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Kinetics of Brownian Transport

Jannes Gladrow

The rate of progress of Brownian processes is not easily quantifiable. An important mea-

sure of the ”speed” of Brownian motion is the mean first-passage time (FPT) to a given

distance. FPTs exist in various flavours including exit- and transition-path times, which,

for instance, can be used to quantify the length of reaction paths in folding transitions

in molecules such as DNA. Due to their inherently stochastic nature, measurements of

any FPTs require repeated experiments under controlled conditions. In my thesis, I sys-

tematically explore FPTs in various contexts using a custom-built automated holographic

optical tweezers (HOT) setup. More precisely, I investigate transition- and exit-path-time

symmetries in equilibrium systems and demonstrate the breakdown of the symmetry in

out-of-equilibrium systems. Experimental data from folding DNA-hairpins show that the

principles established on the mesoscale extend well into the molecular regime.

In Kramers escape problem, the reciprocal of the escape rate corresponds to the time

of first-passage to leave the initial state. A lower bound for the achievable FPT, e.g. of

the reaction coordinate of a folding molecule, therefore corresponds to a speed-limit

of the ensemble reaction rate. Using my setup, I show that certain barrier shapes can

substantially lower the escape time across the barrier without changing the overall energy

balance. This result has deep implications for reaction kinetics, e.g. in protein folding.

Furthermore, I investigate the role of entropic forces in Brownian transport, show that

hydrodynamic drag plays a crucial role in Brownian motion in confined systems, and give

an experimental realisation of Fick-Jacobs theory.

The thermodynamic applications of HOTs considered here necessitate the creation

of fine-tuned optical landscapes, which requires precise phase-retrieval to compute the

necessary holograms. In order to address this problem, I explore novel algorithms based

on deep conditional generative models and test whether such models can assist in find-

ing holograms for a given desired light distribution. I compare several different models,

including conditional generative-adversarial networks and conditional variational autoen-

coders, which are trained on data sets sampled on the HOT setup. Furthermore, I propose

a novel forward-loss-minimising architecture and demonstrate its excellent performance

on both validation and artificially-created test data sets.





This thesis is dedicated to my family.
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Chapter 1

Theoretical Foundations

” Nothing in life is certain except death, taxes and the second law of thermodynamics.”

- Seth Lloyd [1]

Any comprehensive quantitative description of biological systems will heavily draw

on ideas from thermodynamics.

As a matter of fact, thermodynamics has seen a revival in the past thirty years spurred

on by the development of small-scale stochastic thermodynamics, molecular biophysics,

and a general search for principles in non-equilibrium systems. A prominent example is

the recent quest for a ”thermodynamic niche of life” in out-of-equilibrium systems [2–5].

In this niche, so the thinking goes, the highly improbable initial formation of reproduc-

ing structures that would then go on to evolve into all life (Abiogenesis) becomes more

probable, more plausible. Gradients in intensive thermodynamic variables, such as tem-

perature [6–8] and proton-concentration [9, 8] have been touted as candidates for this

niche or aspects of it. Extreme instances of such gradients can indeed be found in nature,

for instance near underwater volcanoes.

Like many ideas in the history of science, the idea of a thermodynamic niche is not

entirely novel but rather the implication or extension of previous research, notably that

of Ilya Prigogine and his work on dissipative structures and the thermodynamic arrow

of time [10, 11]. Ultimately, however, the core paradoxon in this debate, the apparent

thermodynamic viability of spontaneous pattern-formation, can be traced back to the be-

ginnings of thermodynamics; it is closely related to early discussions around Loschmidt’s

paradox and Boltzmann’s H-theorem [12]. Remnants of this debate resurface here and

there in modern thermodynamics and even throughout this thesis, whenever questions of

reversibility of thermodynamic processes are considered.
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In any case, what seems clear is that living beings are curiously well-ordered entities,

which seemingly defy popular interpretations of the second law: Can ”disorder” really

never decrease? Decreases in (local) entropy are, in fact, locally achievable at the expense

of energy. It is for this reason that all living matter needs to constantly feed on (chemical)

energy in order to be able to orchestrate its internal flows of matter and information

and thereby, to quote Schrödinger, evade the decay to the state of maximum entropy -

equilibrium [13].

The machinery of life can only hope to maintain this dynamic stability, if all its crucial

molecular components, in particular cellular proteins, perform their respective tasks

relatively seamlessly and with some reliability. An important example is the process by

which proteins are produced in a cell: The ribosome pieces together long chains of amino

acids according to a plan encoded in the language of messenger RNA, which in turn is

translated from DNA in the genome. Once printed, these chains then need to fold into

functional proteins, which happens spontaneously if and only if their functional forms

correspond to thermodynamically favourable states. This means that the entire process

of folding is likely to commence and proceed under many different initial configurations

of the amino acid chain and the molecules of the surrounding medium. Due to this

fundamental importance of all things molecular in cells, I believe that a thermodynamic

description of its constituent microscopic systems is an important contribution to a wider

”theory of life” [14].

Classical thermodynamics was originally developed for macroscopic systems that

are close enough to a thermodynamic limit, such that microscopic fluctuations could

be neglected. In its modern form, however, thermodynamic concepts are successfully

applied to systems on the meso- and molecular-scale where fluctuations play a crucial

role and have become a subject of interest in its own right [15, 16].

The purely statistical nature of the second law becomes apparent on smaller scales

and has been conceptualised in a series of fluctuation theorems beginning in the early

1990s and 2000s [17–22]. Generally, fluctuation theorems relate the probability of forward

(entropy producing) to backward (entropy consuming) processes. Among other things,

this means that any forward process will see its backward counterpart be realised from

time to time.

But if even the entropy (production) necessarily fluctuates on small scales, how can

for instance molecular motors such as kinesin, myosin or dynein hope to perform any

meaningful degree of work? And how do biological entities on all scales deal with the

inherent uncertainty in sensing, copying DNA, or any molecular process?
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While the ”how” of molecular motors from a thermodynamics point-of-view is usually

answered by pointing to power-stroke or ratchet-like mechanisms [23–25, 21], the question

of ”how much” work such motors can carry out with some certainty is subject of recent

research activity. Based on large-deviation theory, a number of fundamental uncertainty

relations have been derived for non-equilibrium processes [26–28], that seek to answer

this question.

Notwithstanding the fluxes of material and energy, every process that involves in-

formation, ranging from cell-to-cell communication to error-correction of DNA-to-RNA

or RNA-to-protein coding will involve a degree of thermodynamics and its extension in

information theory [29–33]. A famous and early example is John Hopfields influential

paper on kinetic proofreading [34], where thermodynamics of information lead to genuine

biological insights.

Due to these deep connections into biophysics and the theory of information, stochas-

tic thermodynamics seems very much alive as a research discipline.

This thesis is concerned with some of the thermodynamic concepts underlying first-

passage times. First-passage times are an important measure of the ”speed” of Brownian

motion. For instance, one could ask how long it takes for a neurotransmitter to cross the

synaptic cleft separating pre- and post-synaptic neurons. Since Brownian motion is a

stochastic process, this first-passage time will be of stochastic nature too. It is therefore

important to utilise some statistical machinery: One could for instance measure the mean

first-passage time of crossing or even the full distribution of times. In any case, repeated

experimental trials are necessary to collect enough data on this variable. This, in turn,

necessitates an experimental setup, which is able to repeat in sequence or parallel an

experiment 1,000 or even 1,000,000 times under the same conditions.

In my thesis, I construct a microscope equipped with an automated holographic opti-

cal tweezers setup, which enabled me to study first-passage times of Brownian particles in

great detail with a high degree of control over relevant conditions.

The system is endowed with an autofocus routine, online particle localization routines,

and an efficient holographic engine, which allows for active feedback control or the human

operator to shape the distribution of light intensity in the microscope almost in realtime.

Even though I worked with different techniques, the bulk of this thesis has been carried

out on the holographic optical tweezers setup, so that this document is firmly focused

on holography and the physical theory used to describe Brownian motion - stochastic

thermodynamics.
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1.1 Stochastic thermodynamics

The idea of stochastic dynamics has its roots in the study of Brownian motion, named after

its discoverer, Robert Brown. In 1828, Brown, a botanicist, studied the erratic movements

of tiny objects (pollen) immersed in a fluid under a microscope and gave a phenomeno-

logical description of Brownian motion. It fell to a mathematical economist named Louis

Bachelier to provide a comprehensive mathematical description of the time-evolution

of the probability density of Brownian random walks in 1900 [35]. Incidentally, Bachelier

also laid the groundwork for modern theories of financial markets, which (still) seem to

be making heavy use of stochastic processes to manage risk and predict returns [36, 37]. I

find it noteworthy that Bachelier also derived an early version of what would later become

known as the Chapman-Kolmogorov equation.

Five years later, Albert Einstein derived an equation, which again, governed the time-

evolution of the density but this time explicitly in the context of diffusion [38]. Einstein is

also credited with being the first to provide an explicit equation of the diffusion constant

of a particle suspended in a liquid D “ kB T {γ, with kB denoting Boltzmann’s constant

and γ denoting the friction coefficient of the particle.

The polish physicist Marian Smoluchowski had independently arrived at the same

equation of D and published his results in 1906, such that the equation became known as

Einstein-Smoluchowski relation, in what only superficially appears to be an example of

fair credit assignment. In fact, a physicist named William Sutherland had arrived at this

equation already in 1904 [39].

A few years later, in 1908, Paul Langevin published a paper that sought to describe

Brownian motion using a radically new concept - a stochastic differential equation. This

equation was not designed to be solvable in the classical sense, but it can nevertheless

lead to insights into the statistics of the underlying process and dependent variables.

Even though, perhaps the full extent of the discovery was not clear at the time, Langevin’s

concept would inspire a host of mathematical, economical and physical research activity

even more than 100 years later.

Generally speaking there are two complementary and equivalent descriptions in

stochastic dynamics: (1) Langevin’s microscopic description based on equations of mo-

tions that seek to describe the statistical properties of trajectories, and (2) Einstein’s

probabilistic description of the evolution of an ensemble of the system in question.
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1.1.1 Langevin equation

The key idea in the Langevin picture of stochastic motion is to replace the set of equations

of motion of a very high-dimensional, chaotic, yet deterministic system by a few or even a

single stochastic equation of motion [40]. Of course, this is particularly useful whenever

only a subset of variables can be tracked.

For instance, instead of tracking the momenta p⃗i and positions x⃗i of all water molecules

in a bath, one replaces the collective interaction with a subsystem of interest, such as a

colloid, by a stochastic force term ξ⃗ptq. It is this ignorance towards the neglected degrees

of freedom that is a major source of entropy. The relation between ignorance and entropic

effects will become relevant in Sec. 3.3.1.

In any case, the statistical properties of this stochastic force ξ⃗ptq need to be specified,

since they decide if the equations describe the entire system in a statistically correct way.

Many physical systems that are studied in this fashion fulfil the condition of ergodicity,

that is, averages can either be taken over an infinite number of different initial conditions

(ensemble) or over a single, but infinitely long trajectory. In such cases, ensemble x¨yens

and temporal averages x¨yT are interchangeable. All systems considered in this thesis are

ergodic and hence I will not specify the averaging procedure.

Let the subsystem of interest have a mass m and the surrounding fluid a temperature T .

Linear response theory provides a framework in which many of the quantities of interest

in this thesis can be derived. The central assumption here is the existence of a response

function χptq that fulfils

xxi ptqy “

t
ż

´8

dt 1χi , j pt 1
´ tq f j pt 1

q (1.1)

where f j ptq represents a force that perturbs the system at time t .

The statement in Eq. (1.1) is often written in the Fourier domain using the susceptibility

χ̂, x̂i pωq “ χ̂i , j pωq f̂ j pωq.

A cautionary note in the beginning: I assume here the subsystem to be far away from

any obstacles or boundaries, a condition that is blatantly violated in microfluidic channels,

that are investigated in this thesis. However, under these simplifying assumptions, effects

related to the hydrodynamics of the surrounding fluid can be conveniently summarised

in a single constant, the friction coefficient. Much research activity has been devoted to

investigating effects specifically arising from the breakdown of this assumption [41–45].

For the sake of generality, I consider a general, possibly non-Newtonian fluid with a

shear modulus Ĝpωq, such as starch solution or cellular cytoplasm [46]. From a dynamics
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point-of-view, the crucial property of non-Newtonian fluids is the path-dependence of

movements and velocities of objects. This path dependence is summarised in a viscoelas-

tic kernel αptq, which is convolved in time with the momentum variable of the degree of

freedom under consideration (see e.g. [47]).

A generalised Stokes formula relates the Fourier-transformed shear modulus Ĝ to the

Fourier-transformed viscoelastic kernel α̂ of the medium, [48]

α̂pωq “ A
Ĝpωq

´iω
, (1.2)

where A denotes a geometric factor. The same factor appears in the drag coefficient

γ “ A η of the subsystem. In the case of a sphere of radius R in a purely Newtonian

medium, Eq. (1.2) simplifies to Stokes’ formula γ“ 6πRη with η representing the viscosity

of the medium. This follows from the fact, that in a purely Newtonian medium, the shear

modulus and hence the kernel is purely imaginary α̂pωq “ iAωη since a Newtonian liquid

lacks any elastic response.

Within the boundaries of the linear response framework, the stochastic version of

Newton’s equations of motion of the subsystem read [49, 50]

dp⃗

dt
ptq “ ´

1

m

t
ż

´8

dt 1αpt 1
´ tqp⃗pt 1

q` f⃗extp⃗xptq, tq` ξ⃗ptq (1.3)

m
dx⃗

dt
ptq “ p⃗ptq (1.4)

where x⃗ and p⃗ denote the position and momentum of the centre of mass of the

subsystem. The stochastic term ξ⃗ptq represents the collective effect of thermally-induced

collisions. In the temporal Fourier domain, the same set of equations read

iω ˆ⃗ppωq “ ´
1

m
α̂pωq ˆ⃗ppωq`

ˆ⃗fextp⃗x,ωq`
ˆ⃗
ξpωq (1.5)

miω ˆ⃗xptq “ ˆ⃗ppωq. (1.6)

The susceptibility can then be found by combining Eqs. (1.5) and (1.6) and reads

χ̂pωq “ pmω2 ` i α̂pωqωq
´1

, which I use further down. In later chapters, the external force

term that appears in Eq. (1.3), takes up the role of the force exerted by the optical tweezers.

Since the stochastic term ξ⃗ptq seeks to describe the collective effect of a great number

of collision events, its distribution must be close to a normal distribution on all timescales

that are relevant in this thesis (see discussion in Sec. 1.1.1). Thus, once the mean x⃗ξy “ µ⃗
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and covariance matrix x⃗ξ⃗ξT y “ S of this distribution are found, the statistical properties of

ξ⃗ptq „ N pµ⃗,Sq would be completely defined.

Interestingly, the scale of the fluctuations ξ⃗ is determined by the dissipative properties

of the surrounding medium. The Fluctuation-Dissipation Theorem (FDT) provides an

elegant and simple relation between the medium response and the correlator of the

Fourier transformation of the stochastic force, ˆ⃗
ξptq[51, 49]

x
ˆ⃗
ξi pωq

ˆ⃗
ξ

:

j pωqy “
2kB T

ω
δi j Imrα̂pωqs . (1.7)

where the : symbol marks the complex conjugate. Such a relation always holds in a

steady state and within the realm of applicability of linear response theory. While FDT’s

certainly hold in equilibrium, they may also hold in non-equilibrium steady states, albeit,

potentially only for a different choice of variables [52].

Equation (1.7) implies another FDT, which determines the scale of fluctuations in the

position variable of the subsystem in relation to its susceptibility (see [49]),

x ˆ⃗xi pωq ˆ⃗x:

j pωqy “
2kB T

ω
δi j Imrχ̂pωqs (1.8)

Accordingly, for a purely viscous medium, the correlator of the noise reads

x
ˆ⃗
ξi pωq

ˆ⃗
ξ

:

j pωqy “ 2kB T A ηδi j (1.9)

which implies

x⃗ξi pt q⃗ξ j p0qy “ 2kB T A ηδi jδptq. (1.10)

As for the correlator of the position variables x⃗ in a Newtownian fluid, Eq. (1.8) implies

xx⃗i pt q⃗x j p0qy “
2kB T

A 2η2
δi j

´

e´
A η
m t

`A ηt
¯

t"1
Ñ

2kB T

A η
tδi j (1.11)

A comparison of the later term with the phenomenological definition of diffusion xx⃗pt q⃗xp0qy “

6Dt yields the Einstein-Smoluchowski relation discussed earlier,

D “
kB T

γ
(1.12)

with γ“ A η as introduced before.
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The phenomenological definition of the diffusion constant used above derives from a

more general description that involves the velocity autocorrelation function (VACF) (see

e.g. [53, 54])

D ”

8
ż

0

dt 1
xv⃗pt 1

qv⃗T
p0qy. (1.13)

Crucially, the VACF fulfils a time-reversal symmetry (see e.g. [55]), meaning that

xv⃗pt 1
qv⃗T

pt2
qy “ xv⃗pt2

qv⃗T
pt 1

qy. (1.14)

This enables one to write

xx2
ptqy “

ż t

0
dt 1

ż t

0
dt2

xvxpt 1
qvxpt2

qy

“ 2

ż t

0
dt 1

ż t 1

0
dt2

xvxpt 1
qvxpt2

qy

which implies Bt xx2ptqy “ 2
şt

0 dt 1 xvxpt 1qvxp0qy. For δ-correlated velocities, I retrieve

xx2ptqy “ 2tDx , which leads back to the result in Eq. (1.11). Such time-reversal symme-

tries can breakdown under certain conditions in out-of-equilibrium systems. I refer the

interested reader to my recent paper [56].

The VACF is related to the time-correlation of the random noise, which leads to another

form of the above FDT [57]

D “
1

2A η

8
ż

´8

dt 1
x⃗ξpt 1

q⃗ξT
pt 1

qy. (1.15)

And, as a final remark, the above equation can also be written in matrix form, which is

helpful in systems, where each degree of freedom experiences, for instance, a different

temperature. In such a case, it may be a good idea to absorb the deviation of ξ⃗ in Eq. (1.10)

into a forcing matrix F, such that ξ⃗ptq “ Fξ⃗0 with ξ⃗0 having unit variance. The diffusion

matrix D can then be written as

D “
1

2
FFT . (1.16)
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1.1.2 Overdamped limit

The VACF lends itself as a toe-hold to another crucial concept: overdamped dynamics.

In this thesis, I mostly deal with dynamics of colloidal particles, which are on the order

of 100nm to 2µm. In the following, I want to briefly discuss the relevant timescales for

colloidal dynamics in aqueous (and thus purely viscous) media.

