104 research outputs found

    Digital Hologram Image Processing

    Get PDF
    In this thesis we discuss and examine the contributions we have made to the field of digital hologram image processing. In particular, we will deal with the processing of numerical reconstructions of real-world three-dimensional macroscopic objects recorded by in-line digital holography. Our selection of in-line digital holography over off-axis digital holography is based primarily on resolution. There is evidence that an off-axis architecture requires approximately four times the resolution to record a hologram than an in-line architecture. The high resolution of holographic film means this is acceptable in optical holography. However, in digital holography the bandwidth of the recording medium is already severely limited and if we are to extract information from reconstructions we need the highest possible resolution which, if one cannot harness the functionality of accurately reconstructing phase, is achieved through using an in-line architecture. Two of the most significant problems encountered with reconstructions of in-line digital holograms include the small depth-of-field of each reconstruction and corruptive influence of the unwanted twin-image. This small depth-of-field makes it difficult to accurately process the numerical reconstructions and it is in this shortcoming that we will make our first three contributions: focusing algorithms, background and object segmentation algorithms and algorithms to create a single image where all object regions are in focus. Using a combination of our focusing algorithms and our background segmentation algorithm, we will make our fourth contribution: a rapid twin-image reduction algorithm for in-line digital holography. We believe that our techniques would be applicable to all digital holographic objects, in particular its relevant to objects where phase unwrapping is not an option. We demonstrate the usefulness of the algorithms for a range of macroscopic objects with varying texture and contrast

    Digital Hologram Image Processing

    Get PDF
    In this thesis we discuss and examine the contributions we have made to the field of digital hologram image processing. In particular, we will deal with the processing of numerical reconstructions of real-world three-dimensional macroscopic objects recorded by in-line digital holography. Our selection of in-line digital holography over off-axis digital holography is based primarily on resolution. There is evidence that an off-axis architecture requires approximately four times the resolution to record a hologram than an in-line architecture. The high resolution of holographic film means this is acceptable in optical holography. However, in digital holography the bandwidth of the recording medium is already severely limited and if we are to extract information from reconstructions we need the highest possible resolution which, if one cannot harness the functionality of accurately reconstructing phase, is achieved through using an in-line architecture. Two of the most significant problems encountered with reconstructions of in-line digital holograms include the small depth-of-field of each reconstruction and corruptive influence of the unwanted twin-image. This small depth-of-field makes it difficult to accurately process the numerical reconstructions and it is in this shortcoming that we will make our first three contributions: focusing algorithms, background and object segmentation algorithms and algorithms to create a single image where all object regions are in focus. Using a combination of our focusing algorithms and our background segmentation algorithm, we will make our fourth contribution: a rapid twin-image reduction algorithm for in-line digital holography. We believe that our techniques would be applicable to all digital holographic objects, in particular its relevant to objects where phase unwrapping is not an option. We demonstrate the usefulness of the algorithms for a range of macroscopic objects with varying texture and contrast

    Enhanced robustness digital holographic microscopy for demanding environment of space biology

    Get PDF
    We describe an optimized digital holographic microscopy system (DHM) suitable for high-resolution visualization of living cells under conditions of altered macroscopic mechanical forces such as those that arise from changes in gravitational force. Experiments were performed on both a ground-based microgravity simulation platform known as the random positioning machine (RPM) as well as during a parabolic flight campaign (PFC). Under these conditions the DHM system proved to be robust and reliable. In addition, the stability of the system during disturbances in gravitational force was further enhanced by implementing post-processing algorithms that best exploit the intrinsic advantages of DHM for hologram autofocusing and subsequent image registration. Preliminary results obtained in the form of series of phase images point towards sensible changes of cytoarchitecture under states of altered gravity

