Dual Tree Complex Wavelet Transform (DT-CWT). We also propose an object alignment method for pre-processing the ROI since this can exhibit sig-nificant offsets and distortions between frames. Simple haze removal is used as the final step. The proposed method per-forms very well with atmospherically distorted videos and outperforms other existing methods. Index Terms — Image restoration, fusion, DT-CWT 1

    Image Restoration Model with Wavelet Based Fusion

    Get PDF
    Image Restoration is a field of Image Processing which deals with recovering an original and sharp image from a degraded image using a mathematical degradation and restoration model.This study focuses on restoration of degraded images which have been blurred by known or unknown degradation function. On the basis of knowledge of degradation function image restoration techniques can be divided into two categories: blind and non-blind techniques.Three different image formats viz..jpg(Joint Photographic Experts Group),.png(Portable Network Graphics) and .tif(Tag Index Format) are considered for analyzing the various image restoration techniques like Deconvolution using Lucy Richardson Algorithm (DLR), Deconvolution using Weiner Filter (DWF), Deconvolution using Regularized Filter (DRF) and Blind Image Deconvolution Algorithm (BID).The analysis is done on the basis of various performance metrics like PSNR(Peak Signal to Noise Ratio), MSE(Mean Square Error) , RMSE( Root Mean Square Error). Keywords— Lucy Richardson Algorithm, Weiner Filter, Regularized Filter, Blind Image Deconvolution, Gaussian Blur, Point Spread Function, PSNR, MSE, RMS

    A convex formulation for hyperspectral image superresolution via subspace-based regularization

    Full text link
    Hyperspectral remote sensing images (HSIs) usually have high spectral resolution and low spatial resolution. Conversely, multispectral images (MSIs) usually have low spectral and high spatial resolutions. The problem of inferring images which combine the high spectral and high spatial resolutions of HSIs and MSIs, respectively, is a data fusion problem that has been the focus of recent active research due to the increasing availability of HSIs and MSIs retrieved from the same geographical area. We formulate this problem as the minimization of a convex objective function containing two quadratic data-fitting terms and an edge-preserving regularizer. The data-fitting terms account for blur, different resolutions, and additive noise. The regularizer, a form of vector Total Variation, promotes piecewise-smooth solutions with discontinuities aligned across the hyperspectral bands. The downsampling operator accounting for the different spatial resolutions, the non-quadratic and non-smooth nature of the regularizer, and the very large size of the HSI to be estimated lead to a hard optimization problem. We deal with these difficulties by exploiting the fact that HSIs generally "live" in a low-dimensional subspace and by tailoring the Split Augmented Lagrangian Shrinkage Algorithm (SALSA), which is an instance of the Alternating Direction Method of Multipliers (ADMM), to this optimization problem, by means of a convenient variable splitting. The spatial blur and the spectral linear operators linked, respectively, with the HSI and MSI acquisition processes are also estimated, and we obtain an effective algorithm that outperforms the state-of-the-art, as illustrated in a series of experiments with simulated and real-life data.Comment: IEEE Trans. Geosci. Remote Sens., to be publishe

    Wavelet transforms and multiscale estimation techniques for the solution of multisensor inverse problems

    Get PDF
    Caption title.Includes bibliographical references (p. 12).Supported in part by the Office of Naval Research. N00014-91-J-1004 Supported in part by the Air Force Office of Scientific Research. AFOSR-92-J-0002 Supported in part by a US Air Force Laboratory Graduate Fellowship.Eric L. Miller and Alan S. Willsky

    Atmospheric turbulence mitigation for sequences with moving objects using recursive image fusion

    Get PDF
    This paper describes a new method for mitigating the effects of atmospheric distortion on observed sequences that include large moving objects. In order to provide accurate detail from objects behind the distorting layer, we solve the space-variant distortion problem using recursive image fusion based on the Dual Tree Complex Wavelet Transform (DT-CWT). The moving objects are detected and tracked using the improved Gaussian mixture models (GMM) and Kalman filtering. New fusion rules are introduced which work on the magnitudes and angles of the DT-CWT coefficients independently to achieve a sharp image and to reduce atmospheric distortion, respectively. The subjective results show that the proposed method achieves better video quality than other existing methods with competitive speed.Comment: IEEE International Conference on Image Processing 201

    A multiscale approach to sensor fusion and the solution of linear inverse problems

    Get PDF
    Caption title.Includes bibliographical references (p. 32-35).Supported by the Office of Naval Research. N00014-91-J-1004 Supported by the Air Force Office of Scientific Research. AFOSR-92-J-0002 Supported by a US Air Force Laboratory Graduate Fellowship.Eric L. Miller, Alan S. Willsky
    corecore