While the collision rate of water molecules with the colloid is on the order of 1 THz [58,

59], the inertia of the colloid itself decays on a slower time scale, τp “ m{γ. Disregarding

hydrodynamic details, such as hydrodynamic resonances, the VACF of a colloid in water

decays as a single exponential over τp „ 100 ns [60].

However, the relevant time-scales studied in this thesis are seconds, if not minutes.

The relatively fast decay of the VACF effectively means that the velocity v⃗ptq is so erratic,

that it is not relevant to the slow dynamics of x⃗ considered here. This can be shown in a

more formal way by considering the solution to Eq. (1.3) for α̂pωq “ iγω

vxptq “ v0e
´ t

τp `

?
2Dx

τp

t
ż

0

dt 1 e
pt´t 1q

τp ξxpt 1
q (1.17)

The equation shows that the velocity behaves like an Ornstein-Uhlenbeck stochastic

process, with an internal decorrelation time τp . In the limit of τp approaching zero, the

VACF will therefore converge to a white-noise correlator [37], that is

xvxptqvxp0qy “
Dx

τp
e

´
| t |

τp
τp Ñ0
Ñ Dδptq. (1.18)

A δ-correlation indicates that the underlying variable is a white-noise process. The

Langevin equation can therefore be rewritten as 9xptq “ d{dt
`şt

0 dt 1 vpt 1q
˘

«
?

2Dxξxptq

with ξxptq denoting unit-variance Gaussian white-noise, eliminating the velocity.

Integrating out the fast variable has a topological consequence: The dynamics of the

reduced system are one-dimensional and of first-order only. The system is therefore

bereft of its ability to oscillate. Instead, its only remaining type of (average) dynamics is a

creeping motion, a drift, driven by the force term f . Such a change in topology can have

thermodynamical consequences that I explore in chapter 3.1.3.

I also refer the interested reader to my papers on broken detailed balance in polymer

dynamics [61, 56], where the question of topology of phase-space plays an important role.
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The overdamped regime is relevant in much of biophysics and describes even dynam-

ics on the molecular scale rather well. In the following I give a brief overview of small

sample of the relevant literature.

Stochastic dynamics in biophysics

Stochastic dynamics, in particular the overdamped regime, are prevalent in biophysics and

of importance to the topics discussed in this thesis and hence deserve a short discussion.

For instance, single-molecule measurements of folding dynamics of proteins and

DNA are typically characterized using overdamped stochastic dynamics [62–67]. Results

from molecular dynamics (MD) simulations give an impression of the magnitude of VACF

decay times in molecular systems: velocities of individual atoms in the Lysine side chain

of Ribonuclease A (RNase A), a much studied protein [68], decorrelate over a range of

0.1 ps to „ 300 ps [69]. The timescale of decorrelation is influenced by local friction

and, importantly, the timescale of escape from local potential minima. Any motion

that proceeds on a (much) longer timescale than „ 100 ps is found to be dominated by

timescales set by the free energy landscape.

On the experimental side, Förster Resonance Energy Transfer (FRET) has been exten-

sively used to study barrier-crossing dynamics of the folding process [62, 64–66]. The

technique allows for a quantification of distance and relative orientation of two fluo-

rophores on the scale of roughly 1-10 nm. If one attaches these fluorophores onto parts

of a protein (or DNA) that are far apart in the unfolded, but close in the folded state, the

FRET signal becomes a one-dimensional reporter on the progress of folding.

With this technique, William A. Eaton and his group studied the folding rate and

transition-path time of several proteins in detail. Overall, folding rates derived from

overdamped dynamics seem to fit the data (Kramers rates, see Sec. 1.2.3). Time-resolved

force spectroscopy based on optical tweezers has been successfully applied in studies

of the folding pathways of proteins and DNA [63, 70–74]. Measurements of ribosomal

stepping times along RNA have led to insights into the molecular mechanics of gene

translation [75]. The same technique has also been used to show a transition-path time

symmetry in equilibrium folding and unfolding transitions of DNA-hairpins [72]. Recently,

local velocities along folding trajectories of DNA have been measured with high resolution

of the folding coordinate, which shed light on the frequency of recrossing events in relation

to all free-energy barrier crossings [76].

The focus on transition-path times and folding rates in these studies derives from

a desire to study transition paths and the thermodynamics of folding. FRET and other

techniques, however, do not capture the full phase space but only a projection along
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some reaction coordinate. Crucially, this does not imply that the folding process proceeds

along a single pathway in phase space. The question of pathway multiplicity in molecular

folding has been recently debated in the literature [67, 77–81].

1.1.3 Fokker-Planck equation

The Fokker-Planck equation (FPE) describes the time evolution of the probability mass

of an ensemble of points in phase space of the subsystem (here) under the influence of

Gaussian white noise. Depending on whether fast-decorrelating variables of the subsys-

tem, such as velocities, have been integrated out, the FPE is sometimes referred to as

Smoluchowski equation. I adopt here a naming convention used in mathematics which

does not make this distinction and always refers to probability-governing equations as

FPE’s.

The idea to describe the dynamics of a probability instead of individual trajectories did

not originate in stochastic dynamics. Liouville’s equation in classical mechanics provides a

similar probabilistic description of the time evolution of an ensemble of initial conditions

under given equations of motion. In fact, following Robert Zwanzig [82], the FPE can

be directly obtained by adding a Langevin-style noise term to Liouville’s equation and

subsequent averaging.

The derivation is unusual in so far as it involves a probability distribution of a prob-

ability distribution. The first step is to write down Liouville’s equation with an addi-

tional noise term. For the sake of simplicity, I will assume here white-noise, such that

x⃗ξpt q⃗ξpt 1qT y “ 2kB Tγδpt ´ t 1q1. Liouville’s equation is essentially a conservation law for

the probability mass ψp⃗xq in the zero-noise limit. In this limit, the probabilistic aspect of

the time evolution arises solely from an initial distribution of initial conditions in phase

space. Liouville’s equation reads

Bψ

Bt
p⃗x, tq “ ´∇⃗ ¨

`

A⃗p⃗x, tqψp⃗x, tq
˘

. (1.19)

with A⃗ denoting the phase-space velocity, e.g. for ballistic movement in some potential

U , it reads A⃗ “
`

´∇⃗U ´γp⃗{m, p⃗{m
˘T

. I should clarify that x⃗ in this subchapter denotes

positions in phase-space.
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Now, Zwanzig adds the phase-space noise term ξ⃗PS “
`

ξ⃗ptq,⃗ 0
˘

, which appears as a

velocity

Bψ

Bt
p⃗x, tq “ ´∇⃗ ¨

``

A⃗p⃗x, tq` ξ⃗PSptq
˘

ψp⃗x, tq
˘

(1.20)

“ ´Lψp⃗x, tq´ ∇⃗ ¨
`

ξ⃗PSptqψp⃗x, tq
˘

. (1.21)

where L is the linear Liouville operator Lu “ ∇⃗ ¨
`

A⃗uu
˘

with A⃗u denoting the phase-space

velocities associated with u. The latter form of the equation indicates how the equation can

be solved, since it’s form is reminiscent of inhomogeneous linear differential equations,
dx
dt “ ´axptq` bptq. Such equations are solved using a variation of constants, i.e. xptq “

eat x0 `
şt

0 dt 1 eapt 1´tqbpt 1q. Applied to Eq. (1.21), this leads to

ψ p⃗x, tq “ e´Ltψ p⃗x,0q´

t
ż

0

dt 1
”

eLpt´t 1q∇⃗ ¨
`

ξ⃗PSpt 1
qψp⃗x, t 1

q
˘

ı

. (1.22)

Zwanzig then reinserts this equation into Eq.(1.21), and, after some algebra, takes the

average x¨y over the phase-space noise ξ⃗PS, which leads to

Bxψy

Bt
p⃗x, tq “ ´∇⃗ ¨

`

A⃗p⃗x, tqxψy p⃗x, tq
˘

` ∇⃗ ¨ D∇⃗xψy p⃗x, tq . (1.23)

The diffusion matrix here follows from Eq. (1.16) with x⃗ξPSpt q⃗ξT
PSpt 1qy “ 2Dδpt ´ t 1q. A

simple redefinition of xψy ” ρ then leads to the Fokker-Planck equation,

Bρ

Bt
p⃗x, tq “ ´∇⃗ ¨

`

A⃗p⃗x, tqρp⃗x, tq´ D∇⃗ρp⃗x, tq
˘

(1.24)

“ ´∇⃗ ¨ j⃗ p⃗x, tq . (1.25)

with j⃗ denoting the probability current. The form of Eq. (1.25) shows that the FPE really is

a conservation equation.

Importantly, for initial conditions x⃗pt0q “ x⃗0, the solution to the FPE is a conditional

probability density ρp⃗x, t |⃗x0, t0q which describes transitions p⃗x0, t0q Ñ p⃗x, tq rather than

states x⃗.

The FPE can be solved using various methods. For constant forces Apx, tq “ A and

diffusion matrices D, the solution is particularly simple and of use in later chapters. Under
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such conditions and initial conditions ρp⃗x1, t0 |⃗x0, t0q “ δ p⃗x1 ´ x⃗0q it reads [37]

ρ p⃗x1, t0 `∆t |⃗x0, t0q “ N ´1Exp

„

´
p⃗x1 ´ x⃗0 ´ A∆tq

T D´1 p⃗x1 ´ x⃗0 ´ A∆tq

2∆t

ȷ

(1.26)

with a normalisation factor N “
a

p4π∆tqd detrDs.

Detailed balance and microscopic irreversibility

The probability density behaves as an incompressible fluid, which has important con-

sequences. The probability current density j⃗ of an overdamped system in steady-state

(Btρ “ 0) must either be purely rotational, that is, divp j⃗ q “ ∇⃗ ¨ j⃗ “ 0 or zero everywhere

j⃗ “ 0⃗. The former state is referred to as non-equilibrium steady state (NESS).

For the system to be truly in equilibrium, it is therefore not sufficient to demand

Btρ “ 0. The system is only truly in equilibrium in complete absence of any probability

currents, j⃗ “ 0⃗, a condition known as detailed balance.

It is worthwhile to consider the consequences of detailed balance or the absence

thereof for observable dynamics of the subsystem (e.g. the position of a colloid). A flow of

probability between regions of phase space means that the system will on average transi-

tion between these regions more frequently into the direction of the flow. A probability

flow implies a drift motion, a tendency to move into the direction of the flow.

By contrast, in the absence of probability flow, the transition rate between any two

states x⃗0 and x⃗1 should cancel out, the net transition rate must be zero. For two states with

steady-state probabilities p p⃗x0q and p p⃗x1q, the transition p⃗r0, t0q Ñ p⃗r1, t1q is then equally

likely as its time-reversed counterpart p⃗r1, t0q Ñ p⃗r0, t1q, written in forward time. I tacitly

assume here, that all variables considered in the overdamped system behave as even vari-

ables in the sense that their signs do not flip under time reversal. In such circumstances,

the detailed balance condition expressed in terms of transition probabilities reads[37]

p p⃗x1, t1 |⃗x0, t0q p p⃗x0q “ p p⃗x0, t0 |⃗x1, t1q p p⃗x1q . (1.27)

In systems, where the underlying equations of motion are time-symmetric (Newton’s laws

are time-symmetric), a property known as microscopic reversibility guarantees that every

forward transition is associated with a backward transition. In equilibrium, the rates of

these two processes must be equal (detailed balance).

In such systems it may be difficult for observers to infer the direction of time from

microscopic trajectories of observed subsystems. For instance, if one forgot to save the

time-direction of microscope movies of colloids undergoing Brownian motion, it would be
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impossible, in equilibrium, to find that direction. If detailed balance is violated, one must

gather sufficient information about the probabilities of forward and backward processes

in order to decide which is which. In fact, for steady-state thermodynamic processes, the

”amount of violation” of detailed balance [20, 83, 84] and, interestingly, the amount of data

it takes to decide the direction of time [85] are related to the amount of entropy produced.

Example - Overdamped harmonic oscillator driven by coloured noise

In order to give an example of the theory laid out above, I solve the FPE for the one-

dimensional, overdamped harmonic oscillator driven by coloured noise νptq. For the sake

of simplicity, I set kB “ γ“ 1 and work in arbitrary units.

The coloured noise is here implemented as an Ornstein-Uhlenbeck process with a

relaxation time τ. Later in this thesis, I will use a different coloured-noise process known

as telegraph process. However, the two processes share the form of their steady-state

correlator xνptqνp0qy9e´|t |{τ, such that the effects of Ornstein-Uhlenbeck and telegraph

processes as driving forces are often phenomenologically similar.

The equations of motion corresponding to the scenario sketched in Fig. 1.1a read

˜

9xptq

9νptq

¸

“

˜

´k ε

0 ´ 1
τ

¸˜

xptq

νptq

¸

`

˜?
2T 0

0
a

2Tν{τ

¸˜

ξxptq

ξνptq

¸

(1.28)

where the first matrix is now abbreviated as A and the second as F. In order to ensure that

the variance of the noise process ν does not depend on τ, I rescale the temperature of the

noise, Tν, by τ´1. The diffusion matrix in this example can be obtained using Eq. (1.16).

I am here only interested in the steady-state. In this case, the phase-space density at

some point r⃗ “ px, νqT is time-constant and reads

ρ p⃗r q “
1

2π
a

detrCs
e´ 1

2 r⃗ T C´1 r⃗ . (1.29)

The correlation matrix C in Eq. (1.29) can be obtained by solving the following Lyapunov-

type differential equation [86]

dC

dt
ptq “ ACptq` CptqAT

` 2D. (1.30)
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a b

Fig. 1.1 Harmonic oscillator with a one-way coupling to an Ornstein-Uhlenbeck process. a
Sketch of the potentials and variables of the system xptq and the noise νptq. b Steady-state
phase-space density ρpx,νq and current j⃗ px,νq for different values τ. The vector plot is
normalised, the magnitude of j⃗ is not shown. In the plots, I set k “ T “ Tν “ 1.

For t Ñ 8, the equation simplifies to AC ` CAT “ ´2D, which, when solved yields the

steady-state correlation matrix C,

C “

˜

T `kTτ`Tνε2τ
k`k2τ

Tνετ
1`kτ

Tνετ
1`kτ Tν

¸

τÑ0
ÝÑ

˜

T
k 0

0 Tν

¸

. (1.31)

In panel b, I show the effect of sending τ to zero, reminiscent of the overdamped limit

considered in Sec. 1.1.2. As the limit in Eq. (1.31) shows, the offdiagonal elements of

the correlation matrix approach zero for vanishing τ. This means that the phase-space

density looses its tilt as shown in Fig. 1.1b: The dynamics of the system state xptq becomes

independent of the internal noise state νptq even though it is still driven by it.

The asymmetric coupling of the noise to the system results in a breakdown of detailed

balance and a finite, purely rotational probability current j⃗ p⃗r q “ p jx p⃗r q, jνp⃗r qq
T . The

current can be obtained from j⃗ p⃗r q “ Ur⃗ρp⃗r q using the frequency matrix U, which is given

by U “ A ` DC´1 [86]. The imaginary part of the positive eigenvalue of this matrix,

ω“
ε
?

kTν
a

T ` 2kTτ` Tνε2τ` k2Tτ2

τÑ0
ÝÑ ε

c

kTν
T

, (1.32)
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corresponds to the average cycling frequencies of a point r⃗ in phase space in the Langevin

picture [86, 61]. Here, ω serves as a measure of strength of the current shown in Fig. 1.1b.

The cycling frequency increases monotonically with decreasing τ.

1.2 First-passage processes

How long does it take for a stochastic process to (directly) move from a point x⃗a to a

point x⃗b? What are the odds of the process reaching x⃗b before touching some other

point x⃗c ? First-passage processes offer a systematic and sometimes mathematically

tractable approach to such questions. First-passage-related phenomena have received

increased theoretical attention in recent years, for instance in the context of molecular

folding [87–89, 74], nanopore translocations [90–92], and stepping behaviour of molecular

motors [23, 93, 25].

In the following, I want to briefly introduce a few first-passage concepts that provide

valuable context to the experiments described in this thesis.

If a stochastic process visits a particular point x⃗ at time t for the first time since the

beginning of observation at some previous time t0, this time t is known as the first-passage

time (FPT) of the process at x⃗.

More generally, if one is interested in the probability of a future first-passage event at

time T and place x⃗, one can use the backward Fokker-Planck equation (bFPE) to develop

the probability density of the system in forward time towards this event. A solution to the

bFPE is a measure of how likely this future first-passage event is given the current state at

time t ă T . From a mathematical point-of-view, the bFPE-operator is the adjoint-operator

to the (forward) FPE and has a similar form [37],

Bρ

Bt
p⃗x,T |⃗x 1, tq “ ´A p⃗x 1q∇⃗x⃗1ρ p⃗x,T |⃗x 1, tq´

`

D ¨ ∇⃗x⃗1

˘

¨ ∇⃗x⃗1ρ p⃗x,T |⃗x 1, tq . (1.33)

Importantly, the gradient and Laplace operator act on x⃗ 1 instead of x⃗. The bFPE is central

to many derivations of first-passage-type solutions.

FPTs exist in many different flavours. One of the simpler versions of a FPT is the

exit-path time. The exit-path time τ is defined as the time it takes for a stochastic process

to leave a certain region S. The appropriate boundary conditions for this problem are

absorbing, that is, BS: ρp⃗x 1, t |⃗x,0q “ 0@x⃗ P BS [37].

Unfortunately, the language in this area of physics appears to be somewhat loose. I

have adopted the convention of referring to exit times as ”exit-path times” and to direct
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transition times as ”transition-path times” (introduced later) in order to emphasise that

these are durations of a process which is not instantaneous [94].

Properties of exit-path times are typically derived from the survival probability G p⃗x, tq,

which is defined as the aggregate probability mass within S, i.e. G p⃗x, tq “
ş

S dx⃗ 1ρp⃗x 1, t |⃗x,0q,

assuming the particle is placed within S at t “ 0. If T denotes the time the processes

crosses BS and leaves S, the survival probability can be written as Probpt ď T q “ G p⃗x, tq.

Since G is a linear superposition of ρ, it must also solve the bFPE. Using the fact that

p p⃗x 1, t |⃗x,0q “ p p⃗x 1,0|⃗x,´tq [37], the negative sign in Eq. (1.33) disappears and one obtains

BG

Bt
p⃗x, tq “ A p⃗xq∇⃗G p⃗x, tq`

`

D ¨ ∇⃗˘

¨ ∇⃗G p⃗x, tq , (1.34)

where I also exchanged the variable names x 1 Ø x in order to simplify the notation.

