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Abstract

The application of multiscale and stochastic techniques to the solution of linear inverse
problems is presented. This approach allows for the explicit and easy handling of a variety
of difficulties commonly associated with problems of this type. Regularization is accomplished
via the incorporation of prior information in the form of a multiscale stochastic model. We
introduce the relative error covariance matrix (RECM) as a tool for quantitatively evaluating
the manner in which data contributes to the structure of a reconstruction. In particular, the
use of a scale space formulation is ideally suited to the fusion of data from several sensors
with differing resolutions and spatial coverage (eg. sparse or limited availability). Moreover,
the RECM both provides us with an ideal tool for understanding and analyzing the process of
multisensor fusion and allows us to define the space-varying optimal scale for reconstruction as
a function of the nature (resolution, quality, and coverage) of the available data. Examples of
our multiscale maximum a posteriori inversion algorithm are demonstrated using a two channel
deconvolution problem formulated so as to illustrate many of the features associated with more
general linear inverse problems.
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1 Introduction

The objective of a linear inverse problem is the recovery of an underlying quantity given a col-
lection of noisy, linear functionals of this unknown. These problems arise in fields as diverse as
geophysical prospecting [6, 7, 26, 28, 29, 57, 61], medical imaging [5, 33, 36, 37, 52], image process-
ing [41], groundwater hydrology [8-10,46,47], and global ocean modeling [2,44,60]. For example, a
common signal and image processing problem is that of deconvolution where one observes a blurred
version of the signal in additive noise and seeks to recover the uncorrupted original [24,40, 45, 51].
Alternatively, the use of computer aided tomography, magnetic resonance imaging, and related
techniques for medical diagnoses has lead to increased efforts in the development of algorithms for
the inversion of the Radon transform [36,37]. Finally, the exploration of oil is often facilitated by
knowledge of the electrical conductivity structure of a rock formation [17]. The conductivity itself
is ascertained by establishing a magnetic field in the rock formation and measuring the induced
currents. Although this inverse problem is not itself linear, a common approach for determining
the conductivity requires the solution of a sequence of linear inverse problems [26, 27, 55, 56].

While it is not difficult to find practical instances of linear inverse problems, it is often quite
challenging to generate their solutions . In many instances, regularization is required to overcome
problems associated with the poor conditioning of the linear system relating the observations to
the underlying function [22,25,39]. This ill-conditioning may be caused by the spatial distribution
of data to be used in generating a reconstruction or by properties inherent in the linear operator
acting on the unknown quantity. In either case, regularization serves to alleviate the ill-posedness
of the original problem so that a unique, stable solution may be found. Even if the problem is not
ill-conditioned, a regularizer may be incorporated as a means of constraining the reconstruction to
reflect prior knowledge concerning the behavior of this function [41]. For example, it is common
practice to regularize a problem so as to enforce a degree of smoothness in the reconstruction
[25,31,41]. Also, in disciplines such as geology, the phenomena under investigation are fractal in
nature in which case a prior model with a 1/f-type power spectrum is used as a regularizer.

In addition to the regularization issue, characteristics of the data set available to the inversion
algorithm can create difficulties. In many inverse problems, a large quantity of data from a suite
of sensors is available for the inversion; however, the information conveyed by each measurement
process may be far from complete so that one is confronted with the problem of fusing data from
several sensors to achieve the desired level of performance in the inversion. Hence, there is a need
for understanding precisely how data contributes information to a reconstruction and the manner
in which measurements from different sources are merged by the inversion routine. Alternatively,
the availability of the data often is limited. For example, one may be constrained to collecting
measurements on the boundary of a region while the quantity of interest is to be estimated over
the interior as is the case in [5,6, 11,61]. Here, one requires flexible inversion algorithms capable
of processing data possessing sparse or limited spatial distributions. Additionally, one must com-
pensate for errors present in the data which may arise from noise in the measurement apparatus,
unknown quantities associated with the experimental conditions, modeling errors induced by the
simplification of physics and the presence of nuisance parameters in the model. Finally, one must be
concerned with the computational complexity of the inversion algorithm. Typically, the inversion
requires the solution of a large system of linear equations so that advantage must be taken of any
structure or sparseness present in the matrices associated with the problem.

In this paper we develop a framework for inversion based upon a multiscale description of the
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data, the operators, and the function to be reconstructed. The seminal work on linear operators
and wavelet decompositions is that of Beylkin, Coifman and Rohklin [4]. Their results on the
compression of whole classes of linear operators in a nonstandard wavelet representation is mathe-
matically deep and has many practical consequences for the solution of the forward problem. In [1],
Alpert et. al formulate a discrete multiresolution analysis which also performs well in terms of
operator compression. Moreover, they develop and analyze a computationally efficient method for
constructing and applying the inverse of their operator. As stated however, their algorithm does
not account for effects such as observation noise. Furthermore, Alpert's method does not allow for
the incorporation of prior knowledge into the inversion scheme or for the processing of irregularly
spaced data.

More recently, in [58] Wang et al. develop a multiscale deconvolution scheme and apply it to
both one and two dimensional problems. The algorithm in [58] employs a wavelet representation
of the data, the operator, the noise, and the prior model. These authors focus their attention on
the recovery of a signal from a single, noise corrupted, blurred version of the original and in using
their multiresolution representations for the purpose of edge detection. The issue of multi-sensor
data fusion is not explored by Wang et al. Nor are these authors concerned with processing sparse
or irregularly sampled data sets. Finally, no explicit attempt is made in [58] to understand and
quantify the manner in which the data supports but a limited level of detail in the reconstruction.

The inversion algorithm used here is drawn from the theory of statistical estimation. Such an
approach allows for the explicit modeling of the errors in the data as sample paths from random
processes. All prior information regarding the structure of the underlying function is summarized
in the form of a statistical model which also acts as a regularizer. Moreover, these techniques
compute not only the estimate of the function of interest, but also provide a built-in performance
indicator in the form of an error covariance matrix. This matrix is central to an understanding of
the manner in which information from a set of observations is propagated into a reconstruction.

We utilize a 1/f fractal prior model specified in the wavelet transform domain for the purposes
of regularization. While clearly not the only multiscale model available for this purpose, the 1/f
model is useful for a number of reasons. First, as noted in [41], this model produces the same effects
as the more traditional smoothness regularizers. Hence, its behavior and utility are well understood.
Second, the use of a 1lf model utilizes data at different scales in an intuitively pleasing manner.
Finally, 1/f-type processes assume a particularly simple form, easily implemented in the wavelet
transform domain.

The inversion algorithms developed in this paper are unique in their ability to overcome many of
the data-oriented difficulties associated with spatial inverse problems. Specifically, our techniques
are designed for the processing of information from a suite of sensors where the sampling structure of
each observation process may be sparse or incomplete. In the case of standard time-series analysis,
there exist well established methods for merging data from a variety of sources (eg. the Kalman
and multichannel Wiener filters); however, generalizations of these ideas for processing spatial data
with irregular sampling patterns have been elusive. For example, traditional Fourier techniques
typically require the use of some type of space-domain windowing or interpolation methods which
tend to cause distortion in the frequency domain. By using the multiscale approach developed
here, such preprocessing is unnecessary thereby avoiding both the cost of the operation and the
distortion in the transform domain.

Given this ability to merge data from a variety of sources, we develop a quantitative theory of
sensor fusion by which we are able to understand how information from a suite of observations is
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merged to form the reconstruction. It is often the case that one wishes to extract from a data set far
more information about the underlying function than is supported by the data. The insight provided
by our analysis can be used to control such signal processing greed by defining the optimal scale of
reconstruction as a function of (1) the physics relating the unknown quantity to the measurements
and (2) the spatial coverage and measurement quality of the data each observation source provides.
In general, such an approach leads to a space-varying optimal scale of reconstruction which allows
for the recovery of fine scale detail only where the data supports it. At other spatial locations, a
coarser approximation to the function is generated. In the multisensor case, not only can a space-
varying optimal scale of reconstruction be defined, but at any point in space and scale, only data
from those sources contributing significant information need be processed. Thus, the computational
burden associated with performing the inversion can be reduced. Also, our techniques are useful
for capturing the incremental benefits associated with the addition of information from a set of
observations to a reconstruction based upon data from a different group of sensors. Finally, we
note that our use of a multiscale representation of the operators defining the inverse problem leads
to sparse linear systems in the transform domain. Hence, the work of Beylkin et al [4] suggests
that highly efficient techniques are available for obtaining the estimate given a set of data.