    Roadmap on holography

    Get PDF
    From its inception holography has proven an extremely productive and attractive area of research. While specific technical applications give rise to 'hot topics', and three-dimensional (3D) visualisation comes in and out of fashion, the core principals involved continue to lead to exciting innovations in a wide range of areas. We humbly submit that it is impossible, in any journal document of this type, to fully reflect current and potential activity; however, our valiant contributors have produced a series of documents that go no small way to neatly capture progress across a wide range of core activities. As editors we have attempted to spread our net wide in order to illustrate the breadth of international activity. In relation to this we believe we have been at least partially successful.This work was supported by Ministerio de Economía, Industria y Competitividad (Spain) under projects FIS2017-82919-R (MINECO/AEI/FEDER, UE) and FIS2015-66570-P (MINECO/FEDER), and by Generalitat Valenciana (Spain) under project PROMETEO II/2015/015

    High Quality 3D Shape Reconstruction via Digital Refocusing and Pupil Apodization in Multi-wavelength Holographic Interferometry.

    Full text link
    Multi-wavelength holographic interferometry (MWHI) has good potential for evolving into a high quality 3D shape reconstruction technique. There are several remaining challenges, including 1) depth-of-field limitation, leading to axial dimension inaccuracy of out-of-focus objects; and 2) smearing from shiny smooth objects to their dark dull neighbors, generating fake measurements within the dark area. This research is motivated by the goal of developing an advanced optical metrology system that provides accurate 3D profiles for target object or objects of axial dimension larger than the depth-of-field, and for objects with dramatically different surface conditions. The idea of employing digital refocusing in MWHI has been proposed as a solution to the depth-of-field limitation. One the one hand, traditional single wavelength refocusing formula is revised to reduce sensitivity to wavelength error. Investigation over real example demonstrates promising accuracy and repeatability of reconstructed 3D profiles. On the other hand, a phase contrast based focus detection criterion is developed especially for MWHI, which overcomes the problem of phase unwrapping. The combination for these two innovations gives birth to a systematic strategy of acquiring high quality 3D profiles. Following the first phase contrast based focus detection step, interferometric distance measurement by MWHI is implemented as a next step to conduct relative focus detection with high accuracy. This strategy results in ±100mm 3D profile with micron level axial accuracy, which is not available in traditional extended focus image (EFI) solutions. Pupil apodization has been implemented to address the second challenge of smearing. The process of reflective rough surface inspection has been mathematically modeled, which explains the origin of stray light and the necessity of replacing hard-edged pupil with one of gradually attenuating transmission (apodization). Metrics to optimize pupil types and parameters have been chosen especially for MWHI. A Gaussian apodized pupil has been installed and tested. A reduction of smearing in measurement result has been experimentally demonstrated.Ph.D.Mechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91461/1/xulium_1.pd

    Technology selection for inline topography measurement with rover-borne laser spectrometers

    Get PDF
    This work studies enhancing the capabilities of compact laser spectroscopes integrated into space-exploration rovers by adding 3D topography measurement techniques. Laser spectroscopy enables the in situ analysis of sample composition, aiding in the understanding of the geological history of extraterrestrial bodies. To complement spectroscopic data, the inclusion of 3D imaging is proposed to provide unprecedented contextual information. The morphological information aids material characterization and hence the constraining of rock and mineral histories. Assigning height information to lateral pixels creates topographies, which offer a more complete spatial dataset than contextual 2D imaging. To aid the integration of 3D measurement into future proposals for rover-based laser spectrometers, the relevant scientific, rover, and sample constraints are outlined. The candidate 3D technologies are discussed, and estimates of performance, weight, and power consumptions guide the down-selection process in three application examples. Technology choice is discussed from different perspectives. Inline microscopic fringe-projection profilometry, incoherent digital holography, and multiwavelength digital holography are found to be promising candidates for further development.This research received no external funding

    Roadmap on holography

    Get PDF
    From its inception holography has proven an extremely productive and attractive area of research. While specific technical applications give rise to 'hot topics', and three-dimensional (3D) visualisation comes in and out of fashion, the core principals involved continue to lead to exciting innovations in a wide range of areas. We humbly submit that it is impossible, in any journal document of this type, to fully reflect current and potential activity; however, our valiant contributors have produced a series of documents that go no small way to neatly capture progress across a wide range of core activities. As editors we have attempted to spread our net wide in order to illustrate the breadth of international activity. In relation to this we believe we have been at least partially successful
    corecore