Moreover, the absorbing boundary condition on BS requires G to vanish on the boundary,

i.e. G p⃗x, tq “ 0@x⃗ P BS.

G p⃗x, tq can be interpreted as the probability that T ě t for a given initial x⃗. In other

words, it describes the probability that the particle has not left the interval at ”time” t . The

cumulative probability of T for a given initial x⃗, is thus given by 1 ´G p⃗x, tq. Therefore,

´BtG p⃗x, tq must be the corresponding probability density of the exit time T .

If the mean exit-path time is written as xτp⃗x0qy where x⃗0 denotes the initial position of

the process, xτp⃗x0qy needs to fulfil [37]

xτp⃗x0qy “ ´

8
ż

0

dt tBtG p⃗x0, tq “

8
ż

0

dt G p⃗x0, tq (1.35)

where I used integration by parts in the last step. Since initially all probability mass is

contained within S, G p⃗x0,0q “ 1. However, for t Ñ 8, the mass will have leaked into the

absorbing boundary conditions and thus G p⃗x0,8q “ 0.

This implies
ş8

0 dt 1 Bt 1G p⃗x0, t 1q “ ´1.

Since xτp⃗x0qy is a linear superposition of G , it must solve the bFPE and, using the

integral result from above, I obtain a differential equation for mean exit-path times

´1 “ A p⃗x0q∇⃗xτy p⃗x0q`
`

D ¨ ∇⃗˘

¨ ∇⃗xτy p⃗x0q . (1.36)

This well-known equation [37] can be used to derive explicit equations for the mean

exit-path time. For instance, for a one-dimensional process with a position-dependent
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diffusion coefficient Dpxq and symmetrically-placed exits at ˘L{2, one obtains [37],

xτpx0qy “

x0
ş

´L{2

dx
L{2
ş

x0

dx 1
x1
ş

´L{2

dx2 e
Upxq

kB T e
Upx1q

kB T e
´Upx2q

kB T

Dpx2q

L{2
ş

´L{2

dx e
Upxq

kB T

´

L{2
ş

x0

dx
x0
ş

´L{2

dx 1
x1
ş

´L{2

dx2 e
Upxq

kB T e
Upx1q

kB T e
´

Upx2q

kB T

Dpx2q

L{2
ş

´L{2

dx e
Upxq

kB T

. (1.37)

The above equation simplifies for constant forces f and a constant diffusion profile

Dpxq “ D . Under such circumstances, I obtain

xτpx0qy “
γ

2 f

L ´ 2Le
´

f pL´2x0q

2kB T ` e
f x0

kB T pL ´ 2x0q` 2x0

e
f x0

kB T ´ 1
, (1.38)

which for x0 “ 0 collapses to

xτy “
Lγ

2 f
tanh

ˆ

f L

4kB T

˙

. (1.39)

1.2.1 Conditional exit-path times

a Exit-path time Transition-path timeb

start

end

T
im

e
 t

tr
tr

Reaction coordinate x

T
im

e
 t

Reaction coordinate x

start

end
tr

Fig. 1.2 Conditional exit- and transition-path time. a Sketch of two instances of a condi-
tional exit-path time. The two traces do not occur simultaneously in real time, but are two
instances of an exit-path. b Sketch of two transition paths and corresponding path times.
The grey traces show paths that are not valid transition paths.
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A slightly more complex question that one could ask is: what is the mean exit-path

time from a region S through a particular exit E Ă BS (if there are several)?

This question can be answered within the Fokker-Planck framework. If the system

is initialised with certainty within S, the initial probability mass ρ0 “ ρp⃗x,0q will be

contained within S and then spread into all possible directions, according to the FPE

time evolution. At some point it will reach and cross the exit of interest, E . The partial

probability to ever exit through E is thus

ProbpexitS throughEq “

8
ż

0

dt 1

ż

x⃗PE

dn⃗ p⃗xq ¨ j⃗ p⃗x, t 1q (1.40)

where n⃗ denotes a vector that is perpendicular to BS and outward-pointing at the point

x⃗ P E . The double integral in Eq. (1.40) simply measures the total amount of probability

flowing through E . It is worth noting, that in a one-dimensional system, the inner integral

will conveniently disappear. In this case, all that is left to do is to solve the FPE with the

appropriate boundary conditions in order to compute the current density j px, tq.

Consequently, the probability to exit through E at a particular point in time τ reads

ρE pτq “

ş

x⃗PE
dn⃗ p⃗xq ¨ j⃗ p⃗x,τq

ProbpexitS throughEq
. (1.41)

And the mean exit-path time conditioned on exit E reads

xτE y “

8
ş

0
dττ

ş

x⃗PE
dn⃗ p⃗xq ¨ j⃗ p⃗x,τq

ProbpexitS throughEq
. (1.42)

Conditional exit times of Brownian processes exhibit rich and surprising behaviour.

For instance, a process 9xptq “ ξptq that is initialised in the centre x0 “ pa ` bq{2 of an

one-dimensional interval ra,bs will, on average, exit the interval to either side at the same

time, i.e. xτay “ xτby. Crucially, this remains so even under the influence of an external

drift force f pxq “ c. The process then reads 9xptq “ c `ξptq.

To my knowledge, this central result in stochastic dynamics was first derived by Fred-

erick Stern in 1977 [95]. In subsequent years, mathematicians derived the density of

hitting times and places of spheres of a Brownian process with a drift initialised within

and outside of spheres [96–98].
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Conditional exit time from a channel

In spite of its apparent simplicity, it can be cumbersome to derive the conditional exit-time

density for a one-dimensional process analytically from Eq. (1.41). The problem arises

from the boundary conditions of the FPE, which require the density to vanish at the exits,

that is, for a one-dimensional process at x “ ˘L{2. In this case, one can construct the

position density ρpx, tq using the method of images, which involves an infinite series.

However, its derivative, the flux j , is not easily reformulated in an insightful way such that

I omit the solution here. Instead, I resort to solving most these distributions numerically

by solving the corresponding FPE.

I begin here by stating the total exit probability though a particular exit, which can

be directly obtained from Eq. (1.40). These probabilities are also known as splitting

probabilities and read [37]

PÑ px0q “

x0
ş

´L{2

dx e
Upxq

kB T

L{2
ş

´L{2

dx e
Upxq

kB T

(1.43)

“
1

1 ` e
f L

2kB T

for x0 “ 0, Upxq “ ´ f x (1.44)

PÐ px0q “ 1 ´ PÑpx0q “
e

f L
2kB T

1 ` e
f L

2kB T

for x0 “ 0, Upxq “ ´ f x (1.45)

Interestingly, the two probabilities, PÑpx0 “ 0, f q and PÐpx0 “ 0, f q, fulfil what is

known as a detailed fluctuation theorem [21], i.e.

PÑp f q

PÐp f q
“ e

´
f L

2kB T “ e
´ ∆s

kB (1.46)

where ∆s denotes the difference in produced (or absorbed) entropy. This underlines the

fact that uphill-exiting trajectories that defy the external force consume entropy (heat)

to do so. In order to get a sense of the forces required to create a measurable difference

between the splitting probabilities PÑ and PÐ, I plot the expression in Eqs. (1.45) and

(1.44) in the inset of Fig. 1.3.

The time dependent density ρ and the current can be solved numerically. In Fig. 1.3,

I plot the time-evolution of the density with the correct boundary conditions. Once the

density is obtained, the exit-path time density can be calculated using Eq. (1.41). The

results for the uphill and downhill directions are plotted in Fig. 1.4a. In the experimental
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Fig. 1.3 Log-plot of the time-evolution of initial density (black line at x0 “ 0) with a
constant drift force f “ `3 fN over an interval of L “ 5.14µm. The diffusion constant is
D “ 0.13µm2{s. In the inset, exit probabilities (Eqs. (1.44) and (1.45)) are plotted against
(red) and with (blue) the force for the same interval length and force. The plot is supposed
to give a sense of the magnitude of forces required to create measurably different splitting
probabilities.

sections, I will mostly compare cumulative distributions, since they can be compared

independently of the choice of bin sizes. For this reason, I also plot the cumulative

distributions in panel b.

As Fig. 1.4 clearly shows, the uphill and downhill exit-path time distributions agree.

In contrast to their distributions, the mean conditional exit-path time can be readily

calculated analytically [95]. Due to the observed exit-path symmetry, both expressions are

exactly equal to the one given in Eqs. (1.38) and (1.39).

1.2.2 Transition-path times

Instead of asking how long it takes for a process to leave a certain region S, one might

as well ask how long it takes for a process to cross a certain region S, e.g. the interval in

Fig. 1.5a.
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a b

Fig. 1.4 a Exit-path time density ρpτq in the uphill and downhill direction (red-dashed,
black). b The same distributions but plotted as cumulative distributions. In experimental
situations, it is often better to compare cumulative distributions.

This question then leads to the notion of direct transition times, here referred to as

transition-path times.

Transition-path times begin on one boundary or one part of the boundary of a con-

nected region and end in another part of the boundary. This boundary is typically partially

or completely absorbing, such that any theoretical treatment requires careful limiting

procedures in order to arrive at sensible conclusions. From an experimental point-of-

view, the procedure to measure such times is simple: One observes long, uninterrupted

trajectories of the variables of interest and later on considers only those parts of the trajec-

tories that cross the interval in one go. This procedure automatically implements purely

absorbing boundaries at or close to the chosen boundaries. I will come back to this point

in greater detail in Sec. 3.1.

Historically, A. Szabo is credited with having derived the first expression of a transition-

path time [88, 43]. Comprehensive and modern papers on direct transition times in

one-dimensional systems that are relevant here are Berezhkovskii et al [90–92], Kim et

al [88], and Zhang et al [87]. The former derives analytical results for partially absorbing

boundaries, which are readily simplified to the purely absorbing case. Kim and Zhang

derive expressions for the distribution of transition-path times, assuming absorbing

boundary conditions. In the following, I here draw on the results of all three authors.

Let ρpx, t |x0, t0 “ 0q be the solution of the overdamped, one-dimensional forward FPE

with an intial condition ρpx,0|x0q “ δpx0 ´xq. As sketched in Fig. 1.5b, I assume that there

is a free-energy function Upxq defined over the interval x P rxl , xr s of interest, portrayed

in panel a. The partially-absorbing boundary conditions considered by Berezhkovskii

that ρ has to fulfil are of the von-Neumann type and also known as ”radition boundary
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a b

Fig. 1.5 a Sketch of the one-dimensional interval of interest (here realised in a confining
channel). b Example of a free-energy trace over this interval.

conditions”. They read

Bx

ˆ

ρpx, t |x0qe
Upxq

kB T

˙

|x“xl “
kl

Dpxl q
e

Upxl q

kB T ρpxl , t |x0q (1.47)

Bx

ˆ

ρpx, t |x0qe
Upxq

kB T

˙

|x“xr “ ´
kr

Dpxr q
e

Upxr q

kB T ρpxr , t |x0q (1.48)

with kl and kr denoting the rate of radiation at each boundary. The flux through the chan-

nel exits therefore has to fulfil j pxl , t |x0q “ ´klρpxl , t |x0q and j pxr , t |x0q “ krρpxr , t |x0q.

As before in Eq. (1.40), the total probability to exit through a particular exit is given by

the time-integral of the respective flux, Pl “
ş8

0 dt ´ j pxl , t |x0q and Pr “
ş8

0 dt j pxr , t |x0q.

The average conditional exit-path times (referred to as lifetimes by Berezhkovskii [90])

for the radiative boundaries take the form

xτl px0qy “
1

Pl px0q

8
ż

0

dt p´t j pxl , t |x0qq “
kl

Pl px0q

8
ż

0

dt tρpxl , t |x0q (1.49)

xτr px0qy “
1

Pr px0q

8
ż

0

dt t j pxr , t |x0q “
kr

Pr px0q

8
ż

0

dt tρpxr , t |x0q (1.50)

in accord with Eq. (1.42).

Finally, the average transition-path time, or translocation time can be written as

xτÑ
tr y “ xτr pxl qy and vice-versa xτÐ

tr y “ xτl pxr qy. Berezhkovskii then proceeds to solve the
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system of equations, Eqs. (1.47)-(1.50), which yields

xτtry “

xr
ş

xl

d x e
´Upxq

kB T

˜

1 ` kl

x
ş

xl

dx 1 e
Upx1q

kB T

Dpx1q

¸˜

1 ` kr e
´∆U
kB T

xr
ş

x
dx 1 e

Upx1q

kB T

Dpx1q

¸

kl ` kr e
´∆U
kB T ` kl kr e

´∆U
kB T

xr
ş

xl

dx e
Upxq

kB T

Dpxq

. (1.51)

The expression above is independent of the direction of the transition, despite the

possible difference in free-energy ∆U . Berezhkovskii acknowledges this fact and writes

”At the moment we have no simple qualitative explanation for the direction independence

of the average translocation time.”. Testing and explaining this observation in experiments

constitutes a major part of this thesis.

At any point in the above derivation, one can obtain Szabo’s classical expression by

sending both k’s to infinity. This corresponds to an infinite rate at the respective boundary

and thus imposes absorbing boundary conditions. For the sake of completeness, I state

Szabo’s result for the mean transition-path time for purely absorbing boundaries below

xτtry “

xr
ş

xl

d x e
´Upxq

kB T
x
ş

xl

dx 1 e
Upx1q

kB T

Dpx1q

xr
ş

x
dx 1 e

Upx1q

kB T

Dpx1q

xr
ş

xl

dx e
Upxq

kB T

Dpxq

. (1.52)

The final aspect of transition-path times that I want to touch on here is their distri-

bution ρtr,Ð,Ñpτq. Following Zhang et al [87], this density can be derived from Eq. (1.41)

by sending the initial distribution ρ0p⃗xq “ δp⃗x ´ x⃗0q carefully close to the initial exit

(i.e. the point of entry). Importantly, ρ0 should be completely contained in S. For a

one-dimensional example, this can for instance be achieved by parametrising the initial

position x0 by some εą 0, x0 “ xl `ε in this case of the left exit being designated as initial

position. Again, as in the case of exit-path times, I consider the normalised flux through

the target-exit surface as the distribution of transition-path times. For instance, for l Ñ r

transitions, this reads

ρτtrÑpτq “ lim
ϵŒ0

j pxr|x0pϵqq

PÑ px0pϵqq
. (1.53)

where PÑpx0q is given in Eq. (1.43).
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a b

Fig. 1.6 a Sketch of a typical Kramer’s reaction rate double-well scenario. b Sketch of a
typical exit-path scenario. In this section, I calculate the exit-path time for one reflecting
and one absorbing barrier.

1.2.3 Escape times & Kramers rate

The transition-path time discussed in the previous section quantifies the time it takes to

cross some region, e.g. a free-energy barrier but it disregards unsuccessful attempts. Only

the time actually spent on the barrier is taken into account. The rate of barrier crossings in

an ensemble of two-state systems would thus not correspond to the inverse of the mean

transition-path time. Instead, the rate must be obtained from the reciprocal of a different

first-passage time, here referred to as Kramer’s time.

In a one-dimensional system, with two states I , I I that are connected by a single

point, Kramers’ time for the transition I Ñ I I equals the exit-path time from state I . Such

a situation naturally occurs in bistable potential with each minimum being assigned a

"state" as sketched in Fig. 1.6a.

As a first step towards deriving the rate of barrier transition in Fig. 1.6a, I begin with the

case shown in Fig. 1.6b: the exit from an interval that is delimited to the left by a reflecting

boundary at xrefl. and to the right by an absorbing one at xabs..

The boundary conditions for this case are [37]

BxGpxrefl., tq “ 0 (1.54)

Gpxabs., tq “ 0. (1.55)
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If one solves the mean exit-path time equation, Eq. (1.42) observing these boundary

conditions, one obtains

xτpx0qy “

xabs.
ż

x0

dx e
Upxq

kB T

x
ż

xrefl.

dx 1 e
´

Upx1q

kB T

Dpx 1q
. (1.56)

In the case of x0 “ xrefl. “ 0 and xabs. “ L{2, this result can also be obtained from Eq. (1.37)

for a symmetric potential Upxq “ Up´xq.

The aforementioned Kramers’ time is readily obtained from Eq. (1.56) by exchanging

x0, xrefl., and xabs. in the following way: xrefl. Ñ ´8, xabs. Ñ xII, and x0 Ñ xI,

xτIÑIIy “

xII
ż

xI

dx e
Upxq

kB T

x
ż

´8

dx 1 e
´

Upx1q

kB T

Dpx 1q
. (1.57)

H.A. Kramers derived a simplified version of the above double integral in his influential

paper about rates of barrier transition [99]. This approximation is derived from Eq. (1.57)

under the assumption that the barrier height ∆U is much larger than the thermal energy

kB T . For simplicity, I also assume here a constant diffusion profile Dpxq “ D . In this case,

one can, approximately, decouple the integrals and replace the lower limit of the inner

integral by xI , the initial position [37]. Furthermore, since the peak contributes the bulk

of the value of the outer integral, the upper limit of the outer integral can be replaced by

x˚, such that

xτIÑIIy «
1

D

¨

˝

x˚
ż

xI

dx e
Upxq

kB T

˛

‚

¨

˝

xII
ż

xI

dx e
´

Upxq

kB T

˛

‚. (1.58)

Both integrals can be further approximated: one develops Upxq

kB T into a series around

the location of the minimum xI for the left integral and around the peak x˚ for the right

integral, i.e. Upxq « Upzq` 1
2px ´ zq2U 2pzq. The second derivative of the potential equals

the local curvatures, which I abbreviate as U 2pxIq ”ω1,U 2px˚q ”ω2. Using the Gaussian

integral, Eq. (1.58) simplifies to

xτIÑIIy « p2πDq
´1?

ω1ω2e
∆U

kB T (1.59)

where I used the definition of the barrier height ∆U “ Upx˚q´UpxIq in Fig. 1.56.
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Kramers result in Eq. (1.59) is of paramount importance to chemistry. The crucial

aspect of this equation is, as I mentioned before, that the reciprocal FPT here corresponds

to the rate of barrier transitions. In the case of a reaction, such as protein folding, this

microscopically-derived rate corresponds to the ensemble reaction rate, which is macro-

scopically observable. In this case, the scaling law in Eq. (1.59) is often also referred to as

Arrhenius’ law.

As I show in Sec. 3.2, Eq. (1.59) fundamentally breaks down for certain barrier shapes, with

the implication that higher barriers may paradoxically accelerate reactions.

In this chapter, I introduce a few key ideas of stochastic thermodynamics and derive

equations governing various first-passage processes. The next chapter summarises the

setup and relevant experimental concepts used to test the theories described in this

chapter.