The remainder of this paper is organized as follows. In Section 2 we formulate the multisensor
linear inverse problem and discuss its transformation to scale space. Section 3 is devoted to a
presentation of the estimation-theoretic techniques to be used for performing the inversion and
analyzing sensor fusion. A set of examples highlighting the contributions of this work are presented
in Section 4. Finally, directions for future work and conclusions are given in Section 5.

2 Problem Formulation

2.1 The Observations Processes

In this work, it is assumed that the the data upon which the inversion is to be based, yi(x), is related
to the function to be reconstructed, g(z), via a system of linear integral equations embedded in
additive noise. Hence the observation model to be considered is

yi(x) = T(x, x')g(x')dx' + ni(x) i = 1,2,..K. K(1)

where the integral kernels, T,(x, x'), and the characteristics of the noise processes ni(x) are known.
The variable : could represent one, two, or three spatial dimensions. As a first step in understanding
the advantages and utility of a multiscale, stochastic approach to the solution of systems of equation
of the form given in (1), only ID problems are to be considered here.

The noiseless version of (1) is known as a first kind integral equation of either the Fredholm or
Volterra variety depending upon the limits of integration. This type of structure arises frequently
when considering physical systems described by ordinary or partial differential equations [23, 50].
Additionally, such relationships may be encountered as a result of linearization of a second kind
integral equation [32,34,54]. When Ti(z, x') = Ti(x - x'), the problem of finding g based upon yi is
known as a deconvolution problem and is encountered widely in practice [24,35,40,45]. Thus, the
mathematical structure to be considered in this paper is quite general and may be used to describe
a wide variety of practical problems.

A key feature of the linear integral equation modeling structure is its flexibility. By specifying
the structure of the kernels, multisensor fusion problems can be described wherein the data from
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Figure 1: Convolutional Kernel Functions

individual sources conveys information about g at a variety of spatial scales. For example, in
Section 4, a two channel problem is considered. The kernel functions in this case satisfy Ti(x, x') =
Ti(z - x') = Ti(~) for' i E {f, c} and are plotted in Figure 1. The kernel labeled Tf gives essentially
pointwise observations thereby supplying fine scale data for the inversion. Alternatively, TC performs
a local averaging of the function g so that y, provides coarse scale information regarding the
structure of g.

The manner in which information from each of these data sources is used in an inversion is
affected by both its quality and quantity. The quality of the data is determined by the level of
noise, ni, present in the signal (1), where the ni are taken to be zero mean white Gaussian noise
sources with intensities ri. Generally, the larger the noise intensity, the less reliable will be the data.
The quantity of data refers to the number and distribution of samples available to an algorithm. In
practice, a data set is composed of a finite number of samples, yi(xj) j = 0, 1, ... Ni contained in
some finite interval of the real line where we will denote by yi the Ni dimensional vector composed
of all of the data samples from the ith observation process. Clearly, altering the number or location
of the xj changes the nature of the information conveyed by the data thereby impacting the way in
which a particular observation process contributes to a reconstruction. In Section 4, we illustrate
several variations of data quality and spatial distribution for the two channel problem mentioned
previously which are illustrative of physically meaningful measurement configurations and which
allow us to demonstrate the capabilities of our formalism both in exposing the resolution tradeoffs
in multisensor fusion and in dealing with nonuniform sampling patterns to which standard Fourier-
based deconvolution methods are inapplicable.

2.2 A Wavelet Representation of g(z)

A multiscale representation of g(x) is obtained via the use a wavelet expansion. We begin with two
assumptions. First, g is taken to be "scale-limited" so that there exist both a finest scale for the
reconstruction, Mg, beyond which additional detail is either not present or cannot be resolved given
the data and a coarsest scale, Lg, of interest. Second, we assume that g(x) is only to be recovered
for x in a closed and bounded interval of the real line. Then, with p(x) and k(x) representing,

'Note that throughout this paper the subscript f is used to denote quantities associated with the fine scale
observation process while the subscript c is used for the coarse scale measurements.
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respectively, the scaling and wavelet functions for a compactly supported orthonormal wavelet
decomposition [15], we can represent g(x) in terms of its approximations at any scale Lg < m < Mg
and the detail at successively finger scales m < k < Mg - 1

N,(m) M,-1 N,(k)

g(z) = g(m, n)cpm,n(z) + E E r(m, n)lm,n(z) (2)
n=O k=m n=O

where Okm,n(z) and SO,,n(z) are appropriately scaled and shifted version of Ob(z) and $0(z) (i.e.
?,bm,n(z) = 2-m/20k(2mx - n)) and where Ng(m) denotes the finite number of terms in the expansion
at the mth scale.

Note that if m = Mg, the double summation disappears, and we have a representation for
g(z) in terms of its finest scale scaling coefficients g(Mg, n). At the other extreme, we have that
with m = Lg, (2) represents g(z) in terms of its coarsest scale scaling coefficients, g(Lg, n), and
its wavelet coefficients, 7(k, n), at all scales of interest, Lg < k < Mg - 1. Furthermore, we also
have the scale-recursive relationship for the scaling coefficients g(m, n) that arises directly from the
dilation equations [15] for W(z) and Ok(z)

cp(x) = > h(n)c(2x - n)

)(x) = E g(n)S(2x - n)
n

where h(n) and g(n) are the finite length sequences associated with this wavelet basis. If we now
collect all coefficients at individual scales into vectors, i.e. we define g(m) (resp. y(m)) to be the
vector of scaling (resp. wavelet) coefficients of the function g(x) at scale m, we have the discrete
wavelet transform (DWT), as described in [4], relating g(m + 1) to g(m) and y(m):

g(m) = H(m)g(m + 1) (3)

7(m) = G(m)g(m + 1) (4)
g(m + 1) = HT )g(g(m) + GT(m)(m) (5)

where H(m) and G(m) are matrices formed from the low- and high-pass filtering coefficients h(n)
and g(n), respectively. Also, since g(x) is considered only over a compact interval, we need to deal
with the edge effects in the wavelet transform at the ends of the interval. While there are a variety
of ways in which to do this, such as modifying the wavelet and scaling functions at the ends of
the interval in order to provide an orthogonal decomposition over the interval [16], we have chosen
here to use one of the most commonly used methods [4], namely that of cyclically wrapping the
interval which induces a circulant structure in H(m) and G(m). While this does introduce some
edge effects, these are of negligible importance for the objectives and issues we wish to emphasize
and explore and for the applications considered here (or in general if the support of the scaling and
wavelet functions at the coarsest scale, Lg, of interest is small compared to the overall length of the
interval.) Further, the methods we describe can be readily adapted to other approaches for dealing
with edge effect as in [16] and the references contained therein.

Equations (3) and (4) suggest that we may construct a matrix2 Wg from H(m) and G(m) which
relates the finest scale scaling coefficients, g g(Mg), to the coarsest scaling coefficients, g(Lg),

2We choose to subscript the wavelet transform operator here as Wg to make explicit that this is the transform for
g(z). We may (and in fact will) use different wavelet transforms for the various data sets, yi
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Figure 2: A sample lattice structure corresponding to a D4 wavelet transform. The finest scale is
taken as Mg while the coarsest is Lg. Dotted line connections link nodes from one side of the lattice
to the other and arise from the particular implementation of the transform used here.

and all intervening detail coefficients y(m) for m = Lg, Lg + 1, ... , Mg - 1. That is, we may write

7 = Wgg (6)

where y = [7(Mg- 1)T ... 7(L,)T g(L,)T]T and W, satisfies WgW9 = I. We refer to the vector
y as the wavelet transform of the function g(x).

Given this implementation of the DWT, the relationships among the scale space component in
the decomposition of g are graphically represented in the form of a lattice as shown in Figure 2 for
the case of a wavelet decomposition with h(n) and g(n) of length 4 (such as the so-called "D4" or
Daubechies 4-tap wavelet decomposition described in [15].) At the finest scale, the nodes represent
the finest set of scaling coefficients. Each node at all other scales contains one wavelet and one
scaling coefficient. Two nodes are connected by an arc if and only if there is a linear relationship
between the contents of these nodes as dictated by the structure of the wavelet transform matrix
Wg. An ordering is assumed for the nodes of the lattice starting at the lower left corner of the finest
scale, proceeding to the right and then continuing with the leftmost node at the next coarsest scale
etc.