Chapter 2

Experimental Foundations

The aim of this thesis is to combine the theory of first-passage times with clean and

controlled Brownian dynamics experiment in microfluidic systems.

The tool of choice for such experiments are optical tweezers, due to their unique ability

to exert and measure forces on the relevant scales (femto- to pico-Newton). By definition,

first-passage time experiments require large sample sizes which in turn requires stable

and repeatable experiments. My approach to this was to automate as many aspects of

my experiments as possible such that the setup could independently carry out as many

experiments as possible or required.

2.1 Introduction to Optical Tweezers

Optical tweezers are sensitive and precise devices, which can be used for manipulating

particles on the micronscale and below. Their ability to trap particles in conjunction

with their ability to measure particle displacements with high accuracy makes them an

invaluable tool for biophysical research. Arguably, the history of optical trapping began

with Arthur Ashkin [100] who discovered that dielectric particles experience a force when

placed in a gradient of intensity of light. Ashkin provided the proof of principle of what

would become known as optical trap and was awarded the Nobel prize in 2018 for his

invention.

Optical tweezers are a particular form of an optical trap, in which a single laser beam

is utilised to confine an object (Ashkin initially explored usage of two opposing lasers).

The key insight that led to optical tweezers, is that gradient forces can not only overcome

thermal forces, but also radiation pressure of the laser beam such that the particle can

rest in a stable state near the focal point [101, 102]. Optical tweezers later became a

popular tool in biophysics and thermodynamics [103]. While Ashkin in his 1970 paper still
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referred to thermal forces as ”obscuring effects”, colloidal particles held by optical tweezers

are nowadays an established toy model for studying thermal fluctuations. For instance,

transient violations of the second law have been observed in optical traps [104] and its

generalisations have been tested subsequently [105]. Moreover, Landauer’s principle has

been experimentally confirmed using optical trapping [106, 107].

2.1.1 Theory of optical trapping forces

The introduction to forces in optical tweezers in this subsection is an adaptation from my

Master’s thesis [108].

Introductions to the physics of optical tweezers typically begin by distinguishing

the Rayleigh regime for small particles d ! λ with d denoting the diameter, from the

geometrical optics regime applicable to larger ones d " λ and then proceed to explain

that typical colloidal handles are, unfortunately, in between, i.e. d „λ [109, 110, 103]. It is

most illuminating to discuss optical tweezers in the ray optics regime since one only has

to consider the geometry of the effect of trapping on photon-momenta. By contrast, on

the nanoscale, it is necessary to consider the interaction of induced dipoles with the laser

light in order to explain the trapping effect. I therefore begin here with a more qualitative

discussion of the first regime. In both cases, I assume the laser beam to adhere to Gaussian

beam theory with a 1{e waist w0 and a Gaussian intensity profile (T E M00 mode), as is the

case in my experiments.

Ray optics regime - A plane electromagnetic wave is associated with a momentum flux p⃗

(momentum per volume) in the direction of the Poynting vector S⃗, p⃗ “ 1{c2S⃗ “ ε0
`

E⃗ ˆ B⃗
˘

with a magnitude that is proportional to the intensity [111]. Bending or reflecting a laser

beam will therefore result in a reactio-force proportional to beam power P0, F “ P0{c.

I now consider a dielectric particle suspended in a viscous medium with respective

indices of refraction obeying np ą nm . Only with this configuration of refraction, trapping

is possible in my setup. Particles with a lower refractive index, such as air bubbles are

pushed out of the trap. I assume the particle to be large compared to the optical wave-

length, such that ray optics applies (d ą 20λ, [109]). If such a particle inches closer to

either side of the trap, a higher intensity will be refracted outward and the particle will

hence experience an inward force (see Fig. 2.1a). In all cases, reflected or refracted rays

impart a force directed downstream that must be somehow balanced for stable trapping.

Using a high aperture objective, one can create highly con- and divergent rays at the focus.

Beams refracted by the particle when above or below the focal point will be less divergent,

as shown in Fig. 2.1b, resulting in a restoring force that may suffice to counteract radiation

pressure (and thermal forces). Importantly, the axial scattering force pushing the bead
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downstream is non-conservative. If integrated over a closed loop, these forces would result

in a net force pointing downstream. The path dependence in optical scattering forces

has been found to cause a breaking of detailed balance in fluctuations in the radial-axial

coordinates of a particle held by optical tweezers [112, 113].

a b

Fig. 2.1 Forces in the ray-optics regime in optical tweezers. This figure is a reprint of my
figure in [108]. The thickness of the blue rays is a measure of their intensity. a Lateral
restoring gradient force arising due to asymmetry of intensity experienced by a horizon-
tally displaced particle. The minimal beam waist w0 is indicated. b Vertical restoring force
that counteracts radiation pressure in the axial direction. Angles and magnitudes are not
drawn to scale in either panel.

Rayleigh regime - In the limit of small particle diameters, the theory of Rayleigh scat-

tering becomes applicable. Electric fields E⃗ lead to charge separation and induce a dipole

in dielectric materials. Inhomogeneous electric fields, such as the intensity gradient in

the laser focus, exert Lorentz forces on the dipole. This force, averaged over time, reads for

small dielectric spheres [103]

F⃗grad p⃗r q “
α

2
∇⃗xE⃗ 2 p⃗r qy “ nm a3

ˆ

pnp{nmq2 ´ 1

pnp{nmq2 ` 2

˙

∇⃗I p⃗r q (2.1)

where α is referred to as polarisability and I “ cnε0{2xE 2y denotes the intensity. This

force is the small-particle-regime equivalent to the gradient force previously discussed. I

note, that since F⃗grad is derived from a gradient, namely, ∇⃗I , it must be conservative.
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By contrast, the scattering force that a particle in an optical trap is subject to points

into the direction of the Poynting vector S⃗ and reads [103]

F⃗scat p⃗r q “ nmσ
xS⃗ p⃗r qy

c
“

8nmπpκaq4a2

3c

ˆ

pnp{nmq2 ´ 1

pnp{nmq2 ` 2

˙2

xS⃗ p⃗r qy (2.2)

with σ denoting the cross-section of a the particle with radius a “ d{2. Gradient and

scattering forces are only clearly separable in the Rayleigh regime [103]. A rigorous treat-

ment of the intermediate regime, in which particle size and wavelength are comparable,

requires a full solution of the Maxwell equations under geometrical constraints of the

scenario (Lorentz-Mie theory, I refer for further reading to [109, 114]).

2.2 Holographic optical tweezers

In the previous section, I explain in some detail the forces that microscopic objects

experience when placed into highly focused laser beams. The key lesson is that, on the

micronscale, controlling light means controlling force.

Arguably, the most powerful optical system is a hologram. This is so, because holo-

grams can be made to model almost any other optical element, such as lenses. But before

I explain what holograms can do, I should explain what a hologram is. Modern recon-

structing holograms were invented by the Hungarian physicist and Nobel-laureate Dennis

Gabor in the late 1940s [115]. I use the qualifier ”reconstructing”, because there are nowa-

days different forms of holograms. Common to all forms is the fact that a hologram is

essentially an image, but instead of absorbing part of the light spectrum, each ”pixel”, in

addition, alters the phase of incoming light beams. It is even possible, to disregard the

amplitude altogether and exclusively change the phase. In this case, a hologram is a spatial

map of phase-delays or advancements. Occasionally, such phase-only optical devices are

referred to as kinoforms [116]. Holography for optical tweezers is a recent development

and was pioneered, among others, by David Grier’s group [117, 116, 118–120].

2.2.1 A Fourier-optics perspective on holographic optical tweezers

The medium or rather physical device that implements the holographic transformation in

my case is a spatial light modulator (SLM). I explain in greater detail the inner workings

of SLMs in the next section. For now, it is sufficient to know that the SLM is essentially a

reflective liquid crystal display with, in my case, 800 ˆ 600 pixels, where each pixel can be

assigned some value 8-bit value, i.e. SLMi j P r0,255s. This value encodes a phase delay or
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Fig. 2.2 A Fourier-optics description of digital holography. a Simplified sketch of waveform-
shaping through phase-control. A lens with a focal length f1 is placed in a 2f-configuration
with respect to the SLM and the camera. b A few examples of the relation between (real-
valued) Fourier-matrices, holograms and the resultant intensity distribution. The third
example, iii), in comparison with i) and ii) shows the non-linear relation between Fourier-
components and the intensity: Despite higher and more non-zero input components,
the output intensity of each spot is reduced. The intensity is not necessarily conserved
compared to single-spot examples, since additional (ghost) spots may form outside the
field-of-view upon addition of frequencies. The mappings F and S are introduced later in
this thesis. Pictures of intensity distributions are contrast enhanced for better visibility.

advancement, which can be mapped to actual phase-changes SLMi j Ñ∆ϕi j P r´π,πs of

the impinging wavefront.

The action of the SLM on an incoming, planar laser beam is best understood within

the framework of Fourier optics.

This framework applies when the relationship between two conjugate wavefronts is

considered. Here, I consider the electrical-field value ESLM of a wavefront just after the

interaction with the SLM and its conjugate wavefront impinging on the camera Ecam, as

sketched in Fig. 2.2a. Fourier optics relies on Fraunhofer’s approximation of a monochro-

matic wave that is propagated through a lens in a 2f-configuration [121]

Ecamprx ,ry q « ´i
κ

f1
e i 4πκ f1

ż

dr̃x

ż

dr̃y ESLMpr̃x , r̃y qe
´i 2π κ

f1
prx r̃x `ry r̃yq. (2.3)

where κ denotes the wave-number of the beam. The wave-number can be put into

relation to the wave-length λ, the speed of light c, the refractive index of the medium n
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and the temporal frequency of the wave ν, κ“ n{λ“ n{cν. The other new variable in

Eq. (2.3), f1 represents the focal length of the lens in Fig. 2.2. Importantly, the Fourier

transformation runs over the lateral degrees-of-freedom rx ,ry , that are perpendicular to

the beam direction.

Since the SLM in my setup can only affect the phase, its action can be condensed into

a unitary operator pprx ,ry q “ e i∆ϕprx ,ry q, which transforms the incoming wave E0 into

ESLMprx ,ry q “ e i∆ϕprx ,ry qE0prx ,ry q. (2.4)

The field is advanced to the camera plane using Eq. (2.3) and the intensity that the camera

then perceives is given by

Icamprx ,ry q “ ||Ecamprx ,ry q||
2. (2.5)

The above Eq. (2.5) shows the fact that any global phase-offset e i∆globalϕ in the SLM plane

will not affect the intensity in the camera plane. For this reason one can neglect any

laterally-constant phase, such as i 4πκ f1 in Eq. (2.3). The phase invariance plays an

important role in holography and I come back to its implications in Sec. 2.2.5.

Of course, the phase-change ∆ϕprx ,ry q is piece-wise constant since the SLM is pix-

elised. However, effects of (1) pixelation, (2) digitisation of phase-changes n P r0,255s Ñ

∆ϕn « n2π{255 ´π, (3) the pixel area and pitch, and (4) effects related to non-linearities

in the grey-value-to-phase-shifting relation of the liquid crystals in the SLM are manifold

and mostly beyond the scope of this thesis.

A good summary of the various aberrations haunting holographic optical tweezers can

be found in Alexander Jesacher’s PhD thesis [122]. In my setup, instead of a single, one

needs to apply three consecutive Fourier-transformations of the electrical field starting

at the SLM: Fourier space (SLM)
1

Ñ Real space (mid plane)
2

Ñ Fourier space (obj. back

aperture)
3

Ñ Real space (microscope plane), as shown later in Fig. 2.6. However, apart

from a spatial rescaling due to magnifications, the logic described above still applies.

So how do holographers create the intensity distribution on the camera in Fig. 2.2, that

they want?

This question is more involved as the relevant Eqs. (2.3)-(2.5) at first suggest. The

problem arises from the fact that the variable of control is the field of phase-shifts

∆ϕprx ,ry q, which must be purely real. The situation would be much simpler if pprx ,ry q

was non-unitary and could affect amplitudes and phases alike, since finding a suitable

hologram would then reduce to applying an inverse Fourier transformation. For instance,

a diffraction-limited spot in the image plane Ecamprx ,ry q9δprx ´ kxqδpry ´ ky q requires
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a b

Fig. 2.3 Two types of holographic gratings used in this thesis. a Blazed grating for a single
point trap. b Fourier grating with similar spatial frequency.

ESLMprx ,ry q9e i k⃗ ¨⃗r , if I ignore the scaling factor f1, the aperture of the SLM, and the in-

cident wave structure E0prx ,ry q for a moment. This in turn would require ppx, yq9e i k⃗ ¨⃗r

and hence ∆ϕp⃗r q “ k⃗ ¨ r⃗ , a linearly increasing phase shift. Since the SLM values are

limited to a range of (idealised) r´π,πq, one instead takes the complex argument, i.e.

∆ϕp⃗r q “ arg
”

e i k⃗ ¨⃗r
ı

“
`

k⃗ ¨ r⃗ mod2π
˘

´π. The resultant pattern is known as blazed grating

and is shown in Fig. 2.3a. In an experiment, a blazed grating will of course result in a

laser dot of finite size since the incoming wave E0 will have a Gaussian-beam lateral struc-

ture and because of point-spreading properties of the optical system. More complicated

patterns, however, require complex algorithmic approaches (see Sec. 2.2.5 and chapter 4).

In practice, it may be simpler to display a Fourier frequency ∆ϕp⃗r q “ πRe
”

e i k⃗ ¨⃗r
ı

,

instead of a blazed grating as shown in Fig. 2.3b. Even though this is a crude approximation

and Fourier gratings lead to undesired off-target traps, this may not be a limiting factor if

the angle to the zeroth order is high enough, such that these beams do not enter the field

of view. This point is discussed in further detail in Sec. 2.2.3. The examples in Fig. 2.2b

show that the spatial frequency of a Fourier grating still determines the position of the

trap.
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Shape-phase holography

Applications such as optical tweezing often require more complex trap shapes than single

points, such as line or circular traps. The method of shape-phase holography [118] is

tailored to producing such simple patterns. While the spatial frequency displayed on the

SLM (see Fig. 2.3) determines the centre position of the trap, the outline of the area on the

SLM displaying this spatial frequency can be effectively used as an aperture. The aperture

is not real in the sense that no rays are blocked by it. Rays that impinge on the SLM outside

of the aperture region, simply get diffracted into a different direction.

In order to simulate the effect of a Gaussian-shaped aperture overlaying the spatial

frequency as shown in Figs. 2.4a-b and d-f, I multiply the unitary phase-factor e i∆ϕprx ,ry q

with a real-valued Gaussian despite the SLM being a phase-only device. The result reads,

pSPprx ,ry q9e
´

prx ´µ2
x q

2σ2
x

´
pry ´µ2

y q

2σ2
y e

i arg

„

e
iprx

2π
lx

`ry
2π
ly

q
ȷ

(2.6)

where SP stands for ”shape-phase”. The convolution is turned into a multiplication by the

Fourier transformation so that I obtain

Ecam9e i rxµx `i ryµy e´r 2
x
σ2

x
2 e´r 2

y
σ2

y
2 δ

ˆ

2π

lx
κ` rx

˙

δ

ˆ

2π

ly
κ` ry

˙

, (2.7)

where unitary factors e i ... can be disregarded as far as the intensity is concerned. The entire

result is pathological because I assumed a flat lateral structure of the incoming beam, but

the logic is perhaps clear: Shape-phase methods allow holographers to shape the light

intensity located around the position that corresponds to the spatial frequency p1{lx ,1{ly q.

I give six examples of shape-phase holography in Fig. 2.4. The holograms needed for

most of the work in this thesis make heavy use of shape-phase methods, for instance to

create line-shaped traps (see Fig. 2.4d - f).

The Red Tweezers program is the holography engine of choice to create phase-shaped

light patterns [123]. The program leverages the computational power of a Graphical

Processing Unit (GPU) to achieve real-time recalculation of the hologram required to

steer independently addressable point- and line traps to desired places. Importantly, the

program also offers a straightforward control of the location of the envelope on the SLM,

i.e. parameters µx ,µy in Eq. (2.7), which, even though they do not influence the intensity

in the focal plane (see Fig. 2.8), have a measurable effect on tweezing forces.
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a b c

d e f

Fig. 2.4 Experimental examples of shape-phase holography. Each panel shows the 800 ˆ

600-sized hologram in grey (top) and the resultant intensity distribution in red (bottom).
The intensity distribution was recorded on CMOS 3 on 1024ˆ768 pixels (see Fig. 2.6). The
white-framed box in the top-right corner in each picture shows a magnification of the
hologram and laser pattern. With the exception of panel c, all holograms were calculated
using Eq. (2.6): A sinusoidal pattern with a selected spatial frequency is multiplied with
a slowly-evolving Gaussian. The fine ripples constituting the spatial frequency in the
holograms may not be visible in print. a Isotropic Gaussian as envelope aperture. b
Isotropic Gaussian as envelope aperture at same position, but shaping a different spatial
frequency. c Holograms with repetitive symmetry result in ghost traps. d Elliptic Gaussian
with one standard deviation sent (practically) to infinity, results in a line-shaped trap. e
Less extreme elliptic Gaussian, resulting in an elliptic intensity distribution elongated
along the thin direction of the Gaussian. f Line trap, but orthogonally to panel d.
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Phase-gradients in elongated optical traps

In this section, I introduce a crucial effect which is of particular importance in elongated

line traps produced by holographic optical tweezers: phase-gradients [124].

In the small-angle approximation of ray optics, the effect of a lens can be described by

Me⃗ where M is a matrix and e⃗ “ px,θq
T denotes a vector composed of the lateral offset x

and the angle θ of the ray with respect to the optical centreline. In a 2f-configuration, the

action of the lens reads [121]

˜

0 f

´1{ f 0

¸˜

x

θ

¸

“

˜

f θ

´x{ f

¸

. (2.8)

In other words, a lateral offset to the optical centreline of an incoming ray translates into

an outgoing angle and vice-versa. The offset position of the aperture envelope in the

previous section pµx ,µy q therefore controls the angle of the laser beam when it leaves the

objective (within the realm of applicability of this approximation).

Since the scattering force described in Eq. (2.2) is poynting in the direction of beam

propagation, it can be used to exert forces with vector components that lie in the image

plane if the angle of incidence is sufficiently high.

Roichman et al [124] provide a quantitative expression for the in-plane component of

the force

F⃗phase-grad p⃗r q “
κ

nmµrµ0c
I p⃗r q∇⃗ϕ p⃗r q , (2.9)

where ϕ denotes the in-plane phase profile (not to be confused with the SLM phase shift).

Since phase-gradient forces ultimately result from scattering, they can be shown to be

non-conservative. Indeed, as Roichman et al demonstrate ∇⃗ˆ F⃗phase-grad9∇⃗I ˆ ∇⃗ϕ‰ 0⃗.

While scattering forces in optical traps can be significant, if not dominant, line-trap

phase-gradients typically only consists of a small in-plane fraction which can be readily

controlled by adjusting µx ,µy . In this thesis, I use phase-gradient forces to nudge Brown-

ian particles along line-traps where both the intensity I and the phase-gradient ∇⃗ϕ stay

constant along the trap. As I show in chapter 3, the resultant forces are on the order of a

few femtoNewton and thus in the right regime for my experiments.

2.2.2 Principles of phase-only spatial light modulators

The functionality of spatial light modulators derives from birefringent liquid crystals that

are reactive towards externally applied electrical fields and sit in a sandwich-structure
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a b

Fig. 2.5 Sketch of the functionality of SLMs, adapted from A. Jesacher’s PhD thesis [122].
Liquid crystals are sandwiched between two electrodes with orientation grooves forc-
ing the crystals near the electrodes into a particular orientation. a OFF-state in which
liquid crystals reorient the E⃗-field vector of incoming light rays. b ON-state in which
liquid crystals orient along the externally field and consequently do not rotate the field
polarisation.

between two orthogonal polarizers as shown in Fig. 2.5. In the absence of electrial fields

(OFF), the crystals are orientated in a helical structure (twisted nematic) such that they

turn the field vector of incoming light 90˝. By contrast, under the influence of a certain

voltage, the crystals align along the field direction, loosing their polarization-changing

properties (ON), which leads to incoming light getting attenuated at the second polarizer.

Crucially, the liquid crystals directly act on polarization, not the phase. The reason

why SLMs can modulate the phase is the Pancharatnam-Berry-phase or geometric phase

effect [122]. The SLM changes and then restores the polarization of the incoming field, so

that the field vector undergoes a certain amount of rotation in between. The amount of

rotation can be put in direct correspondence with the resultant phase change ∆ϕ [122].

Phase-only SLMs have the advantage that they do not need to absorb any of the

incoming radiation. This reduces radiation-induced heating and thus higher laser power

can be used.

A drawback of this technical approach is the inherent rate-limitation of the SLM due

to relaxation and alignment times of liquid crystals. Moreover, SLM-generated light fields

may suffer from flickering since the voltage applied is alternating to prevent electrolysis of
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the LC-solution. The frame rate of the SLM used in this thesis (LCOS X10468, Hamamatsu)

is fixed at 60 fps.

2.2.3 Holographic optical tweezers setup

Fourier optics require lenses placed in 2f-configurations before and after the SLM such

that the optical transformation described in the previous chapter applies. The four lenses

L1-L4 in Fig. 2.6 and Tbl. 2.1 are placed in a 4f-configuration, sandwiching the SLM. The

focal lengths fL1 ´ fL4 were chosen to (1) overfill the active area of the SLM such that

the incoming intensity profile is as laterally flat as possible, (2) overfill the back aperture

of the objective in order for gradient tweezing forces to be able to overcome radiation

pressure [125], and (3) ensure the design can be physically realized. Short focal lengths, for

instance, make it difficult to accomodate all required optical elements, such as dichroic

mirrors, in the beam path.

Together with my colleague, Y. Tan, I redesigned the layout of the HOT setup during

the course of my PhD. The setup had to be realigned from scratch, the 4f-lens system had

to be changed, and several components, including the mount of the microscope stage had

to be manufactured to custom dimensions. Crucial differences to the previous version

of the HOT include (1) a new CMOS Camera (Microtron 1362) supporting vastly higher

framerates (up to „ 180k fps), (2) a larger fill factor of the SLM by the incoming laser beam,

and (3) an angular offset of the zeroth order diffraction of the SLM. The latter point is

relevant in so far as the previous version of the setup suffered from the problem that the

zeroth diffraction order, even though it was partially occluded, entered the field of view in

the microscope in a central location, heating the sample, distorting other optical traps,

and resulting in undesired tweezing.

The drawback of the new setup design is that the spatial frequencies of all holograms

need to be offset by a fixed amount in order for the diffracted light to enter the microscope.

This disadvantage, however, is also an advantage: the angular distance between adjacent

higher diffraction orders in the new design is just large enough such that they are usually

not diffracted into the angular range of the pinhole P3 in Fig. 2.6 and hence do not disturb

the experiment.

The Ytterbium fiber laser in Fig. 2.1 has many desirable properties from a tweezing

perspective, since it does not suffer from beam pointing instabilities and only minor power

fluctuations (˘2% [126]). Its output mode is a TEM00 and it has hence a Gaussian intensity

profile with an output 1{e2 ´I of 5 mm (1{e ´I “ 2.5mm) downstream from the fiber

collimation optics (not shown; part of the Laser-symbol in Fig. 2.6).
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Abbreviation Optical Element Property

M1- M4, M7, M10 AR-coated dielectric mirror EO3 I “ 1”
M5, M6 AR-coated dielectric mirror E03 I “ 2”
M8 Silver elliptical mirror I “ 1”
P1 Zero-order λ{2 wave plate λ“ 1064 nm
P2 Pol. beamsplitter cube λ“ 900 ´ 1300 nm
P3 Pinhole
L1 Plano-conv. lens (IR AR-coated) I “ 1”, f “ 30mm
L2 Plano-conv. lens (IR AR-coated) I “ 1”, f “ 150mm
L3 Plano-conv. lens (IR AR-coated) I “ 1”, f “ 500mm
L4 Plano-conv. lens (IR AR-coated) I “ 1”, f “ 200mm
L5 Plano-conv. lens (IR AR-coated) I “ 1”, f “ 150mm
L6 Plano-conv. lens I “ 1”, f “ 500mm
L7 Plano-conv. lens I “ 1”, f “ 50mm
L8 Plano-conv. lens I “ 1”, f “ 30mm
L9 Plano-conv. lens (IR AR-coated) I “ 1”, f “ 200mm
L10 Plano-conv. lens (IR AR-coated) I “ 1”, f “ 100mm
L12 Air objective M“ 20X
P4, P5 Pellicle beamsplitter R{T “ 8{92 λ“ 0.4 ´ 2.4µm
D1 Lowpass dichroic I “ 2”, λcutoff “ 1000 nm
D2 Highpass dichroic I “ 1”, λcutoff “ 505 nm
F1 UVFS hot mirror I “ 1”
F2 IR bandpass I “ 1”
F3 IR bandpass I “ 1”
CMOS 1 Mikrotron EoSens Cl (MC1362) 1280 ˆ 1024 pix
CMOS 2 Imagingsource, USB 2.0 monoch. 1280 ˆ 1024 pix
CMOS 3 Imagingsource, USB 2.0 colour 1280 ˆ 1024 pix
Objective Olympus UPLSAPO 100XO M“ 100X, f “ 1.8mm

back foc. pl. I “ 3.78mm
Piezo stage PI P-561 (stage), E-754 (control) Range (x, y, z): 100µm
SLM LCOS X10468, Hamamatsu 800 ˆ 600 pixel, 60 fps
Laser YLM-5- 1064-LP, IPG Photonics P “ 0 ´ 5 W, λ“1064 nm

Table 2.1 Abbreviations and properties of optical elements in Fig. 2.6.
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Fig. 2.6 Detailed sketch of all optical components in the HOT setup. Updated sketch of the
setup from [127].
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Fig. 2.7 Laser intensity before entering the objective measured using a power meter. a
Total power allocated to point and line traps of various lengths. b Non-linear dependence
of laser intensity entering the objective aperture and total laser power.

The relay optics L1 ´ L2 then increases the 1{e2-diameter by a factor of fL2{ fL1 “ 5

to 25 mm. The active area of the SLM has dimensions 16 ˆ 12 mmˆ mm. This means

that we are overfilling the active area roughly twice in the vertical direction with the 1{e2-

diameter, providing a slowly varying intensity across all active pixels. In order to achieve

stable tweezing, the gradient forces Eq. (2.1) have to overcome the scattering forces in

all directions, especially in the direction of beam propagation. This is typically achieved

by overfilling the back aperture of the objective [125] with the incoming laser. The rays

that provide the restoring force in the axial direction originate from the rim of the back

aperture, as indicated in Fig. 2.1b. In the case of holographic tweezers, ’overfilling the back

aperture’ requires the image of the active area of the SLM to be greater by some margin

than the back aperture diameter of the objective (listed in Tab. 2.1). If, on the other hand,

the active area of the SLM is magnified too much, the loss of power and imaged pixel area

may become prohibitive.

In Fig. 2.7, I plot the laser power that enters the back aperture of the objective as a

function of the hologram (panel a) and the total input power (panel b). The non-linear

dependence of laser intensity before the objective is (partially) caused by overfilling the

SLM, since with increasing laser power a growing fraction of the intensity hits the SLM

outside of the active area.

The telescope L3´L4 in my setup was chosen to yield a magnification of fL4{ fL3 “ 2{5

such that the image of the central square of the active area would have dimensions 4.8ˆ4.8

mm ˆ mm when it enters the back focal plane of the objective which has a diameter of

I “ 3.78 mm, overfilling by approximately 1 mm radially.

On the imaging side, I use a tube lens (L6) with a focal length of 500 mm, which results

in a total magnification of fL6{ fObjective « 277 on the CMOS 1 camera. The pixel size of the
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Microtron is 142µm ˆµm so that a pixel-length corresponds to 50.5 nm in the imaged

plane. For comparison, the Abbe criterion for, say, λ“ 560 nm gives a minimum resolvable

distance of 200 nm (NA“ 1.4). The corresponding spatial Nyquist frequency thus amounts

to 100 nm. This means that the microscope/camera-system oversamples by a factor of

approximately 2.

The total sensor area of the LUPA1300-2 as provided by Mikrotron [128], 17.92 ˆ 14.34

mmˆ mm divided by the pixel number 1280 ˆ 1024 amounts to precisely 142µm ˆ µm.

The conversion factor 1pix “ 50.5 nm calculated above is important and is used through-

out this thesis. It is also a mandatory input parameter of the internal holography engine

of the RedTweezers programe. The excellent agreement of the RedTweezers-physical

model used to create holograms for given trap locations with the observed trap-location

corroborates this number. Even just slightly different input parameters lead to a notable

divergence of the observed and predicted trap locations. The same holds for the image

size of the active area of the SLM 4.82 mm ˆ mm, which, too, is a required input parameter

of the holography engine.

Sample illumination is provided by two LEDs, one in trans (depicted as blue circle in

Fig. 2.6) and one in epi-configuration (green circle). The role of the latter is to provide

excitation for potential future fluorescence-based experiments. The LED in trans configu-

ration is easily exchanged; I used a white light LED in all experiments described here in

order to pass the dichroic mirros (D1, D2).

As shown in Fig. 2.6, the setup is endowed with two further CMOS cameras imaging

planes that are respectively conjugate to the microscope plane. While CMOS 2 is used

to image the back reflection coming from the sample, e.g. to study phase-gradients

over different axial positions, CMOS 3 is used to map the created light landscape in a

quantitative fashion. Because of this, CMOS 3 is of primary importance in my inverse

holography project, the underlying physics of which I describe in Sec. 2.2.5.

2.2.4 Particle localisation routine

The core innovation of this thesis lies in the software development on the HOT setup. The

control software my colleagues and I use to carry out Brownian dynamics experiments is

an extension of the RedTweezers holographic control program mentioned in the previous

section. I extended or refined the software with (1) a robust autofocus routine, (2) a

realtime colloid localisation, (3) a dynamic voltage control with localisation-feedback,

(4) a laser-control, and (5) a robust automation routine with localisation-feedback. The

automation routine is capable of performing experiments in parallel and unsupervised,

automatically cycling through a number of parameters and detecting as well as reacting
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to error-states. In the appendix in Sec. A.1, I give a detailed account of the core algorithm

of the automation routine.

In addition, I optimised the performance of the software such that it can analyse each

individual frame at frame rates of up to around 2000 fps without missing any frames

coming from the Mikrotron (CMOS 1). Upon arrival, images are stored into an image

queue in a dedicated loop, which has no other tasks. Another loop, which is carried out

concomitantly then extracts and processes each frame from the queue and stores the

data into a binary format (tdms). Thus, frames are not stored on the harddrive; only the

extracted information is. However, the user still has the option to record videos at all times.

At the end of every recording, all experimental parameters such as trap positions or laser

power are also stored in the file.

In the following I discuss a few core algorithmic components of the localisation routine.

The list below contains a step-by-step explanation of localisation:

• Before experiments: Gather „ 500 images and average.

• Drag colloid into ROI and begin experiment.

• For each frame, subtract average frame and threshold the result to obtain a binary

image.

• Extract all regions where pixels are one (above threshold).

• Extract the original pixel-values in these regions from the frame.

• Optional: Perform a Gaussian blurring (kernel size is user controlled).

• Perform either (1) centroid or (2) self-convolution algorithm [129] to find centre of

extracted region (colloid).

2.2.5 Digital holography as an inverse problem

As I indicated throughout this chapter, a given intensity distribution in the focal plane will

have several corresponding holograms that would create it. The associated algorithmic

problem of finding any or even all phase-patterns that give rise to a given intensity distri-

bution is classical and has inspired numerous publications in various contexts, notably

diffraction-based techniques such as electron microscopy [130, 131, 122].

The phase-problem encountered in shape-phase holography is illustrated in Fig. 2.8,

where two holograms with different envelope locations but similar spatial frequencies

are shown that give rise to approximately identical intensity distributions. Differences
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Fig. 2.8 The phase problem in shape-phase holography. Two holograms displaying the
same spatial frequency, that are overlaid with different Gaussian apertures, separated by a
horizontal distance ∆µx , result in very similar intensity distributions.

between the two intensity distributions mostly arise from aberrations and spatial variation

in illumination intensity of the SLM (see Sec. 2.6).

However, the phase-problem arises in many more ways in holography.

As I want to briefly discuss here, phase-invariances also appear in restricted holograms

containing only a few or even just a single spatial frequency. In Fig. 2.9a, I demonstrate that

the intensity of a point-trap resulting from a hologram that contains only a single spatial-

frequency is a constant over the complex phase ϕ of that frequency. The holograms

shown in this case are the result of taking the real part of a Fourier transformation of

complex-valued 8 ˆ 8-matrices f (the same matrices are shown in Fig. 2.2b). Moreover,

as shown in Fig. 2.9b, if I vary the amplitude r of the same Fourier component instead of

its phase, the intensity of the spot describes a non-invertible bell-shaped curve. The bell

shape is caused by the circular nature of phase-shifts: From a certain shift value (Fourier

amplitude) onwards, the intensity will adopt a previously held value.

The red curve in panel b is the mean over a collation of 20 measurements at the

same Fourier amplitudes, the grey envelope shows the standard deviation. The data was

recorded at a laser output of P “ 0.3 W on CMOS3 (see Fig. 2.6) with an exposure time of

10 ms and a gain of 8x.

The phase invariances in both panels a, b are shown for a single spatial frequency and

will likely combinatorically multiply if holograms consisting of several Fourier frequencies

are considered.

The plot also introduces an important concept: Instead of thinking about the rela-

tionship S between a hologram h and the intensity distribution I, one could consider the
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a b

Re

Im

Fig. 2.9 Phase-intensity invariances for a single Fourier component, here exemplified
using f3,3 from a preselected 8 ˆ 8-Fourier matrix f. a Variation of phase: The measured
intensity is invariant over the phase ϕ P r0,2πq of the complex-valued Fourier component
3,3 (colour coded). The invariant laser intensities I are shown below the Fourier matrices.
b Variation of amplitude: The intensity is a non-invertible function of the amplitude
r P t0,1, . . . ,255u of the Fourier component.

mapping between the Fourier frequencies f that underlie the hologram h and the ensuing

intensity distribution I, i.e. S ˝ F : f Ñ I. I go into greater detail on this in chapter 4.

As mentioned before, examples of the two mappings S,F are shown in Fig. 2.2b. Cru-

cially, the dimensionality of the space of relevant Fourier frequencies is much smaller than

holograms such that this space is more amenable to numerical treatment.

Gerchberg-Saxton algorithm

Arguably, the best-known phase-retrieval algorithm is the Gerchberg-Saxton [130], sum-

marised in Fig. 2.10: Initially, the phase is set to random. It is paired with the target

intensity distribution in a field of complex numbers, where intensities are recorded as

amplitudes. A sequence of back-and-forth Fourier transformations, during which the

amplitudes are replaced by the target intensity and constant matrices then converge

the phase-field to the final pattern. I give two examples in Fig. 2.10b and c. Algorith-

mic phase-retrieval is subject of ongoing research and several variants of the original

GS algorithm, geared towards their respective application, have been proposed in the

literature [132–134].
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Fig. 2.10 Gerchberg-Saxton Algorithm. a Sketch of the algorithm. Grey boxes represent
matrices of complex numbers z “ Ae iϕ. b Example of an intensity distribution created
with the GS algorithm on the HOT setup (measured on CMOS 3). c The corresponding
SLM pattern.



Chapter 3

Results of path-time experiments &

simulations

This chapter presents my main experiments on various flavours of first-passage times

carried out on the HOT setup described in Chapter 2. In addition, I summarise results from

Brownian dynamics simulations used to study selectivity in channel transport. The results

presented here have been published at the time of writing in at least one paper [94] about

transition-path times in non-equilibrium systems (Sec. 3.1). A second publication about

optimised Brownian escape times (Sec. 3.2) has been submitted. Efforts to measure and

publish first-passage times in corrugated channels, which offer a perspective on entropic

forces, have seized following a very similar publication by a competing group [135].

3.1 Experimental evidence of path-time symmetry and its

breakdown

The following section contains the results of the aforementioned publication which I

authored [94]. Whenever data from my coauthors is considered, I indicate this in the

following text.

Classical thermally activated reactions are ubiquitous in nature and technology with

a wide range of examples including folding transitions of proteins [136, 62, 137, 65] and

DNA [138, 72], transitions of colloidal particles between optical traps [139], and the dynam-

ics of molecules in membrane channel proteins [140–142], artificial nanopores [143, 144],

and channels [135, 145]. Depending on the system, these transitions may proceed along a

single, multiple, or even a continuum of pathways in phase-space that connect the initial

and final states. I mentioned the debate around the question of pathway multiplicity in
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Sec. 1.1.2. In Sec. 1.2.2, I defined the transition-path time τ as the time it takes to travel

from one thermodynamic state to another.

From the definition, it follows that in a two-state system, the transition-path time τIÑII

can be measured as follows: whenever the system leaves the area of state I, a stopwatch

is triggered. It is stopped when the system either returns or transitions to state II. In the

latter case, this constitutes a single realisation of the transition path (see Fig. 1.2).