A coarse scale node is said to impact a finer scale if there exists a strictly downward path on
the lattice from the former to the latter. We define the upward impact set associated with the
node (Mg, i) (i.e. the node at scale Mg and shift i) as the set of all nodes which impact (Mg, i) and
denote this set as U(Mg, i) (U for "upward".) Thus in Figure 2 the set of nodes labeled using a "e"
correspond to U for the node given by a "O." Alternatively, for node (m, j) which is not located
at the finest scale, D(m, j) (D for "downward") is taken as the set of finest scale nodes which this
node ultimately impacts. Thus in Figure 2, D(C:) is comprised of all nodes marked with the symbol
c(s·.

2.3 Transformation of the Integral Equation to Wavelet Space

Transformation of an integral equation of the form considered in (1) to the wavelet transform
domain begins with its discretization. In practice, discretization with respect to x is performed
a priori as the data yi(x) are available ordy at a finite set of points as discussed in Section 2.1.
By using a wavelet expansion of g(x), we relate the samples yi(xj) to the finest set of scaling
coefficients of g(x). Substituting (2) with n = Mg into (1) and reversing the order of integration
and summation yields the matrix-vector relation:

yi = Tg + ni (7)
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Figure 3: Grayscale plots of the convolution matrices Tfand Tc. Darker coloring indicated larger
magnitudes. The concentration of T! near the diagonal implies that y! = Tfg + nf represents
close to pointwise observation of g and therefore will convey "fine scale" information regarding the
structure of g. Alternatively, Tc essentially conveys "coarse scale" information about g as much of
the fine scale variation in g is removed under the averaging action of this operator.

where the (a,, ) element of the matrix Ti is

[Tif, O= f Ti(x, x')(oMga(x)dx'.

The matrices T! and Tc corresponding to the two convolutional kernel functions of Figure 1 are
displayed in Figures 3(a) and 3(b).

Equation (7) relates the finest scale scaling coefficients of g(x) and the samples of the noise
processes to the samples of the observation process yi. For the purposed of the inversion, we desire
a relationship between the wavelet transform, 7, of g and a multiscale representation of ni to a
multiscale representation of the data. Toward this end, we must define a discrete wavelet transform
operator that transforms the vector of sampled measurements, yi, into its wavelet decomposition

Wqi = Wi = WiTiW>T + Wini

) i-r +vi (8)

where, as before, t7i consists of a coarsest scale set of scaling coefficients, yi(Li), at scale Li and
a complete set of finer scale wavelet coefficients r7i(m), Li < m < Mi - 1, where Mi is the finest
scale of representation. Note that we can think of this transform as a purely discrete one, taking
the sequence of values yi(zj) j = 1, 2 ,... to the elements of hri. Alternatively, since the original
data are samples of (1), we can think of the raw data as empirically obtained scaling coefficients at
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Quantity F Wavelet Transform Wavelet Coefficients Scaling Coefficients
Data yi i = Wiyi 71 (m) yi(m)

Function 9(x) 7 = Wgg 7(m) g(m)

Noise ni vi = Wini vi(m) ni(m)

Table 1: Notation for wavelet and scaling coefficient vectors

some finest scale Mi in a wavelet representation of the functions yi(x) and ni(x). In [18], Donoho
provides a rigorous discussion of the relationship between the theoretical scaling coefficients defined
in terms of integrals of yi(z) and wavelet functions and the samples; however, for the purposes of
the work in this paper, such distinctions in the interpretation of (8) are of secondary importance.

In Table 1, we have summarized the notation that we will use. For example, for the data Yi, the
corresponding wavelet transform 7ri - Wiyi consists of wavelet coefficients 77i(m), Li < m < Mi - 1,
and coarsest scale scaling coefficients yi(Li). Also, if we form only partial wavelet approximations
from scale Li through scale m, the corresponding scaling coefficients (which are obtained from

yi(Li) and 7i(k), Li < k < m - 1) are denoted by yi(m). We adopt the analogous notation for the
function g and the noise n, where in general we use the letters (y, g, n) for the original data and
scaling coefficients and their Greek counterparts (7r, 7, v) for the full wavelet transforms and the
wavelet coefficients.

Finally, it is often useful to work with the "stacked" system of data y = Tg + n where y contains
the information from all sensors and is given by

y = [yT yT yT ]T
'z= [iT Y2 ... YK
T = [T T TT TK]T

n = I nT . nT ]T .

In the transform domain, the corresponding equation is

T7 = 07 + v (9)

with 77, 0, and v are defined in the obvious manner.

3 Multiscale, Statistical Inversion Algorithms

3.1 A Maximum a posteriori Approach to Inversion

A traditional technique for solving linear inverse problems of the form y = Tg + n is to choose the
estimate of g according to

tad = argmin Iy - TgllR_-1 + AIILgflI (10)

where I12/fA = XTAx. Equation (10) indicates that the estimate of g is influenced by two factors.
The first term enforces fidelity to the data where the weighting R-l is related to the quantity of
noise in the data. The second term in (10) is used to regularize the problem in the event that T is
ill-conditioned. Alternatively, this term may be viewed as a means of requiring the reconstruction
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to reflect some prior knowledge of the nature of g. In either case the regularization or the prior
knowledge is captured in the structure of the matrix L. Typically, this matrix is chosen so that
some degree of smoothness is present in gtrd in which case L is taken as a discrete form of an
appropriate differential operator [3,41]. The scalar factor A is used to determine which of the two
terms in (10) exerts the most influence in the reconstruction. Finally, the optimization problem
given by (10) admits a solution which defines 9tad in terms of the normal equations

(TTR-1T + LTL)4trad = TTR-ly (11)

In this paper, we choose to approach the inverse problem from a statistical, estimation-theoretic
perspective. That is, given the observations, yi, along with probabilistic models describing the noise
processes and the function to be reconstructed, the problem is to determine a statistically optimal
estimate for g. Mathematically, this approach leads to a similar set of normal equations as those
defined in (11) so that, if one wishes, the reconstruction of g generated by either method can be
made the same. However, the combination of this probabilistic approach and the use of a multiscale
framework allows for much more. The probabilistic methods generate not only an estimate of g,
but also an error covariance matrix, P, which is used to evaluate the accuracy of the estimator
in reconstructing g. This quantitative performance indicator plays a key role in developing a
rigorous approach to the understanding of the ways in which each observation process contributes
information to estimate of g and how data from different sources are fused.

From a statistical estimation perspective, the normal equations are obtained by defining the
reconstruction as the Maximum a posteriori (MAP) estimate of g under the condition that n -
PA(0, fZ)3 and the assumption that g has a prior probabilistic distribution Af(0, PO). In this work,
each ni comprising the vector n is taken to be a zero-mean, white Gaussian random vector with
intensity ri. Now, for Po positive definite, the MAP estimate is defined according to [41]

gMAP = argmin Ily - Tgll|-, + fPo-1 /29ll2 (12)
g

Thus, 4 MAP satisfies normal equations of the form

(TTRl-T + 0po-T/2p -1/2)MAp = TTR-Y. (13)

Finally, defining PO and R to be the wavelet transforms of Po and R respectively (i.e. Po = WgPOW;T
and similarly for R) allows the normal equations to be written in the wavelet transform domain as

(OTR-l® + poT/12po11/2 )>MAP = ®T R-1 7 (14)

3.2 Multiscale Prior Models

By comparing (11) with (13), it is clear that the choice Po = (A 2 LTL)-' results in 9MAP = gtrad.

Recent work, however, suggests that there exist a wide array of useful prior models which are
specified directly in scale space [13,41]. In many cases, these models perform essentially the same
function as the smoothness-based regularizers; however, they also carry a variety of additional
benefits:

3 The notation z - Af(m, P) indicates that the random vector z has a Gaussian distribution with mean m and
covariance matrix P.
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* They are exceptionally easy to implement [591.

* They lead to scale-space algorithms which are orders of magnitude more efficient than those
estimation schemes operating in real-space using a regularizer based upon some differential
operator [41].

* They are fractal in nature thereby providing realistic models for a variety of naturally occur-
ring phenomena [59].

To motivate the particular choice of prior model, consider taking PO = (A 2 LTL) -1 with L
representing first order differentiation. This implies that g is a Brownian motion satisfying Lg = w
with w P, f(0, A-'I). As discussed in [41], work by Wornell and others has demonstrated that
Brownian motions and other related fractal processes can be closely approximated via a Karhunen-
Loeve type of expansion of the form of (2) with y(m, n) -, P(0, a 2 2-1m) and independent. Here, a2
controls the overall magnitude of the process while the parameter p determines the fractal structure
of sample paths. The case p = 0, corresponds to g(z) being white noise while as 1i increases, the
sample paths of g show greater long range correlation and smoothness.

In addition to defining the scale-varying probabilistic structure of the wavelet coefficients in
(2), we also must provide a statistical model for the coarsest scale scaling coefficients, g(Lg, n), in
(2). Roughly speaking, these coarse scale coefficients describe the DC and low-frequency structure
of g(z). In the applications we consider here, we assume that we have little a priori knowledge
concerning the long-term average value of g(x). Consequently, we take g(Lg, m) -N A(0, PL , ) where
PL, is some sufficiently large number. By choosing PL, in this manner, we avoid any bias in the
estimator of the low frequency structure of g(x).

Obviously, other choices of statistics for -(m, n) and g(Lg, n) may be appropriate in specific
applications, and our methodology can readily accommodate these. The specific choice we have
made, leading to a 1/f-like fractal model, is particularly well adapted to the multiscale formulation
of many inverse problems. Coarse scale wavelet coefficients are assumed to have high variances
so that the data rather than prior assumptions influence most strongly the the reconstruction at
these scales. Furthermore, the self-similar scaling law in the variance of the wavelet coefficients
is well-adapted to many physical phenomena that display fractal-like behavior. In addition, the
successively decreasing variances of the fine scale wavelet coefficients control the incorporation of
high frequency information into the reconstruction. For many problems however, this represents
an eminently reasonable use of the data. As will be seen in Section 4 for deconvolution problems,
the smoothing action of the convolutional kernels implies that the data supplies primarily coarse
scale information regarding the structure of g, with successively decreasing sensitivity to finer scale
variations in g. The value of this fine scale sensitivity, of course, depends not only on the sensitivity
of the measurements to fine scale fluctuations in g, but also on the expected size of fine scale detail
in relation to the corresponding scale of noise fluctuations. The particular choice of a fractal model
provides us with one physically meaningful way in which to specify the tradeoff and which in turn
determines the way in which the resulting estimation algorithm makes effective use of the data only
over those scales where useful information is present.

To summarize, a fractal prior model is used in this work as a means of regularizing the linear
inverse problems. Following the notation introduced in Section 2, the model is defined in the
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wavelet transform domain as 7y - f(0, Po) where

Po = block diag(Po(Mg - 1), ... , Po(Lg), Po(Lg)) (15)

Po(m) = U22-1mIN.(m) (16)

Po(m) = PLIN,(L,) (17)

with I, an n x n identity matrix. Finally, we note that this model is but an example (albeit
an important example) of a rich class of models which may be defined in scale space. Indeed,
letting both u as well as p to be functions of scale and/or position could allow for the modeling of
nonstationary processes possessing space-varying fractal characteristics such as multifractals [19,30].
More generally in [12, 13,41,42], the authors have developed a set of multiscale models outside of
the wavelet formalism defined on trees. These models offer a compact and useful characterization of
many commonly occurring stochastic process and are well suited to highly efficient, scale-recursive
estimation algorithms.

3.3 The Relative Error Covariance Matrix

A key advantage of the use of statistical estimation techniques is the ability to produce not only
the estimate but also an indication as to the quality of this reconstruction. Associated with the
MAP estimator is the error covariance matrix, P, defined in the transform domain as

P = E[( 7 - -l)T(7 - f)]

and which under the Gaussian models defined in Section 3.1 takes the form

p = ()TR-10 + P-')-'. (18)

Taking the inverse wavelet transform of (18) gives the error covariance matrix P associated with
estimating g from data yi and a prior model with covariance P0

P = E[(g - §) T (g - 9)]

= (T T P-'T ± P')-l (19)

The diagonal components of P, the error variances, are commonly used to judge the performance of
the estimator. Large values of these quantities indicate a high level of uncertainty in the estimate
of the corresponding component of - while small error variances imply that greater confidence may
be placed in the estimate.

While the information contained in P is certainly important for evaluating the absolute level
of uncertainty associated with the estimator, in many cases, it is more useful to understand how
data serves to reduce uncertainty relative to some reference level. That is, we have some prior level
of confidence in our knowledge of 7 and we seek to comprehend how the inclusion of additional
data in our estimate of 7 alters our uncertainty relative to this already established level. In this
section we define the relative error covariance matrix (RECM) and demonstrate its utility as a tool
for capturing such changes in uncertainty. The analysis of the RECM in the wavelet domain is
especially interesting because it allows for a localized characterization of the manner in which data
impacts a reconstruction. Hence, we show how the RECM provides a natural means of evaluating
the appropriate level of detail as a function of position which can be supported in a reconstruction
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based upon a given set of data. When multiple measurement processes provide data, the relative
error covariance matrix is useful for determining those scales and shifts for which there exists
significant incremental benefit from the addition of data from a given suite of observations to an
estimate based upon information from a different set of sources. Finally, analysis of the RECM
leads directly to a quantitative, multiscale theory of sensor fusion.

The definition of the relative covariance matrix is motivated by the definition of the relative
difference between two scalars a and b given by

b
1--. (20)

a
The matrix analog to (20) to be considered in this paper is

HI(A, B) = I- p;T/2pBp;1/2 (21)

where PA is assumed to be positive definite. Here A and B are index sets with A, B C {1, 2,..., K}.
The quantity PA (resp. PB) is the error covariance matrix associated with the MAP estimate j'(A)
(resp. j(B)) where y(A) (resp. j(B)) is the estimate of y based upon data from all observation
processes ri with i E A (resp. i E B.) Finally, we define the error covariance matrix associated
with no observations, P{0}, as the prior covariance matrix Po.

The definition of H(A, B) in (21) possesses many pleasing properties. First, like an error co-
variance matrix, it is symmetric. Also H(A, B) is the wavelet transform of the variance reduction
matrix associated with PA and PB. That is,

H(A, B) I -_p-TB/p:p 1/2

= WT (A, B)W

Moreover, it is not difficult to show that H(A, B) is normalized to the extent that for A C B,

0 <l (A, B) < I.

We note that II(A, B) = 0 iff PB = PA which indicates no reduction in uncertainty and the complete
lack of additional information from the data in B relative to that in A. Alternatively, given some
nonzero level of uncertainty in j(A), H(A, B) = I if and only if PB = 0 which occurs if and only if

-= y. Thus HI(A, B) is the identity only when all uncertainty in -Y has been removed.
In the event PA is diagonal, the diagonal components of II(A, B) are particularly easy to in-

terpret. Let oai(A) be the error-variance of the ith component of -y arising from an estimate based
upon data from set A. Then, the ith component of the diagonal of II(A, B) is just

1 - ,o'(B)/ i2(A)

which is nothing more than the relative size difference of the error-variance in the ith component of
- based upon data from sets A and B. Note that the diagonal condition of PA is met in this paper
when PA = PO, since the wavelet and scaling coefficients in (2) are uncorrelated for the fractal 1/f
priors used here as well as for many other physically meaningful prior models. Thus, the diagonal
elements of II({0}, B) represent the decrease in uncertainly due to the data from set B relative to
the prior model. Finally, as II({0}, B) will be of interest frequently in the remainder of this work,
we shall abuse notation and write II({0}, B) as II(B) in cases when there will be be no confusion.

The quantity II(A, B) represents a useful tool for quantitatively analyzing the relationship
between the characteristics of the data (as defined by O and R) and the structure of the estimate
. In the examples provided in Section 4, we utilize II(A, B) to explore
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1. The information contributed by a single sensor relative to that in the prior model.

2. The manner in which data from a group of sensors is fused in forming A.

3. The incremental benefits associated with the addition of data from the (i + 1)'t sensor to an
estimate based upon the first i measurements.

4. The quality of estimates at different scales and the scales at which active fusion takes place in
that the relative error covariance achieved using more than one sensor is significantly reduced
compared to that using any single sensor by itself.