Importantly, as I explain in Sec. 1.2.3, transition-path times τ do not directly determine

the rates kIÑII and kIÐII of the reaction [99, 146]. This is because, rate coefficients account

for all prior unsuccessful attempts at leaving the state in addition to the actual time of

travel of the successful attempt. Transition rates can therefore be strongly asymmetric if

one state is thermodynamically favourable over the other. By contrast, transition-path

times are expected to be statistically symmetric in equilibrium, in accord with the principle

of microscopic reversibility [147, 91] (see Sec. 1.1.3).

In many systems, it has been challenging to resolve individual transitions. However,

technological progress has now advanced to a point where information about folding

events of polymers can be gathered using optical techniques, such as FRET, which has

sparked considerable interest in transition-path times [62, 137, 65], as mentioned in

Sec. 1.1.2. In electrophysiology and pulse-sensing experiments, molecules are inter-

rogated by voltage-driven transport often proceeding along a single pathway through

membrane channels [148]. This technique detects changes in ion flow due to blockage by

solutes of interest. However, for small, uncharged molecules (such as some antibiotics),

these measurements are often not sensitive to the direction of travel or the orientation

of the channel [149]. Direction, however, matters in biological membrane channels,

which usually have an asymmetric structure. Channel asymmetry can, for instance, give

rise to ratcheting effects that rectify diffusive currents under the influence of fluctuat-

ing forces [150]. Despite their importance, most of the thermodynamic principles of

transition-path times have not been studied systematically, especially in experiments

outside of thermodynamic equilibrium.

3.1.1 Uphill and downhill exit-path-time symmetry

Here, I use the HOT setup in conjunction with confining microchannels to physically sim-

ulate the escape of a Brownian particle from a cavity, reminiscent of the escape of solutes

from membrane channels [151]. The movements of solutes such as ions in membrane

channels or nanopores often follow thermodynamic gradients. Such a gradient is mod-

elled here with a phase-gradient force f in a laser line trap as sketched in Fig. 3.1a. I plot a

selection of trajectories of Brownian particles acquired from automated drag-and-drop
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directions agree, but decrease with increasing force. Error bars indicate the standard
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Cumulative distribution of first exit-path times in the uphill (red) and downhill (blue)
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52 Results of path-time experiments & simulations

experiments in panel 3.1b: At t “ 0, the particle is positioned at the centre x0 “ 0 of a

predefined spatial interval within a microchannel. The particle is released, a stopwatch is

triggered, and a laser line trap with a prescribed phase-gradient is turned on (see Fig. 1.2a

and Sec. 3.1.6). Once the particle leaves the interval, the stopwatch and the measurement

are stopped. I mention here again, that a more detailed description of the automation

routine can be found in the appendix in Sec. A.1.

I find that the probability density of positions ρpxq recorded in an ensemble of repeats

goes to zero at the interval boundaries xÐ, xÑ. These points can therefore be considered

as absorbing in the Fokker-Planck picture. For each value of force f , I gathered around

1000 trajectories of which 950 ´ 980 were free of incidents such as other particles entering

the channel. In order to check for static bias, I applied both positive and negative forces

(see Fig. 3.1c). Such a bias is often caused for example by weak latent flows of water.

Within experimental resolution, I find that the diffusion profile Dpxq along the channel is

not affected by the applied phase-gradients (see Sec. 2.2.1 and Sec. 3.1.6), such that any

difference in dynamics must be attributed to the difference in force. The inference method

used to estimate potential Upxq and diffusion profile Dpxq is discussed in Sec. 3.1.6.

The central result of this experiment is the equivalence of the mean left and right

exit-path times xτÐy, xτÑy, shown in Fig. 3.1d. Moreover, shorter exit-path times for

higher absolute forces | f | indicate a speed-up of both uphill and downhill trajectories.

By contrast, exit probabilities behave intuitively: exits against the force (uphill direction)

become increasingly unlikely with an increasing force magnitude | f | as shown in Fig. 3.1e.

The theoretical mean exit-path time (black line in Fig. 3.1d) was obtained from a

solution of Eq. (1.36) with boundaries at xÐ “ ´L{2 and xÑ “ L{2 with L “ 3.7 µm. I

want to note here that L stands for the length of the interval, not the channel. Due to

the observed exit time symmetry, the equation for the mean exit time can be solved for

any exit xÐ, xÑ. Interestingly, this symmetry extends beyond a simple equivalence of

the mean. In fact, the distribution of exit-path times agree in the uphill and downhill

direction as shown in Fig. 3.1f. This holds even for forces of different nature such as

hydrodynamic drag as shown in panel g. Trajectories that manage to exit against the flow

do so at precisely the same drift speed x 9xy as the ones that follow the flow. The statistical

significance of similarity between two given cumulative distributions is asserted by the

Kolmogorov-Smirnov test (see Sec. 3.1.7). Throughout this study I require a significance

of 0.5. Theoretical distributions of exit-path times shown in Fig. 3.1f,g to, for example, the

left side ρτÐ
ptq were obtained from a numerical solution of the Fokker-Planck equation
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(see text leading up to Eq. (1.24) for derivation)

Btρpx, t |x0q “ ´Bx j px, t |x0q (3.1)

with j px, t |x0q “ f ρpx, t |x0q ´ DpxqBxρpx, t |x0q denoting the current of probability. The

initial density of colloid positions ρpx, t0 “ 0q “ ρ0pxq was modelled as a sharp peak at the

channel centre, x0 “ 0. Once j px, t |x0q is obtained, the exit-path time distribution is given

by the one-dimensional version of Eq. (1.41), i.e. ρτÐ
ptq “ j pxÐ, t |x0q{PÐpx0q with xÐ

denoting the x-position at the left boundary. Both boundaries were treated as absorbing,

i.e. ρpxÐ, tq “ ρpxÑ, tq “ 0. The two exit probabilities PÐp f , x0 “ 0q and PÑp f , x0 “ 0q

are given by Eqs. (1.44) and (1.45). ρτÑ
ptq can be obtained by exchanging xÐ for xÑ and

PÐ for PÑ.
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3.1.2 Uphill and downhill transition-path-time symmetry

The robust symmetry observed experimentally in exit-path times is also found in direct

transitions between any two points xL, xR in a quasi-one-dimensional microchannel that

is filled with an optical landscape. I deliberately choose left (L) and right (R) subscripts

here to contrast transition-path times from exit-path times (see also Fig. 1.2a,b). The

landscape considered here consists of a mixture of a point trap and a line trap with a

positive phase-gradient force created by the HOT (see inset in panel 3.2b). I employ the

same HOT automation routine as before to observe around 500 uninterrupted colloid

trajectories. The energy potential inferred from this ensemble of particle trajectories is

plotted in panel 3.2a. The transition-path times τtrÐ
, τtrÑ

across the interval shown as

a black box in 3.2a, are identically distributed as can be seen in 3.2b. Based on a spline

interpolation of the inferred potential Upxq and a spatially dependent diffusion coefficient

Dpxq, I calculated the theoretical distribution of transition-path times ρτtrptq. Again, I

treat both boundaries xL and xR as absorbing. I compute ρτtrptq for an initial density ρ0pxq

which is sharply peaked close to the initial exit, following Sec. 1.2.2. For this purpose, I use

a one-dimensional Gaussian N px0,σ2q with x0 “ 4σ measured from the initial exit with a

σ„ 10´7µm only just large enough to avoid underflow in Mathematica.

For the sake of this example, I choose the direction left to right and thus set x0pϵq “ xL`

ϵ. The current density reads j pxR, t |x0q “ BxpUpxqρpx, t |x0qq|x“xR´DpxRqBxρpx, t |x0q|x“xR

at the right boundary xR. I normalise the distribution by the overall probability to exit

through xR, PÑpx0q (see Eq. (1.45)), assuming x0 as the initial position. Finally, I obtain

the distribution of transition times ρτtrÑptq from Eq. (1.53). A plot of ρτtrÑptq is shown in

Fig. 3.2b (black).

In panel 3.2c I plot the probability of direct transition across the same interval length,

when this interval is continuously moved along the channel. For each position of this

interval, the transition probabilities and times are recorded. As can be seen in panel 3.2d,

the mean transition-path times calculated in this way in both directions are sensitive

to the local force, especially when the transition interval touches the optical point trap.

Despite this sensitivity, transition times in both directions are in excellent agreement. The

theoretical prediction for the mean transition-path time xτtrÑ
y plotted in black in Fig. 3.2d

was calculated using Eq. (1.52).

3.1.3 Breakdown of path-time symmetry under external coloured noise

The question that arises is whether and how this symmetry can be broken. In Sec. 1.1.1, I

hint at ”thermodynamical consequences” of enlarging phase-space from one to two di-
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Fig. 3.3 Sketch of the topological perspective on equilibrium and out-of-equilibrium state
transitions. a Single pathway in equilibrium. b Multiple pathways in equilibrium. Detailed
balance fulfilled everywhere. Transition path-time statistics must necessarily be sym-
metric, but potentially multimodal transition-path time distribution. c Non-equilibrium
transitions confined to a single-pathway. This scenario arises, for instance, when an
external white-noise is applied to a confined system. d Breakdown of detailed balance
in multi-pathway systems. In steady-state state this system will sustain circulatory and
self-avoiding probability fluxes. Transition-path times can be asymmetric.

mensions. Indeed, detailed balance cannot be broken in steady-state in one-dimensional

systems with continuous variables (or discrete systems with only two states). It can break

down, however, as soon as circular, self-avoiding fluxes become possible from a topologi-

cal point-of-view [61, 56]. I sketch and summarise the thinking behind the topological

perspective on state transitions in Fig. 3.3.

In the following section, I describe the effect of external forces fextptq, that stochas-

tically switch between two levels ` f0 and ´ f0 with exponentially distributed switching

times. Such two-state switching processes are generally referred to as telegraph noise.

The time between two switches is, as mentioned, exponentially distributed with a decor-

relation rate α, such that x fextpt `∆tq fextptqy9e´α∆t for ∆t ą 0. As can be seen in this

example, non-Markovian variables have internal states, which are hidden from the system.

In this case, the topological effect is the temporal persistence of the applied force value,

which enables state transitions across, effectively two different potential barriers with

force-fields f1pxq “ ´BxUpxq` f0 and f2pxq “ ´BxUpxq´ f0.
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The application of external telegraph forces drives the system into a non-equilibrium

steady state (NESS). I create a NESS on the mesoscale by combining a bistable optical

potential consisting of two point traps with different trap strenghts created with our HOT

and randomly sign-switching electrical fields (see panel 3.4a). A trace of the position

variable xptq and the electrical field Eptq are shown in panels b and c. I set the traps

apart by 0.7µm and direct 50% more light to the left trap than to the trap on the right,

while operating at an overall laser power of „ 50 mW to avoid heat-induced convection.

The minima of the two traps correspond to the two states I and II the transition time is

measured over the white area in panel 3.4d. Different trap strengths result in a difference

in curvature between the two traps; the transition barrier loses its symmetry with respect

to the centreline separating the two states.

Indeed, as shown in panel 3.4f, I observe a statistically significant difference in the

distribution of transition-path times τIÑII and τIÐII for α “ 0.5s´1. Interestingly, the

difference in mean transition times stays fairly constant over a range of decorrelation

rates α, as shown in panel 3.4g. Towards higher noise decorrelation rates α (note the

logarithmic scale), the symmetry is restored. For high frequencies of sign switches, the

telegraph force approaches a white noise process and the system should approach the

scenario sketched in Fig. 3.3c.

To study further the underlying mechanism that led to the breaking of this symmetry, I

recreate my experiments in one-dimensional Brownian dynamics simulations (details are

discussed in Sec. 3.1.8). The motion of a colloidal particle under the influence of external

telegraph forces is well described by the following equation

γ 9xptq “ fextptq´
BU

Bx
pxq`

a

2kB Tγξptq, (3.2)

where γ denotes the friction coefficient of a sphere and fextptq “ f0T ptq denotes the force

exerted by the electrical field. T ptq represents a random telegraph process that switches

between 1 and ´1. Upxq corresponds to the free energy and ξptq is a Gaussian white-noise

process with zero mean and unit variance xξptqξpt 1qy “ δpt ´ t 1q. I did not attempt to

model every parameter of the experiment quantitatively, but rather test the generality

of the observed split of transition pathways. The distribution of the system state in the

NESS is shown in panel 3.4e. The transition pathways indeed split up. The distribution

Pi , j of the system state along these pathways in this forceˆposition plane turn out to be

visibly different on each leg. Colloids transitioning into one direction will therefore likely

experience different force distributions along their pathway than colloids transitioning

into the opposite direction. The red and blue arrows in the figure indicate the preferred
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Fig. 3.5 Folding and unfolding transitions of DNA hairpins under fluctuating external
forces. a Sketch of the experiment: Each end of the DNA-hairpin strand is grafted onto
a colloid. While one colloid is firmly attached to a pipette, the other is held in force-
measuring optical tweezers. The position of the different states F`,F´,U`,U´ are in-
dicated in the f ˆλ plane (forceˆextension plane). b Relative occupation of states in
the λˆ f plane. c Excerpt of the dynamics of the hairpin. d Cumulative histogram of
transition times from U` Ñ F´ (blue) and vice-versa (red). The inset shows the free
energy G of the barrier in equilibrium. The experiments were carried out by our collabo-
rators Dr M Ribezzi-Crivellari and Prof F Ritort. The figure was created jointly by Dr M
Ribezzi-Crivellari and me.

sense of transition direction along the two pathways; detailed balance is indeed broken in

this two-dimensional space [61] and transition-path times differ as a consequence (see

Fig. 3.4f).

3.1.4 Folding-time symmetry and its breakdown in DNA-hairpins

The following section draws on data provided by my collaborator Dr Marco Ribezzi-

Crivellari, who measured folding dynamics of DNA hairpins in Prof Felix Ritort’s lab at

the University of Barcelona. The data provides a molecular analogue of my microfluidic

experiments.

Having established broken symmetry on the mesoscale I now show the generality

of the effect with an experimental realisation on the molecular scale. My collaborators

measured folding and unfolding transition times of short 20-bp DNA-hairpins under

the influence of telegraph forces using an optical tweezers-based force spectroscopy
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setup [152] (see Fig. 3.5a). In these experiments, the hairpin is grafted onto a colloid on

each end. While one colloid is firmly attached to a pipette, the other colloid is held in

force-measuring optical tweezers and subject to a feedback-controlled force. If the force

is kept constant in time, the hairpin thermally transitions between two main states folded

(F ) and unfolded (U ), which differ in molecular extension and thus in trap position λ.

I here describe experiments performed using a non-equilibrium protocol. The system

is subject to a telegraph force and each of these two (U ,F ) states splits into a doublet:

high (F`,U`) and low force (F´,U´). This is shown in panel 3.5b using the density Pi , j of

states in a coarse-grained space spanned by the force measured by the optical tweezers f

and the trap position λ. Importantly, as the arrows indicate, the telegraph force not only

leads to a splitting of states, but also causes transition pathways to diversify. The system

is more likely to unfold F Ñ U during extended periods of high force (`), than during

periods of low force (´). As a consequence, transitions from state F´ to U` through U´

(red arrows in Fig. 3.5b,c) are more likely than transitions from state U` to F´ through F`

(blue arrows in Fig. 3.5b,c).

A typical trajectory of the system is shown in panel 3.5c, highlighting transitions

from U` to F´ (blue) and vice versa (red). This split in pathways results in the visible

difference of cumulative distributions of folding (red) and unfolding (blue) transition

times in panel 3.5d. However, this difference is not necessarily always present: The

difference between back and forth transition-path times can become arbitrarily small

under certain conditions that we describe in further detail in our paper [94]. We conclude,

that an observed transition-path-time asymmetry in an overdamped system indicates

that the system under study breaks detailed balance and is hence out of equilibrium.

Importantly, the reverse conclusion does not hold: a system which satisfies transition-

path time symmetries is not necessarily in equilibrium.

Overall, the transition-path times of our DNA-hairpin are significantly longer than

previously reported values [72], because our system transitions via intermediate states

(U´ or F`). The time spent in corresponding minima affects the overall transition-path

time in a path-dependent way and thus amplifies the asymmetry. By contrast, on the

mesoscale, transitions are slow enough such that we could resolve the asymmetries shown

in Fig. 3.4f, which directly originate from asymmetries in the barrier shape.

In conclusion, I find that the overarching topological picture indeed applies to the

molecular scale; the dimensionality of the space of folding is effectively increased by at

least one due to the external coloured noise. In this increased phase-space, a breakdown

of detailed balance results in a diversification of transition pathways, which causes a

transition-path-time asymmetry. Importantly, all participating degrees of freedom, in-
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cluding internal variables of external forces (see the example in Sec. 1.1.3), have to be

considered in the analysis.

3.1.5 Conclusion

In this section, I present experimental evidence of a fundamental transition-path-time

symmetry in Brownian transitions and its breakdown on the meso- and molecular scale

under the influence of stochastic external forces. In accord with intuition, my colleagues

and I find that uphill transitions become less likely, as the potential gradient between

the initial and end state becomes steeper. Uphill and downhill transition-path times,

however, are identically distributed under steady-state conditions. Conceptually, I show

that transition-path times connecting any two points in the space of the system are

thermodynamically well-defined quantities. Indeed, I find that in a time-constant force

landscape, measured transition-path times agree with theoretical predictions that assume

absorbing boundary conditions at both ends of the transition interval. It is important to

note that boundaries can be located anywhere in the potential landscape and do not need

to coincide with minima of the potential.

In contrast to transitions driven by thermal forces, I find that the transition-path-time

symmetry can break down under the influence of coloured noise. The additional timescale

of external telegraph forces in the microfluidic systems changes the topology of transition

dynamics. I therefore uncover a diversification of transition pathways in the extended

phase-space, which includes the external force. Back and forth reactions follow, on aver-

age, different paths, breaking detailed balance and the transition-path-time symmetry.

Specifically, I show that transition-path times of a colloid in an asymmetric double well

potential become measurably asymmetric, when perturbed by randomly switching elec-

trical fields. The asymmetry is sensitive to the frequency of field reversals and disappears

for frequencies that are much higher than the barrier crossing time. Similarly, a DNA-

hairpin that is driven out of equilibrium by a force that switches randomly between two

levels, exhibits asymmetric folding-/unfolding-path times. The observed asymmetry in

transition-path times, however, is a result of an implicit projection of the system state onto

a one-dimensional reaction coordinate. A breakdown of transition-path-time symmetry

does therefore not imply a breakdown of microscopic reversibility. I note that all systems

studied here are overdamped and effects related to inertia can be neglected.