Consider, for example, the case in which we wish to assess the overall value of a set of sensors.
That is, suppose that A = 0 and B -= any set of sensors} so that II(A, B) = II(B) measures
the contribution of the information provided by this set of sensors relative to that of the prior
model. We begin by defining I'nT(B) as the value of the element on the diagonal of the matrix
II(B) corresponding to the wavelet coefficient at scale/shift (m, n)4. As Po is diagonal, HII(B)
is interpreted as the relative decrease in the error variance associated with the component in the
wavelet transform of g at scale/shift (m, n). If II'(B) is large then the data provides considerable
information regarding the structure of g at (m, n). In particular, this quantity provides us with
a natural way in which to define the scale at which g should be reconstructed at each location.
Specifically, consider the finest scale of our representation, namely, the scaling coefficients g(Mg, j).
At each point j we can examine the quality of the information provided at this point at the finest
scale and at all coarser scale "ancestors" of j. Using the terminology introduced in Section 2.2, we
say that the data supports a reconstruction of g(Mg, j) at scale m if there exists some node in the
wavelet lattice of g at scale m which satisfies the following

1. The node impacts g(Mg,j) (i.e. for some shift n, g(Mg,j) E VD(m,n)) so that (m,n) is an
ancestor of (Mg, j).

2. The data provides a sufficiently large quantity of information regarding the structure of g at
node (m, n) (i.e. II (B) is in some sense large).

Clearly, the finest level of detail supported by a data set is the finest scale for which a node (m, n)
may be found that satisfies the above two criteria and in general is a function of position (i.e. a
function of the shift j at scale Mg.) The precise quantification of "sufficiently large" will depend
upon the particular application and on the structure of the particular inverse problems under
investigation.

In addition to its use is assessing the scale of reconstruction supported by the information from
a set of sensors, if we consider the case where neither A nor B is empty, we find that there are
several ways in which II(A, B) may be of use in assessing the value of fusing information from
multiple sensors and in identifying how this fusion takes place. For example, if A C B, then
HI(A, B) provides us with a measure of the value of augmenting sensor set A to form sensor set
B. Roughly speaking, if II(A, B) is significantly larger than 0, there is a benefit in the additional
information provided by the sensors in B - A. Moreover, if we define II-(A, B) as before as the
diagonal elements of II(A, B) corresponding to the (m, n) wavelet coefficient, then we can use these

'At scale m = Lg, we are interested in both the wavelet and scaling coefficients of g. To avoid ambiguity, we use

the notation II' to refer to the RECM information for the coarsest scaling coefficient of g at shift n.
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quantities to pinpoint the scales and locations at which this fusion has significant benefit5 i.e., those
scales and shifts at which active sensor fusion is taking place. Furthermore, by varying the sets
A and B, we can identify not only the optimal scale for reconstruction at each point but can also
identify which sensors are actively used to obtain that estimate. That is, for each (m, n), we can
in principal find the set A C {1, ... , K} so that Il (A,{1, ... , K}) is small (so that sensors not
in A provide little additional information to the reconstruction of wavelet coefficient (m, n)) and
so that for any C c A, fH(C, .A) is of significant size (so that all of the sensors actively contribute
to the reconstruction at this scale and shift.)

ref

4 Examples

The vehicle for illustrating the MAP estimator and associated analysis techniques developed in
Section 3 is a two channel deconvolution problem configured in several ways to illustrate a variety
of different facets of our approach. The function to be reconstructed is assumed to be a 1/f type
of process defined by the parameters in Table 2 and the particular sample path of this process used
in our examples is displayed in Figure 4.

The convolutional nature of the problem implies that Ti(x, x') = Ti(x - x') = Ti(E) for i = f, c.
The two kernels used in the examples here are plotted in Figure 1 and the operator matrices T!
and T, are shown in Figure 3. The output of the sensor corresponding to Tf provides relatively fine
scale information about g in comparison to that provided by the sensor corresponding to Tc since
much of the fine scale variation in g is removed under the averaging action of this operator.

The ability of the wavelet to compress the information in these operators is illustrated in Figure
5. Because the wavelet transform is orthonormal, the energy in Ti and ®i, is the same for i E {f, c}
(i.e. ilTillF = 1OilfJF where 11 * IF is the Frobenius norm); however, this energy is concentrated
in fewer entries in the wavelet domain operators than in their space domain counterparts. To
illustrate this property, define the quantity Ei(n) (resp. Ei(n)) as the energy in the first n largest
(in magnitude) components of T, (resp. (i). Further, assume that E,(n) and E,(n) are normalized
by the total energy in the respective operators. In the case of the two operators considered here,
we plot Ef (n) and E-(n) in Figure 5(a) and Ec(n) and Ec(n) in Figure 5(b). Note that as with the
operators considered by Beylkin et. al in [4], for both operators considered here, any given level
of energy is contained in far fewer coefficients in the transform domain than in the physical space
domain. In fact, to capture 95% of the energy in T! requires 2150 elements while only 712 need
be retained in Of; a factor of three difference. In the case of T~, roughly 14,000 components are
required to retain 95% of the energy while only 149 elements are needed for 0, which is savings
of almost two orders of magnitude. This suggests that the transform domain matrices may be
well approximated by sparse matrices obtained by setting their negligible components to zero so
that computationally efficient, sparse matrix routines can be used to solve the normal equations.
We note that the use of higher order wavelets would result in even sparser Oi and that a detailed
analysis of computationally efficient, multiscale inversion algorithms is presented in [43>.

5In this case, because PA is not in general diagonal, the diagonal elements of II(A,B) do not have the exact
interpretation as the relative size difference of the error variance of ry based upon data from A and B; however the
size of these diagonal components of II(A,B) still lends insight as to the scales and shifts where the observations
from set B provide information not found in the data from set A.
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Property Value

Wavelet Daubechies 6-tap
Finest scale (Mg) 7

Coarsest Scale (Lg) 3
IL 2.0
1 2 10

' PL, 0.25

Table 2: Parameter values for g
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Figure 4: Fractal function to be reconstructed. Approximation coefficients at scale Mg = 7.
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Figure 5: Plots of normalized energy in the largest n component of Ti and 0i as a function of
n. Note that for both the fine and coarse scale operators, energy is more concentrated in the
transform domain than in the space domain in that any given level of energy is contained in far
fewer coefficients in 0i than in the corresponding Ti.

4.1 The Full Data Case: Equal SNRs

As a first example, we consider the case where a full set of data is available from both sensors and
the signal to noise ratio of each observation is the same and equal to 1. In this work, the signal to
noise ratio of the vector 7i = 0E)i-y + ,i with vi - A(O, r'I) and - A/(0, PO0 ) is defined as

Power per pixel in vi Ngr?

where Ng is the length of the vector 7-y and tr is the trace operation. The noiseless and noisy data
sets are shown in Figure 6. In Figure 7(a), 4({f, c}) is graphed against g while Figs. 7(b) and 7(c)
display 4({f, c}) vs. 4({f}) and 4({c}) respectively. These plots demonstrate that given data of
equal quality (i.e. equal SNR's), the MAP estimator bases the overall reconstruction primarily on
the fine scale data source yf. In Figure 7(d), we compare two versions of 4. The solid line is a
graph of 4 in which all coefficients, -(m), are used at all scales in forming 4(Mg) while the dashed
line is a reconstruction in which ,(m) for m > 4 are set to zero. This picture indicates that Yc and
ye convey no useful information regarding g at scales finer than 4.

Analysis of the relative error covariance matrices provide much additional insight into the
manner in which the used to form the data are used to form he full data condition and the fact that Po
is a function only of scale, the RECM information is basically a function only of scale and does not
vary considerably from shift to shift over any given scale. Thus we define IIm(A, B) as the average
value of II(A, B) taken over all shifts n at scale m. In Table 3, the values of Hm({f, c}), III({f}),
and IIm({c}) are given in percent for all m defined in the wavelet transform of g. Hence the first
column indicates the percent reduction in variance as a function of scale for an inversion based



Submitted to Applied and Computational Harmonic Analysis 18

upon yf and y, where this reduction is taken relative to the prior model. Similar interpretations
hold for the second and third columns. The last column in Table 3 is the average value at each
scale of the RECM obtained when the coarse scale data, y,, is added to an inversion based upon
yf. Finally, note that last row of this table provides the RECM information associated with the
estimates of the coarsest scaling coefficients of g.

Comparison of the data in the first three columns indicates that, given both sets of data, the
bulk of the variance reduction is attributable to the information present in y!. Moreover, the
information in the observations at scales 5, 6, and 7 is negligible. In the first column of Table 3
(where both Yc and yf are used in the inversion) we see a 20% and 63% variance reduction in the
estimates j(4) and j(3) respectively and a 98% reduction in the estimates of the coarsest scaling
coefficients, 4(3). In the second column (where only y! is used to determine y), similar RECM
data is present. From column three of Table 3 (where only yc is used), we conclude that the noisy,
coarse scale data is useful only in reducing the variance for the components of 7 at scale 3. Lastly,
column four shows that the addition of the coarse scale data to an estimate based upon yf only
provides incremental benefit in the estimates of g(3).

From this analysis, we observe that there is no sensor fusion taking place in an estimate based
upon both y! and y,. That is, under this particular full data, equal SNR scenario, the information
in Yc is largely ignored in constructing 4({f, c}). The data in Table 3 also implies that there is a
limit to the level of detail supported in a reconstruction of g based upon yi. In fact, the values of
Il" are considerably smaller at the finer scales (5, 6, and 7) than at the coarser scales (3 and 4).
From this, we conclude that neither set of data alone or together provides sufficient information
for the reconstruction of detail in g finer than that found at scale 4.

We note that the information provided by the relative error covariance matrices is consistent
with the actual estimates graphed in Fig. 7 where we saw that 4({f, c}) essentially is the same as
4({c}), and that 4({f, c}) does in fact contain little detail at scales finer than four. The use of the
RECM is significant because it allows for the formulation of these conclusions before any data are
obtained. Thus, the RECM represents a useful tool for the design and evaluation of experiments
where multiple sensors are to be used in the recovery of some underlying quantity. In this example,
one would conclude that the coarse scale sensor is of little or no use in the recovery of g and that
additional observation processes are required to resolve very fine scale structure in g.

Additionally, the relative error covariance matrix analysis can be used to evaluate a particular
parameterization of g. Given the structure of the observation processes, we see that g is overpa-
rameterized as the data provide little useful fine scale information relative to that found in the
prior model. Any attempt to recover these components of g is effectively a waste of time and
computational resources. Rather, the RECM suggests that a more parsimonious description of g is
warranted and even indicates how such a model should be constructed based upon the information
available in the data. That is, given the structure of the observation processes, the original pa-
rameterization of g involving 256 degrees of freedom is clearly excessive. Rather, the data dictates
that at most only 32 parameters (the coarse scaling coefficients and the detail coefficients at scales
3 and 4) can be accurately recovered.

4.2 The Full Data Case: Unequal SNRs

As a second example, consider the case where again full data is provided for both observation pro-
cesses, but the level of noise in yf is much greater than that of y,. Here we take the SNRc = 4 while



Submitted to Applied and Computational Harmonic Analysis 19

6, 6,

6r. I 64

Il '.i lk

.I"-I2

O 50 'C 250 0 50 1oo 150 200 250 300

(a) Noiseless (solid line) and noisy (b) Noiseless (solid line) and noisy
(dashed line) versions of y. SNR =. 1 (dashed line) versions of Yc. SNR = 1

Figure 6: Data sets for use in full data reconstruction with the SNRf = SNRC = 1

Scalem 100 * HI({f, c}) 100 * II-({f}) 100 * ,'({c}) 100 * II({f}{f, c})

7 0.0048 0.0047 0.0001 0.0001

6 0.0622 0.0600 0.0020 0.0023

5 1.2246 1.1785 0.0475 0.0496

4 19.0872 18.4934 0.9166 0.7705

3 62.7417 60.5813 10.9863 5.7320

3 98.1754 96.7171 90.8045 45.8975

Table 3: Percent relative error variance reduction for full data inversion with SNRf = SNRc 1.
Comparison of the first through third columns indicates that the fine scale data provides most of
the variance reduction. The fourth column demonstrates the the incremental information provided
by the coarse scale observation process is seen primarily in the estimates of the coarsest scaling
coefficients.
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Figure 7: Estimates of g using various combinations of fine and coarse scale data for the equal SNR
experiment. From (b) and (c) we observe that given both sets of equally noisy data, the estimator
uses primarily the information from the process yf. In (d), g is reconstructed ignoring any detail
estimates, '(m), at scales finer than 4 and compared to the estimate g in which all available detail
is used. In this case we observe that y! and yc provide little useful information at scales 5 through
7.
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SNR! = 1. Inversion problems with these characteristics arise quite frequently in practice. For
example, in geophysical prospecting, the fine scale process may arise from an electrical measure-
ment using high frequency electromagnetic fields to probe the structure of the earth. These fields
tend to suffer attenuation due to the lossy characteristics of the medium giving rise to low signal to
noise ratios. Alternatively, the coarse scale observation processes are associated with low frequency
observations for which either attenuation is small or energy is high resulting in higher SNR. The
function g to be recovered is the same as in the first example and the estimates themselves are
shown in Fig. 8. As in the previous case, it is clear just from these plots that very fine scale detail
is not supported by these data sets; however, it is less obvious as to the manner in which data from
each set contributes to the overall reconstruction.

Consider the RECM information in Table 4. As with the previous case, the structure of the prior
model and the measurements processes imply that little is lost in examining averages of RECM
components over all shifts at a given scale. From the data in the last row of Table 4 it is clear that
for the coarsest scaling coefficients, both yf and y, provide comparable and close to full information
relative to that of the prior model. For the estimates of the wavelet coefficients at scales 3 and
4, we see a significant amount of sensor fusion taking place. In particular, at scale 3, the use of
yf (resp. y,) alone provides a variance reduction of about 60% (resp. 59%); however, given both
sets of data, this statistic jumps to 75%. Thus, the ability to resolve the wavelet coefficients of
g at scale 3 is significantly improved when both set of data are available to the inversion than is
the case when either acts alone. A similar argument holds for the information contained in the
observations regarding the structure of g at scale 4. Table 4 indicates that fusion also occurs at
scale five although the data at this scale is obviously less reliable than at coarser scale. It is clear
that neither data source provides significant information at the finest scales: 6 and 7.

Unlike the full data, equal SNR example in Section 4.1, the RECM here provides significant
information not readily obtained by examination of only the estimates. Specifically, we are able to
pinpoint exactly where in scale active space sensor fusion is occurring and quantify its magnitude.
Moreover, our analysis is of great use in capturing the effects of noise on the level of detail supported
by a given source of data. Comparing the results of this experiment with those of the preceding
section, we see from the fourth columns of Tables 3 and 4 that the higher SNRC alters where in
scale space Yc contributes information relative to that found in y . In Section 4.1, the coarse scale
process contributes only to the estimates of the coarsest scaling coefficients while in this case, y,
provides additional information regarding g(3) and the wavelet coefficients at scale 3 (and to a
lesser extent the wavelet coefficients at scale 4.)

4.3 The Incomplete Data Case: Boundary Measurements

A common characteristic of linear inverse problems is the desire to estimate g over some closed
and bounded region based upon measurements some of which are available only at or near the
boundary of this region [5,14,20,21,33,38]. Such a situation may arise, for example, in a geophysical
setting. Here one may be interested in ascertaining the conductivity structure or acoustic properties
of a rock formation given electromagnetic data which provide fine scale information only near a
few boreholes, together with coarser-resolution, sonic data (e.g. from ground-penetrating radar
or surface seismic surveys) which in contrast have full coverages over the entire interwell region.
This type of observation configuration leads to both theoretical as well as computational difficulties.
From a theoretical perspective, problems of this class tend to be extremely ill-posed in that solutions
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Figure 8: Estimates of g using various combinations of fine and coarse scale data for the unequal
SNR experiment. From (b) and (c) we observe that some form of active sensor fusion is taking
place as the estimate given both sets of data is clearly different from that obtained when either
data set is used alone. In (d), g is reconstructed ignoring any detail estimates, '(m), at scales finer
than 4 and compared to the estimate t in which all available detail is used from which we observe
that yf and y, provide little useful information at scales 5 through 7.
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Scalem 100* IIm ({f, c}) 100* 1 00 * I m ({f}) ( 100 * II m ({f}{f, c})

7 0.0057 0.0047 0.0010 0.0011

6 0.0871 0.0600 0.0267 0.0279

5 1.7835 1.1785 0.6457 0.6431

4 25.3244 18.4934 10.1778 8.7822

3 75.9424 60.5813 59.1247 39.6413

3 j 99.4718 96.7171 98.9946 84.8110

Table 4: Percent relative error variance reduction for full data inversion with SNRf = 1 and

SNRC = 4. Unlike the first example, the high quality, coarse scale data now provides significant
information to the inversion. From the first three columns, the bold faced values indicate where
active sensor fusion taking place. Specifically, at scales 3 and 4 the percent variance reduction is

significantly higher given both sets of data than is the case when either yf or y, is used alone. The
fourth column shows that the incremental information provided by the coarse scale observation

process is seen at the coarsest two scales.

to these inverse problems are very sensitive to perturbations in the data. Upon linearization,

these theoretical difficulties are reflected in discretized linear systems with very high condition

numbers so that regularization is required. Additionally, as discussed in Section 1 for problems

with a convolutional structure, the sparse and "gappy" distribution of data points makes the use

of Fourier-based techniques problematic.