My results have direct implications for the study of transitions in membrane chan-

nels or nanopores. Translocation times of solutes, like antibiotics, through membrane

channels, are of interest in electrophysiological measurements [148, 149]. Due to a lack

of any direct optical access in these experiments, the shape of the current signal during
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translocation is the only source of information about the channel-solute interaction. The

results show furthermore that it should be possible to infer the direction of travel solely

from first-passage times. A reversal of the electrical potential in such an experiment

should result in a distinct translocation time distribution if the solute-channel interac-

tion landscape is asymmetric. The combination of a (sign-flipped) field and interaction

potential can be interpreted as the limit of infinite switching times in Fig. 3.4, which

amounts to the simple case of back and forth translocating solutes experiencing different

time-constant force landscapes. Furthermore, in studies of molecular motors, transition-

path time measurements could enable one to discriminate between power stroke and

ratchet mechanisms, beyond thermodynamic considerations [24]. Arguments based on

first-passage-time symmetries have already been used to question the thermodynamic

consistency of interpretations of Kinesin motility experiments [153, 93].

Moreover, in systems driven by ratcheting [23, 154, 25, 145], unbiased coloured noise

rectifies Brownian dynamics around points of asymmetry of the energy landscape. The

asymmetry of transition-path times demonstrated in this study could be used as exper-

imental evidence of this effect. Transition-path-time asymmetries could therefore be

helpful in identifying and quantifying non-equilibrium dynamics in biological and molec-

ular systems and complement recently discussed techniques such as broken detailed

balance in active matter [155] and filament fluctuations [61]. I note that a breakdown

of the transition-path-time symmetry can be diagnosed by tracking only one degree-

of-freedom, whereas diagnosing a breakdown of detailed balance requires a minimal

dimension of two in continuous coordinates [155]. This might be particularly helpful in

FRET experiments, where usually only a single degree-of-freedom, the FRET efficiency, is

accessible.

The path-time symmetries I explore come in two flavours: an exit-path-time symme-

try (see Fig.3.1) and a transition-path-time symmetry (see Fig.3.2). Recent theoretical

advances [85, 83] point to a connection between the two flavours, which lies in a sym-

metry of the first-passage time of the entropy produced during the transition. Since a

breakdown of transition-path-time symmetry is a sufficient, but not necessary condition

for non-equilibrium dynamics, it is in general not possible to deduce entropy production

from observed transition-path times as my coauthors and I discuss in Supplementary

Note 4 and Supplementary Figure 4 of our publication [94].

3.1.6 Experimental methods

The colloidal particles used in the experiments described above, consist of polycarbonate

with a COOH-functionalized surface, with a diameter of 0.5µm, and were purchased from
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Polysciences Inc. The particles were suspended in 0.5ˆ TRIS-EDTA buffer at pH 8 and

additionally 3 mM KCl to screen potential charges on the walls of the channel. Prior to

each experiment, I ascertained that no detectable hydrodynamic flow was present by

comparing left and right exit probabilities of colloidal particles initialised in the centre of

the channel.

The geometry and fabrication of the 5 ˆ 1 ˆ 1 µm3-microfluidic-channel mask used

here is explained in [156]. The frame rate was set to 80 fps in all experiments. Details of

the experimental protocols and setup used by my coauthors in this section can be found

in our publication [94].

Colloids as hard-sphere Brownian walkers

The Debye length which characterizes the length scale of eletrostatic interactions in

aquaeous solutions is here on the order of λD « 4 nm given the KCl and TRIS-EDTA

concentrations described above (see also Chapter 5). The channel geometry, however, is

on the order of micrometers and electrostatic effects should therefore be negligible for

my purposes. From an electrostatics perspective, isolated colloids here should behave as

hard spheres which do not feel wall repulsion unless they are in immediate contact with

the channel walls.

In the presence of time-varying electrical fields, electrodynamic effects have to be

considered. In my experiments discussed in Fig. 3.4, I use switching electrical fields to

drive colloidal particles trapped in optical potentials out of equilibrium. In such circum-

stances, the electrophoretic mobility µel of the colloids determines the strength of the

electrophoretic force the fields exert on them. In bulk, COOH-labelled colloids with a nom-

inal diameter of 380 nm dispersed in a solution with a salt concentration of cKCl “ 10 mM

have been measured to have an electrophoretic mobility of µel « 10´12 m2V´1s´1 at

pH 7 [157]. This value is not expected to be significantly different at pH 8, as measure-

ments indicate [157]. However, as I explain in more detail in Chapter 5, electrophoresis in

channels typically occurs in conjunction with counteracting electroosmotic flows.

Detailed measurements of colloidal dynamics conducted in and nearby channels with

similar depths and length scales show that the interplay of these two effects can cause

complex colloidal dynamics at channel entrances [157]. It is for this reason that I chose to

conduct my experiments only within the interior of channels so that entrance-geometry-

related effects, such as those described in the paper, do not apply. For the purposes of

this study it is furthermore irrelevant if the colloids are driven by electrophoretically-

or electroosmotically-induced forces (or a mixture thereof). It is sufficient that the net-

exerted force swiftly switches direction with the sign of the applied voltage.
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Inference of Brownian motion parameters

A statistical tool which is of particular importance to my thesis are force and diffusion-

coefficient estimators. Ideally, these estimators do not require additional measurements,

but can simply be applied to the trajectories measured during the experiment. There are

several published methods that can be used to infer forces from trajectories, including the

use of splitting probabilities [158], and Bayesian methods [159]. The method, I adopted

in all of my experiments is simpler: In order to infer steady-state forces and diffusion

coefficients in a one-dimensional interval ra,bs, the interval is first subdivided into N

bins with length δ“ pb ´ aq{N . Then, the displacement statistics t∆xt u are calculated, i.e.

∆xt “ xt`1 ´ xt . The displacements are assigned to a bin k where the step originates from,

that is, k “ floorppxt ´ aq{δq for k P t0, . . . , N ´ 1u.

Next, a Gaussian is fitted to the displacement statistics in each bin, ρkp∆xq „ N
`

µk ,σ2
k

˘

.

The diffusion coefficient is then obtained from the variance

D̂k “σ2
k{p2∆tq (3.3)

where ∆t is the time step between two consecutive camera frames. For the force, the fric-

tion coefficient γ is required. I here make the assumption that the Einstein-Smoluchowski

relation holds and write γ̂k “ kB T {D̂k . The force then follows using

f̂k “ γ̂kµk{∆t . (3.4)

Confidence bounds for f̂ and D̂ can be obtained by propagating the bounds of the

Gaussian fit through Eqs. (3.3) and (3.4). Potentials Upxq are obtained from Ûpxq “

´
şx

a dx 1 f px 1q « ´
řk

l“0p f̂l ` f̂l`1q{2.

Phase-gradient calibration

I give a short description of phase-gradients in Sec. 2.2.1. In my explanation, I mention

the relationship between tweezing-beam-angle and position of the hologram-envelope

(µx ,µy ). This relationship can be observed experimentally as shown in Fig. 3.6. Instead of

going through a single 2f-system, the beam in my setup crosses three lenses (the last one

being the objective).

In Fig. 3.6 I show a scan of the back reflection for different axial positions of the cover

slip using the Piezo-stage. The angle of the beam can be measured from these pictures by

observing the lateral movement of the centre of intensity, c⃗pzq “ pxpzq, ypzqq. The angle

then follows from αppq “ xarctanp∆z{∆xqy where ∆z is the axial-step of the piezo, ∆x is
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Fig. 3.6 Visualisation of phase-gradients. a Back-scattered image of a line-trap taken at
different axial positions. X ´ Y ´ Z -cuts of the three-dimensional intensity profile along
the respective central plane. b By measuring the movement of the centre-of-mass over z,
one can infer the angle of the beam.

the inferred lateral movement of the centre of intensity, and the average runs over the

axial image stack. Whenever I need to observe the back reflection from the microscope

cover slip, I use CMOS 2 in Fig. 2.6. The shape of the created intensity pattern is otherwise

better observed on CMOS 3 (see Fig. 3.7d).

Calibration means inferring the relationship f ppq of the forces that are created in a

line-trap with phase-gradient parameter p (see Fig. 3.7a, b). This can be done with the

experimental data itself; there is no need for additional experiments. By solving Eqs. (1.44)

and (1.45) for f , I can compute the force f from the the exit probabilities PR , PL. Since

the measured exit-times in Fig. 1.4 are in excellent agreement with theory based on these

force-estimates, the theoretical framework is shown to work in a self-consistent way.

3.1.7 The Kolmogorov-Smirnov test

A visual inspection of similarity between two cumulative distributions can be deceiving if

no quantitative scale of the expected deviation is established. For instance, what level of

similarity is sufficient in the case of Fig. 3.1, where two cumulative samples of exit-path

times are presented, in order to conclude that the samples have indeed been drawn from

the same underlying distribution? This question can be answered using methods from

hypothesis testing, specifically the two-sample Kolmogorov-Smirnov test (KS test) [160].

In the following, I give a brief practical outline of how the KS test is applied to two empirical

distributions of path times. The test relies on a substantial amount of theory, which is

explained in the literature [160]. The null-hypothesis that is tested here at a chosen level
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Fig. 3.7 Calibration procedure for line traps. a Measured conditional exit probabilities
PL , PR . b Self-consistent force estimate inferred from panel a using Eqs. (1.45) and (1.44).
c Microscope picture of the channel and particle used for the experiment (CMOS 1). d
Mid-plane picture of the line trap (CMOS 3).

of significance α“ 0.5 is that both empirical distributions are in fact samples from the

same underlying distribution. I chose the value of α as the highest level of significance

rounded to one digit in which the KS test would still hold for all presented experiments.

The two-sample KS test is based on the maximum distance

Dn,m “ maxτ|P1,npτq´ P2,mpτq| (3.5)

between two cumulative empirical distribution functions P1,n ,P2,m with sample sizes

n and m respectively. I implemented Eq. (3.5) by linearly interpolating between the

discrete elements of P1,n and P2,m . I note that in my case, the two distributions can have

substantially different sample sizes n, m due to the difference in uphill and downhill

transition probabilities.

Once the distance Dn,m is computed, the next step in the KS test is to compare it to

a table of critical values [160] in order to determine if the null-hypothesis is rejected at

significance α. In my case, for a significance level of α“ 0.5, the distance must fulfil

Dn,m ă 1.22

c

n ` m

nm
. (3.6)

The grey lines in Figs. 3.1f, g, 3.2b, 3.4f, h, and 3.5d represent the maximum deviation of

either the red from the blue curve or vice versa that would still satisfy the KS test at the
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chosen level of significance. Importantly, the result of the test does not depend on which

deviation (blue-to-red or vice versa) is chosen.

3.1.8 Brownian dynamics simulations

The Brownian dynamics simulation mentioned in Sec. 3.1.3 is designed to qualitatively

model the doublewell experiment. I use a bistable, asymmetric potential of the form

Upxq “ a{4x4`b{2x2`cx, where c controls the asymmetry around x “ 0. The coefficients

are set to a “ 64∆U1{L4, b “ ´aL2{4, and c “ 2∆U2{L, with ∆U1 “ 5kB T , ∆U2 “ 2kB T

and L “ 1 µm. I set the diffusion constant to D “ 0.15µm2{s, which is close to the value a

500 nm colloid has in a microchannel. The friction coefficient is obtained, again, using the

Einstein-Stokes relation γ“ kB T {D . In simulations corresponding to the results shown in

Fig. 3.4e, the decorrelation time of the telegraph force is set to 2s, while the magnitude of

the force change is set to f0 “ ˘82 fN.

The physical parameters such as D,L and the potential parameters a,b,c are chosen

such that the simulations model an overdamped colloid of size 500 nm on roughly on

realistic length, energy, and time scales. The most relevant theoretical simplification here

consists in the assumption that no other forces besides the gradient of the potential Upxq

and the telegraph force exist. Furthermore, I assume a linear dependence of the force

exerted by the fluctuating voltage on its magnitude. The temporal process used to model

for the force here is in fact the process used to generate voltage traces, not the force traces,

in the experiment. This means, that I assume that any change in voltage immediately

translates into a proportional change in force.
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3.2 Optimising Kramers rates by potential shaping

In the previous section, I explore in detail exit- and transition-time-path symmetries in

and out-of-thermal equilibrium. By contrast, in this section, I consider Kramers escape

times in steady-state potentials and show that the escape from a potential minimum

is considerably faster for certain barrier shapes, even when compared to unhindered

diffusion. At the time of the final submission of this thesis, the results presented here have

just been published [161].

As I discuss in Sec. 1.2.3, H.A. Kramers derived a comprehensive theory for the Arrhenius-

like scaling of thermally activated transition rates, k9e´∆U{pkB T q, and introduced a frame-

work to describe such transitions in an energy landscape Upxq. Perhaps surprisingly,

influences of barrier shapes on transition rates and conditions of optimality thereof have

hitherto not received due attention.

My coauthor, Dr. Marie Chupeau in Prof. Emmanuel Trizac’s group in Paris, used a

variational approach to optimise static barrier profiles and calculate the corresponding

mean time of escape. Interestingly, she finds that the maximum achievable relative escape

rate is infinite. The barrier optimisation therefore has to be regularised, for instance, by

placing an upper bound on the barrier height or curvature. Furthermore, my colleagues

show that the rate-boost applies over a range of friction values, extending from the over-

damped into the inertial regime (see Sec. 1.1.2). Importantly, the need for regularisation

disappears in the underdamped regime.

Guided by this theoretical prediction, I demonstrate in this section experimentally that

higher, optimised barriers can paradoxically result in increased escape rates, in contrast

to intuition based on Kramers law in Eq. (1.59).

Specifically, I experimentally demonstrate a doubling of escape rates compared to

unhindered Brownian motion, which proves that the required barrier profiles can indeed

be realised. My results indicate that certain fine-tuned free-energy landscapes of higher

amplitude increase reaction rates. In the context of protein folding, a carefully rate-

optimised free-energy landscape may thus well exhibit a larger number of intermediate

states in spite of additional necessary escapes [162]. In the following, I describe the

necessary elements of the theoretical work and my approach to experimental realisation.

As I explain in Sec. 1.2.3, the reciprocal of the escape rate corresponds to the time of

first-passage to leave the initial state in Kramers problem. A lower bound for the achiev-

able first-passage time, e.g. of the reaction coordinate of a folding molecule, therefore

corresponds to a speed-limit of the ensemble reaction rate [163].

To my knowledge, the idea that the introduction of barriers might speed-up escapes

rather than slow them down goes back to Palyulin and Metzler [164, 165].
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In our publication, my coauthors and I investigate this idea systematically from a

theoretical and experimental perspective. As Palyulin and Metzler show, the speed-up

effect already appears for relatively simple barrier shapes [164], such as the triangular-

shape shown in Fig. 3.8a. Without a reference time, the term ”speed-up” is, of course,

meaningless. The optimised escape time must be compared to a different escape time. In

our case, this reference is given by the free diffusion time τ0pxq “ x2{p2Dq (set Upxq “ 0 in

Eq. (1.57)). Crucially, the barriers we consider end on the same energy where they begin,

such that the process of crossing the barrier does not alter the overall energy balance.

a
U

x

U

x

U

x

"squeezing"0

U
b

Fig. 3.8 Escape rate-boost effect in a simple potential. a Triangular potential defined
by the barrier height ∆U and curvature ω of the intial well. β here denotes the inverse
temperature, i.e. β “ 1{pkB T q. Provided ∆U is large enough, the exit-path time to a
distance x “ L is approximately given by τ» τKramers `τslide, indicated in red and blue
respectively. b Squeezing of the initial well (increasing barrier height and initial curvature)
results in an arbitrarily short exit-path time. The optimisation problem is thus ill-posed
and requires regularisation, at least in the overdamped regime of Brownian motion. The
figure was jointly created by Dr. M Chupeau and me.

3.2.1 Variational calculus applied to Kramers problem

The idea of our publication is to take Palyulin and Metzler’s analysis one step further

and systematically consider the escape time τrUpxqs in Eq. (1.57) as a functional of the

potential shape Upxq.

But before I discuss this variational approach, I want to give some intuition of the

speed-up effect.

At t “ 0, the particle is initialised in the potential well at x “ 0 (red) in Fig. 3.8. Similar

to my discussion in Sec. 1.2.3, the particle is bounded by a reflecting barrier to the left at

x “ 0 and an absorbing boundary to the right at x “ L. The mean exit-path time from the

narrow well is then given by Kramers result τKramers9ω
´1e

∆U
kB T . Once the particle leaves
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the well, it drifts towards the absorbing boundary at x “ L within an average slide time

τslide91{∆U as follows from gradient descent.

In the high-barrier-limit∆U " kB T , the overall mean exit-path time τ is approximately

given by the sum of τKramers and τslide [164]. This time can therefore be shortened by a

simultaneous increase in curvature of the initial well and height of the barrier, see Fig. 3.8b.

Crucially, there is no lower bound (other than 0) for the exit-path time: further “squeezing”

will further decrease τ. As a consequence, a sufficiently high and steep barrier yields a

mean exit-path time, which is shorter than the corresponding free diffusion time.

In order to simplify the notation, my coauthors rescaled all relevant quantities, i.e. the

mean exit-path time, the potential, and the position: τ̃“ Dτ{L2, Ũ “ U{pkB T q, x̃ “ x{L.

The Smoluchowski-Einstein relation D “ kB T {γ here relates the temperature T driving

the Brownian process to the friction coefficient γ. Tildes are used to denote dimensionless

variables, but I drop them hereafter. Furthermore, I also drop the bra-kets around τ, i.e.

xτy ” τ to further simplify the notation.

The mean exit-path time (Eq. 1.56) then reads

τrUpxqs “

ż 1

0
dx e´Upxq

ż 1

x
dy eUpyq. (3.7)

Using this functional, I can now ask which potential profile Upxq that satisfies Up0q “

UpxLq “ 0 leads to a minimal mean escape time τ.

I here follow a slightly different derivation than my coauthors and discretise Eq. (3.7),

that is, I set Upxq Ñ Upxi q ” Ui with i P t0, . . . Nu.