In contrast, the multiscale, statistical MAP inversion algorithm we have described is ideally

suited to handling such problems. To illustrate this, we consider a variation on the two channel

deconvolution problem with SNR! = SNRC = 3; however, we assume that yf is available only near

both ends of the interval. In this case, the data sets are shown in Figure 9. In solving the inverse

problems, regularization is provided by the prior model as discussed in Section 3.2. Moreover, this

sampling structure is handled quite easily using wavelet transforms. Specifically, we split yf into

its left and right components, Yjf, and f,r,, and treat each separately. In effect, this is equivalent

to windowing y! and applying W! individually to each windowed version of the data. We note

that unlike Fourier techniques where space-domain windowing can cause significant distortion of

the signal in the frequency domain, no significant distortion is present here 6 .

The estimates of g are displayed in Figure 10. We see that over the middle of the interval,

4({f, c}) is roughly the same as g({c}) while at either end, information from yf is used almost

exclusively in the inversion. Additionally, Figure 10 shows that given only yf, the estimator does

make an attempt to recover g over the interior of the interval, but such an estimate is increasingly

in error the farther one proceeds toward the middle.

In Figure 11(a)-(d), the diagonal components of II(B) are plotted for B C {{f}, {c}, {f, c}}

and for scales7 3 and 4. We observe that for scale-shift pairs (m, n) interior to the boundary region

6 The only distortion is caused by the edge effects arising from the circulant implementation of the wavelet transform

as discussed in Section 2.2 and as we have discussed, these effects are generally negligible or can be overcome

completely through the use of modified wavelet transforms obtained over compact intervals
7 The unusual activity at the right hand edge of these plots is an artifact of the circulant implementations of the
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in which fine scale data are available, IIH((f}) is essentially zero indicating the almost complete
lack of information in y! about g over these shifts. However, for pairs (m, n) corresponding to
locations near either boundary, the story is different. Here, information in yf almost completely
dominates that in Yc as was the case in the first example. In Figures 11(d), the utility of adding Yc
to an estimate based upon yf is illustrated by displaying H(({f}, {f, c}). Again the contribution
of the coarse scale data is greatest away from the end of the interval. In Figures 11(a) and (b), we
observed the presence of active sensor fusion over selected shifts at these scale. That is for certain
n and for j E {3,4}, II({f, c}) is significantly larger that both II(({c}) and II' ({f}). Thus, the
RECM is able to localize both in scale and in shift the precise locations where the presence of both
data sets yields significantly more information than either alone. Finally, for scales other than 3
and 4, the two observation sources provide little if any significant information to the reconstruction
of g.

Unlike the previous examples where both data sets were available over the entire interval,
for the case considered here, we are quite justified in defining the shift-varying optimal scale of
reconstruction given both Yc and yf. As described in Section 3.3, we say that a data set A supports
a reconstruction of g(Mg, n) to scale m if there exists some node (m, n) such that (1) g(Mg, j) E

iD(m, n) and (2) IIH(A) is sufficiently large. The finest level of detail supported in a reconstruction
at shift j, which we denote by m'(j), is the finest scale for which a node may be found that satisfies
the above two conditions. For the problems considered here, the diagonal structure of Po implies
that 0 < H1(A) < 1 so that determining whether 1Hm(A) is "sufficiently large" is accomplished by
comparing this quantity to some threshold, 7r, between zero and one. This procedure for determining
the optimal scale of reconstruction implies that we need consider only those nodes in the wavelet
lattice of g for which IIm(A) > r. Hence, we are led to define j,, a truncated version of j, as follows:

fjr}m n 0 nm(A) (22)
[ ) [](m,) otherwise

where [7](m,n) is the component in the vector j at scale m and shift n. Defining j, in this way
ensures that 4, = WT'j is in fact the reconstruction of g which at each shift j contains detail
information at scales no finer than m'(j).

In Figure 12, we plot the finest scale supported in a reconstruction of g using the noisy data
sets of Figure 9 for r = 0.45. Here we see that near the boundaries, the presence of fine scale
data allows for higher resolution in the reconstruction of g while in the middle of the interval, we
must settle for a coarser estimate. From Figure 13 we see that there is little difference between the
optimal estimate, 4, and its truncated version, g0.45. This provides further evidence that the RECM
is the right tool for precisely evaluating the manner in which the data contributed information to
the reconstruction of g. Finally, in Figure 14, the finest scale supported in a reconstruction as a
function of both position and threshold is displayed. Here, the horizontal axis represents the shift,
n, at the finest scale, Mg = 7 , the vertical axis is the value of r, and the grey tones represent
the finest scale of resolution supported by the data at shift n using threshold r with darker shades
indicate finer scales. Increasing r implies that we require more information from the data to say
that the observations support reconstruction at finer scales. Hence, for the problems here, with r
greater than about 0.7, we conclude only the coarsest information in g may be recovered given the
data. For -r less than 0.7, the situation is much the same as was seen in the analysis of Figure 12

H and G filters as discussed in Section 3.3
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near the end of the interval.

4.4 The Incomplete Data Case: Coarse Scale Data Sampled Coarsely
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(a) Noiseler est, but they(solid line) nd noiy (b) N oiseless (solidf resolutione) and noisy
(dme ashed lines versions of our. NR = 3 (dashed line) version. SN = 3

Figure 9: D ata s ets for use in reconstruction with the SNRd = SNRc = 3 and yf available only
near the end of the interval.

with fine scaln be direcoverable near the boundaries as well. In par coticular, we reconstruction near the middle
where only the is p resent configuration as in Sections 4.1 and 4.2 expect in this case the

4.4 The Incomplete Data Case: Coarse Scale Data Sampled Coarsely

In the preceding example, the coarse scais available not only had complete grid cover the entire
interval of interest, but they also were availabe that the finest scale of asuremesolution i.e. a coarse

measurement y, was available for every shift, n, at thate fused inest scalthe repreious sentation. What
is more realistic in practice, of course, is to have coarse-resolution data availableer the entire interval and at a sampling

interval commensurate withe also the resolution of thSNRe data= 4. Inote this last example, we demonstrate that
our methodology can be dirctmply use DWTs applied to easuchms as well. In partive diffcular, we consider
basically the same measurement c onfiguration as in Sections 4.1 and 4.2 expect in this case the
coarse-resolution measurement prcess, , is avalable only accommodated grid covering
the interval of interest. In particular, for this example we assume that the measurements Ypondin are
available on a grid that is decimated by a factor of 8 compared to that used in the previous densection.

For this exercise, we also assume that we have fine scale data over the entire interval and at the
original, finer sampling rate, and we also take SNRf = 1 and SNR, = 4. Note that the difference
in sampling grids for our two measurement sets is of no consequence for the applicabilityose ofur

m ethodology, as we simply use DWT's appropriate to each. The substantive d ifference, of course,
is that the smaller number of measurement point in y, has fewer scales of decomposition, but this
is automatically accommodated in our formulation.

In Figure 15, §({f}) and §({f, c}) are compared for this example as well as for the corresponding
case in which a full set of coarse-resolution data (at SNR, = 4) is available on the original, dense
sampling grid (i.e. the case considered in Section 4.2.) Although not exact matches, the lose of
information incurred by the sparse availability of yc obviously is not severe. The RECM data for this
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Figure 10: Estimates of g using various combinations of y! and y, for the case where SNRf =
SNR, = 3 and yi is available only near the edges of the interval. We see that at the boundaries,
the estimate given both y, and yf essentially makes use only of y;. Over the center of the interval
where y! is absent, g({f, c}) follows §({c}) closely.

experiment are provided in Table 5. It is useful to compare this information with the corresponding
results for the example considered in Section 4.2 where we had the same SNR structure but full
data for both y, and yf. At fine scales, the story for this case is much the same as in that previous
example with the data providing little useful information at scales 5 and finer. At scales 3 and 4 a
comparison of Tables 5 and 4 indicate that the sparse availability of y, is reflected in smaller values
of IIm({c}) and Hm ({If, c}). From the first columns of these tables we see that the presence of both
y, and yf results in comparable ability to recover detail at these coarser scales regardless of the
availability of the coarse data. When y, is the only source of information, the relative reduction in
variance drops rather sharply for the sparse data scenario as is seen by examining the third column
of Tables 5 and 4.

Roughly speaking, what these results show is that the availability of a dense set of coarse-scale
data does not change the resolution at which reconstruction can be performed but, we obviously
can perform additional averaging using these additional data points, resulting in enhanced variance
reduction as seen in Table 4. That is, if we have several essentially redundant measurements at
an SNR of 4, their combined effect is to enhance the apparent SNR as compared to the coarsely
sampled case. In this sense, a fairer comparison is that between the example introduced in this
section, with high quality, but sparsely sampled coarse resolution data with the example considered
in Section 4.1 which involved lower quality, but densely sampled coarse resolution data (in both
cases full-coverage, densely sampled fine scale data with SNRf = 1 are available). In particular, by
examining the values of IIm({c}) in Tables 5 and 3, we see that the value of the high SNR, sparse
data set y, is about equal to that of the low SNR, full data set as measured by the information in
the RECM.
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Figure 11: Residual error covariance information for the case of SNR! = SNRc = 3 with yf
available only near the ends of the interval. For scales 3 and 4, (a)-(c) indicate that at the ends of
the interval, the variance reduction given both yf and y, is equal to that given only yf . Alternatively,
y, impacts the RECM data primarily in the middle of the interval. In (a)-(c), there is some active
sensor fusion taking place as there exists shifts at these scales for which II({If, c}) dominates both
l({f}) and n({c). From (d), it is observed that y, has significant impact relative to yf in

lowering the variance of the coarsest scaling coefficient estimates at shifts away from either end of
the interval.
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Figure 12: The space-varying, optimal scale of reconstruction for r = 0.45 given (1) the complete
set of data y. and (2) the fine scale data y! near either end of the interval
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Figure 13: Plot of g (solid line) versus g0.45 (dashed line)
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Figure 14: Space-varying optimal scale of reconstruction as a function of r. The horizontal axis
represents the shift n at the finest scale, Mg = 7 , the vertical axis is the value of r, and the grey
tones represent the finest scale of resolution supported by the data at shift n using threshold r.
Darker colors indicate finer scales.
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(a) §({f,c}) for full data case (solid line) (b) §({c}) for full data case (solid line)
and case where y, is available on a sparse and case where y, is available on a sparse
grid (dashed line) grid (dashed line)

Figure 15: Estimates of g using various combinations of data sets for the decimated data experi-
ments
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Scalem Im ({f, c}) IIm ({f}) Hm({c}) l m({f}{f, c})

7 0.0049 0.0047 0.0002 0.0002

6 0.0618 0.0600 0.0016 0.0020

5 1.2653 1.1785 0.0857 0.0919

4 19.6851 18.4934 1.8335 1.5399

3 64.4081 60.5813 18.9536 10.0784

3 98.5868 96.7171 94.4320 58.5045

Table 5: Percent relative error variance reduction for the inversion with SNRf = 1, SNRC = 4
and Yc sparsely sampled. Here the sparse availability of Yc serves to offset the information content
generated by its high SNR. The overall utility of the coarse data set here is about the same as
was the case in the densely sampled, low SNR experiment. Based upon the data in the first three
columns, we do see some degree of active sensor fusion taking place for the coarsest scaling and
wavelet coefficients; however, the value of Yc alone is practically nil at scales finer than 3.

5 Conclusions and Future Work

In this paper, we have presented an approach to the solution of linear inverse problems based
upon techniques drawn from the fields of multiscale modeling, wavelet transforms, and statistical
estimation. We begin with a system of noisy, linear integral equations describing the relationship
between several sets of observed data, yi, and the function to be estimated, g. This formulation is
particularly useful in describing the situation where there exists a suite of measurements each of
which conveys information about the behavior of g on different scales. After discretization, wavelet
methods are used to transform the problem from real-space to scale-space. A maximum a posteriori
(MAP) estimator serves as the inversion algorithm and produces an estimate not of g, but of its
wavelet transform, 7. Regularization is achieved via a statistical model of -y which also provides
a means of capturing any available prior information regarding the structure of g. The structure
of this model allows us considerable flexibility in capturing the statistical structure of g, including
the incorporation of scale-varying statistics. To illustrate our methods, we have used one of many
possible statistical models, namely one that has the 1/f-like fractal structure that is often posited
as a meaningful model for natural phenomena. Moreover, this model leads to regularization that
is quite similar in nature to traditional, smoothness-based regularization approaches.

Our approach makes extensive use of scale-space in the analysis of linear inverse problems.
By introducing the notion of a relative error covariance matriz (RECM), we have developed a
quantitative tool for understanding quite precisely the various ways in which data from a multitude
of sensors contribute to the final reconstruction of g. We demonstrate a method for determining
the optimal level of detail to include in the estimate of g as a function of spatial location. The
RECM explicitly provides a means of capturing the way in which this level is affected by changes
in levels of uncertainty in the different sources of data and the sampling structure defining how the
data is distributed in space. Also, the incremental benefits associated with the addition of data
from another sensor is readily explored using the RECM. Finally, we have shown the use of this
quantity in describing the process of multisensor data fusion in a wavelet setting.
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The RECM analysis can be of great use in the design of inversion experiments. Because the

relative error covariance matrix is not a function of the data, one can evaluate and therefore alter
the experimental configuration prior to actually collecting data. Moreover, having settled on the
characteristics of the data sources, the RECM can be used to understand precisely where in a
parameterization of g (i.e for which degrees of freedom) the data contributes useful and significant
information. Indeed, the relative error covariance provides a useful method for pruning a multiscale
model of g in response to the information present in the data.

The vehicle for demonstrating our techniques has been a t wo-channel deconvolution problem
configured to mirror many of the characteristics associated with more general linear inverse prob-
lems. In addition to performing the RECM analysis, our examples highlight the ability of a wavelet-
based approach to handle non-full data sets. Specifically, we have considered the case where one
source of information was available only near the boundaries of the interval. Additionally, we show
how wavelet techniques are a natural means for coping with a sparsely sampled data set.

We note that the general methodologies presented here are not restricted to the ID decon-
volution problems. Our techniques can be used without alteration for one dimensional problems
involving non-convolutional kernels. Indeed, in [43], we consider a non-convolutional inverse con-
ductivity problem similar to those found in geophysical exploration. Also, the extension of our
approach to multidimensional inversions can be accomplished quite easily and should be of great
use in the analysis and solution of 2D and 3D problems which typically exhibit more severe forms
of all the difficulties found in the ID case.

Although not considered extensively in this work, the multiscale, statistically based inversion
algorithms admit highly efficient implementations. As demonstrated by the convolution kernels in
Section 4 and as discussed by Beylkin et. al in [4], wavelet transforms of many operator matrices,
(, contain very few significant elements so that zeroing the remainder lead to highly efficient
algorithms for applying () to arbitrary vectors. These sparseness results imply that the least-
squares problems defined by the wavelet-transformed normal equations also have a sparse structure.
Thus computationally efficient, iterative algorithms such as LSQR [48] can be used to determine
A. In [43], we utilize the theory of partial orthogonalization [53] in the development of a modified
form of LSQR. Our algorithm is designed for the efficient and stable computation of j' as well as
arbitrary elements in the error covariance and relative error covariance matrices.

Finally, in this paper, we have presented a batch-style inversion routine in which the normal
equations are formulated and solved to estimate the entire wavelet transform of g all at once. A
natural extension of this "static" MAP estimator is a scale recursive inversion routine that generates
4(m) recursively starting at the coarsest scale and adding detail only where such information is
supported by the data. We note that such algorithms do in fact exists for those problems in which
one directly observes g (or coarse scale versions of g) in additive noise [12,13,41]; however, extension
of this work to arbitrary linear inverse problems requires the development of a more general class
of multiscale models which allow for observations in the form of linear functionals of g.
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