Under an equidistant discretisation, Eq. (3.7) reads

τ
`

U⃗
˘

“
1

N 2

N
ÿ

i“0

e´Ui

N
ÿ

j ąi

eU j . (3.8)

Instead of setting the variational derivative δτrUpxqs{δUpxq to zero, I consider the

partial derivative Bτ{BUk ,

Bτ

BUk
“

1

N 2

B

BUk

`

e´U0
`

eU1 ` eU2 ` . . .eUN
˘

` e´U1
`

eU2 ` eU3 ` . . .eUN
˘

`¨¨¨` e´UN
˘

.
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Setting Bτ{BUk “ 0 and de-discretising then leads to Eq. (3.9) below

e´Uk
1

N

N
ÿ

j ąk

eU j “ eUk
1

N

N
ÿ

j ăk

e´U j

NÑ8
ÝÑ e´Upxq

1
ż

x

dx 1 eUpx1q
“ eUpxq

x
ż

0

dx 1 eUpx1q. (3.9)

The optimal potential has to fulfil Eq. (3.9). My collaborators used this equation to derive

the following, simpler equation by differentiating twice and some algebra

d

dx

ˆ

1

U 1pxq

˙

“ 0. (3.10)

The message of the above equation is that any optimal potential will be linear. The crucial

question here is how Eq. (3.10) interacts with the regularisation and boundary conditions,

Up0q “ UpLq “ 0. I come to that later.

But before I want to mention that one can learn more about the shape of the optimal

potential from Eq. (3.7), namely, that it must be antisymmetric with respect to x “ 1{2.

Optimal potentials are antisymmetric with respect to x “ 1{2

The functional in Eq. (3.7) is invariant under the transformation Upxq to ´Up1 ´ xq, that

is, τrUpxqs “ τr´Up1 ´ xqs. With this invariance, my collaborators derived the following

inequality

τrUpxqs ě τrUasym.pxqs . (3.11)

where Uasym.pxq ” pUpxq´Up1 ´ xqq{2 denotes the antisymmetrised version of Upxq.

In other words, the above inequality expresses the fact that the antisymmetrized

version of any given potential will yield shorter mean escape times.

This can be seen by applying Cauchy-Schwarz’ inequality x f , g y2 “

´

ş1
0 dx f pxqg pxq

¯2
ď

ş1
0 dx f 2pxq

ş1
0 dx g 2pxq to the equation below

τ2
“ τrUpxqsτr´Up1 ´ xqs “

ż 1

0
dx e´Upxq

ż 1

x
dy eUpyq

¨

ż 1

0
dx eUp1´xq

ż 1

x
dy e´Up1´yq.

(3.12)



3.2 Optimising Kramers rates by potential shaping 71

More specifically, it can be applied with the replacements f 2pxq “ e´Upxq
ş1

x dy eUpyq and

g 2pxq “ eUp1´xq
ş1

x dy e´Up1´yq, which leads to

τ2 rUpxqs ě

˜

ż 1

0
dx e´

Upxq´Up1´xq

2

d

ż 1

x
dy eUpyq ¨

ż 1

x
dy e´Up1´yq

¸2

. (3.13)

Another application of the inequality with f pyq “ eUpyq and g pyq “ e´Up1´yq then yields

the desired inequality

τ2 rUpxqs ě

ˆ
ż 1

0
dx e´

Upxq´Up1´xq

2

ż 1

x
dy e

Upyq´Up1´yq

2

˙2

“ τ2

„

Upxq´Up1 ´ xq

2

ȷ

“ τ2 rUasym.s . (3.14)

Two Regularisations: Bounds on U and spatial discretisation

The two constraints that I discuss in the following, namely (A) bounds on U and (B) regular

space-discretisation, are both compatible with antisymmetry.

Imposing bounds on the potential constitutes the simplest form of regularisation.

For the sake of simplicity, my collaborators restricted the analysis to constant bounds

Umin ď Upxq ď Umax, and refer to this constraint as A. They furthermore split the interval

r0,1s into three regions 1,2, and 3. In region 1, Upxq “ Umin, while in region 3, they require

Upxq “ Umax. The potential is only free to change in region 2. From Eq. (3.10) it can be

seen that it must be linear there. The position x˚ and y˚ of the intersection between the

two plateaus and the linear part can be calculated from Eqs. (3.7) and (3.9), as well as the

associated optimal mean exit-path time

τA
opt “ x˚

“ 1 ´ y˚
“

1

2 `Umax ´Umin
. (3.15)

For symmetric bounds Umin “ ´Umax, the optimal potential is antisymmetric with

respect to x “ 1{2, as predicted in Sec. 3.2.1. The profile of the optimal potential under

constraint A is shown in Fig. 3.9a. However, as the figure shows, the infinite slope at x “ 0

and x “ 1 renders this potential profile unrealistic and experimentally unattainable. This

lead my collaborats to conclude that constraint A is flawed. They therefore turned to a

different constraint B, which requires Upxq to be piecewise-linear.

Such a potential profile is defined by the values Ui at equidistantly distributed points

xi “ i{n for i “ 0, . . . ,n, here referred-to as n-support function. As before, the potential is

chosen to be energy-neutral, that is, U0 “ Un “ 0. In contrast to constraint A, constraint
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Fig. 3.9 a Plot of the optimal potential profile A with symmetric bounds Umin and Umax.
b N-shaped approximation of the n-support discretised solution under regularisation B
with only one variable parameter U1 (optimal potential B’). The plots were created by my
collaborators Dr. M Chupeau and Prof. E Trizac.

B does not impose any restriction on the value of Ui . As I mention in the introductory

example, high barriers can only speed up escapes when the width of the initial minimum

vanishes. But because of the discretisation, the well width is bounded from below by 1{n

such that a bound on the potential becomes obsolete. In order to compute the associated

optimal potential profile B, my colleagues carried out simulated annealing (details of the

simulation can be found in the publication [161]). In accord with the result in Sec. 3.2.1,

the optimal profile is again antisymmetric with respect to x “ 1{2 and reminiscent of an

N-shape with an overshoot and an undershoot on both sides of the intermediary slide.

The overshoot prevents the particle from falling back into the initial well and having to re-

escape. A simple approximation of this optimal potential profile is given by an N-shaped

function (denoted here as B’) which is only parametrised by the potential barrier height

U1, as shown in Fig. 3.9b. A minimisation of Eq. (3.7) for this potential profile yields a

lnn-scaling of the corresponding mean-exit-path time

τB 1

n “
1

2lnn
`O

´ 1

lnn

¯

. (3.16)

Optimal potential B’ captures the scaling of the mean exit-path time resulting from the

sliding time τslide. More important, however, is the fact that optimal potentials B and B’ do

not exhibit pathologies such as infinite curvatures and should therefore be experimentally

realisable in contrast to optimal potential A. In my experiments, I concentrate on the

simpler version of the n-support-optimised potential, optimal potential B’.



3.2 Optimising Kramers rates by potential shaping 73

0 5 10
x [µm]

0

100

200

300

τ
0
[s
]

-10 -5 0 5 10

x [µm]

-30

0

30

f
[f
N
]

-5

0

5

U
[k

B
T
]

0 5 10 15

x [µm]

0

300

600

τ
[s
]

-1 0 1
0
4
8

5 10 15

x [µm]

0.5

1

1.5

τ
/τ

0

5 µm

Free diffusion
(no ext. force)Return to

U= 0 kBT

N-shape potential

Theory

Free diffusion fit

normalize

Normalized time

Faster than
free diffusion

No external force
 b

a  c

 d

 f

 e

Fig. 3.10 a Picture of microfluidic channel used containing a single particle. The region
of interest is highlighted in white. The scale bar corresponds to 5µm. b Forces along the
channel inferred for the zero-potential case. The error-envelope is on the order of the
marker size. I here plot the force rather than the potential to highlight the accuracy of my
force estimator. c N-shaped potential created by the HOT. The inset shows the asymmetric
barrier used to approximate the initial reflecting boundary. d Measured first-passage times
at position x for the same potential compared with the free-diffusion fit. e First-passage
time measured symmetrically from the centre of an interval in the absence of optical
forces. f Measured first-passage time at position x, normalized by the corresponding free
diffusion time x2{p2Dq.

3.2.2 Experimental results

In order to test whether experimental potentials can be tailored to deliver the predicted

speed-ups, I leveraged the wave-shaping abilities of my holographic optical tweezer (HOT)

to create the potential shape associated with the optimal potential B’ (see Fig. 3.9b) in

the focal plane of a microscope. In addition, I again used a microfluidic device to confine

movements of colloidal particles, to a quasi-one-dimensional line, eliminating entropic

forces and variations in hydrodynamic drag [166, 167] (see next section). As discussed in

Sec. 1.1.1, motion of colloidal particles is well within the overdamped regime, such that

our theory applies. All experiments were carried out using my automated “drag-and-drop”

routine (see Sec. 2.2.4).

As a first step, I measured first-passage times τ0 of a colloid released in the centre of a

channel, shown in Fig. 3.10a, without the influence of laser forces (see panel b). As the

data in Fig. 3.10e shows, these times adhere closely to theory and scale quadratically with

distance. From this data set, I infer a diffusion coefficient of D “ 0.23µm2{s, by fitting a

square function τpxq “ ax2 to the measured mean exit-path times.

Next, I create the optimal potential shape B’ as shown in Fig. 3.10c. The holographic

parameters necessary to form the right balance of intensity-gradient and phase-gradient

forces were found by educated guesswork. Specifically, the N-shaped potential was created
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Fig. 3.11 Second potential, which reliably shows faster-than-free diffusion escapes. a
Inferred potential profile. b Mean-first passage time along x.

by a combination of a single point trap providing the initial potential well and three line

traps with phase-gradients and lengths as specified in Tbl. 3.1. The reflecting boundary

condition is approximated by an asymmetry in the initial well depth (see inset in Fig. 3.10c).

The experimentally measured (triangle symbol) and the theoretically predicted (blue line)

mean exit-path times are shown in panel d. At the point where the potential returns to its

initial value, the mean exit-path time reaches a value of 336 ˘ 19 s. For comparision, the

corresponding free-diffusion value is 684 s, so that I obtain a speed-up factor of exactly 2.

The speed-up also appears in potentials that do not really resemble an ”N”. In Fig. 3.11,

I give another example of a potential with fewer oscillations towards the end, near x “

14µm. The figure shows that the rate-boost effect is robust against slight variations of

the potential. However, the speed-up here is lower than the one achieved in Fig. 3.10. In

Fig. 3.11b, I measure a mean exit-path time τ“ 251.2 ˘ 20.4 s at the x-position demarked

by the dashed vertical line. Compared to a free diffusion 432.2 s, this yields a speed-up

factor of only around 1.72.

In the experiments corresponding to Figs. 3.10 and 3.11, I create the initial minimum

using an asymmetric potential well. This turns out to be the right approach. Previous to

this, I attempted to use the fact that Kramers escape times are fundamentally similar to

exit-path times, if the potential is symmetric with respect to the initial position. However,

creating precisely symmetric potentials is naturally difficult. Moreover, this approach

requires twice the interval length of the single-exit approach. The resultant symmetric

potential landscapes therefore barely fit into the 20 µm channels.
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In addition, I also explored physical realisations of reflecting boundaries, i.e. dead-end

channels. However, high hydrodynamic drag close to the dead-end resulted in lower

overal speed-up. A higher probability of the colloid getting stuck at the dead-end wall

against which it must be initially pressed rendered this approach impractical.

3.2.3 Unsuccessful experiments, potential causes, and mitigating mea-

sures

The process of guessing holographic parameters is slow and involved since almost all

parameters have some degree of cross-talk. Changing the intensity of one optical trap will

likely affect all other intensities and shapes. It is illuminating to review a few examples

of experiments where predicted and measured first-passage times do not agree well. In

Fig. 3.12, I show a few of the potential landscapes that I created during the optimisation

process. I only plot the relevant part of the x-axis, from x “ 0 until the point x “ L where

the potential returns to U “ 0kB T . Every parameter study typically lasts several days since

the potential can only be reliably estimated once sufficient data is collected.

As data in Fig. 3.12b shows, the theoretical prediction does not always reproduce

the measured first-passage time very well. Given the large amount of data collected, it

can be very difficult to ascertain the precise cause for such a mismatch between theory

and experiment. In order to facilate future research on similar scenarios, I state possible

reasons below:

1. Transient binding of the colloid to the PDMS walls of the channel or the glass surface:

Transient binding can be identified by visually inspection of individual trajectories

xptq. During such events, the trajectory appears constant for brief periods of time

(few milliseconds to seconds).

2. Time-dependent potential landscape: The potential inference used here is unable

to measure variations in the potential landscape. Such variations, however, may

well arise due to the following causes:

(a) Unstable settings of the autofocus routine. A plot of the z-position of the piezo

over the course of the experiment may contain clues as to whether this is a

problem or not. Especially oscillatory behaviour of the z-position is a strong

indicator of an unstable autofocus.

(b) Optical drift. Fundamentally, the operation of the HOT setup rests on the

assumption that the virtual and physical position of optical traps coincide.

Due to thermal variation, the physical position of a laser trap may wander over
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Fig. 3.12 Study of the effects of various central trap intensities. While the upper row shows
the inferred potential landscape, the row on the bottom show predicted (dash-dot) and
measured (triangle) first-passage times. The solid black line in the plots on the bottom is
a plot of the quadratic free diffusion time. The thin line connecting the potential energy
data points in the upper row represents the standard error of the mean, which is here
visibly smaller than the red markers. The value of the central trap intensity parameter
I varies across the panels: a I “ 0.205, b I “ 0.215, c I “ 0.225. See Tbls. 3.1 and 3.2 for
comparison.

time. The hologram software, however, has no intrinsic means to detect such a

drift. In order to mitigate this problem, I implemented a deviation detection,

which periodically compares the average position of a trapped colloid to the

virtual trap position and corrects the latter accordingly. In case of suspected

drift, this routine should be activated or the virtual-to-physical space mapping

should be updated manually.

(c) Variations in particle size. Optical trapping forces are dependent on particle

size. While the autofocus routine usually ensures re-use of the same colloid, it

may occasionally loose track of a colloid and instead grab a different one. This

is especially likely during autofocus adjustments caused by external shocks

such as slammed doors. In most colloidal suspensions used in this thesis,

the size dispersion is small enough for this not to be measurable problem.

However, the routine can occasionally grab small floating objects such as

debris. If multiple populations of particle sizes are visible, the experiment
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should be immediately aborted and the microfluidic chip and solution should

be exchanged. A trajectory-to-trajectory comparision of diffusion coefficients

may contain clues about the sizes of the particle that have been used. Another

variable of interest in such a case is the intensity of the imaged particles.

(d) Transient hydrodynamic flows. Pressure-driven flows through the channel

are one of the main causes of experiment-theory deviations. Flows that are

permanent will skew the inferred potential landscape and hence not be source

of deviation. However, the absence of transient variations in flow intensity

cannot be guaranteed. If small, such variations are almost impossible to detect.

In general, prior to an experiment one should check whether colloidal in-

channel motion is biased. If so, the microfluidic chip should be exchanged.

3.2.4 Conclusion

Building on theory developed by my coauthors, I explored escape rates over fine-tuned

barriers and showed that such rates can exceed rates obtained for zero-potentials. The

increase in rate was achieved without altering the free-energy balance of the system, the

colloid ends on the same free-energy as it starts. While the optimisation of holographic

parameters is slow, iterative, and requires educated guesses, I eventually managed to

demonstrate a doubling of escape rates in N-shaped potentials. This particular shape was

predicted to be optimal in terms of escape rates under constraint B, as discussed in the text.

I omit here the part of the theoretical work of my colleagues which shows that the speed-up

effect extends into the inertial regime. However, I regard this addition as significant, since

it demonstrates that the speed-up effect is not a pathology of the otherwise sometimes

ill-behaved overdamped regime. Furthermore, I also omit the theoretical discussion of

the effect in higher dimensions, which shows that the rate-boost remains relevant as the

dimensionality increases. Both parts feature in our publication [161].

To conclude, I believe that our result will have a profound impact on studies where

escape rates matter, for instance, in the aforementioned studies of protein folding.

3.2.5 Experimental methods

The same colloids and the same buffer solution was used as in the previous section. How-

ever, the holographic pattern used were considerably more involved. Table 3.1 contains

the parameters used to create the N-shaped pattern shown in Fig. 3.10c, while Tbl. 3.2

summarises the parameters used to create the potential in Fig. 3.11a. As both table show,
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Type I xc L p

Line 0.2 ´0.91µm 2µm 1
Point 0.09 0µm N.A. N.A.
Line 1.1 8.05µm 16µm 0.1
Line 0.6 17.45µm 3µm ´1

Table 3.1 RedTweezers parameters used to create the potential Upxq in Fig. 3.10c.

Type I xc L p

Line 0.2 ´31µm 2µm 1
Point 0.205 ´32µm N.A. N.A.
Line 1.1 ´39µm 14µm ´0.06
Line 0.25 ´50.803µm 6µm 0.35
Point 1 ´30.28µm N.A. N.A.

Table 3.2 RedTweezers parameters used to create the potential Upxq in Fig. 3.11a.

In both tables, I denotes the parameter controlling the relative intensity, xc represents
the centre of the line or point trap, L denotes the length of line traps, and p represents the
phase-gradient parameter introduced in Sec. 3.1.6. Trap centre positions xc are given in
absolute distance to the virtual position of the zeroth order.

almost all parameters required fine-tuning, often down to two subdecimal digits. Only

one parameter can be optimised at a time due to their non-linear interdependence.
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3.3 Transition-path times in corrugated channels

While the microfluidic channels in the previous sections in this chapter have played no

role other than effectively reducing the dimensionality of the colloidal random walk, I here

consider the effect of microfluidic channels with spatially-varying widths, which result in

a two-dimensional problem.

Brownian motion inside a tube of varying diameter is a classic and much-studied

problem [168, 166, 169–175]. According to Zwanzig, even Adolf Fick, one of the founding

fathers of modern diffusion physics, had considered this problem [166]. In any case,

judging by the number of publications, the problem appears to be of interest again. This

is probably so for three reasons: first, the varying diameter offers a perspective on the

effects of entropic forces and secondly, the coarse-grained diffusion coefficient appears

to scale in an interesting way with the shape of the channel. Thirdly, the discovery of

’entropic splitting’ reinvigorated interest in these systems [174, 175, 145]. However, almost

all modern studies are of theoretical nature, with little experimental input. Crucially, few

studies incorporate or discuss spatially-varying drag coefficients γpxq which will likely

play a huge role in microfluidic realisations of these systems due to the rich and surprising

hydrodynamics of confinement. Such hydrodynamic effects have been studied in detail

by our group [44, 45].

The results presented in this section are based on experiments that I carried out with

my colleague Dr. Karolis Misiunas. He kindly provided me with a microfluidic silica mold

with a number of periodically shaped channels on. As I mentioned in the beginning of

this chapter, this line of work never got published since we stopped working on it when a

competing group unexpectedly published ahead of us [135].

3.3.1 Fick-Jacobs theory

In the first section (Sec. 1.1.1), I write about ’integrating out’ degrees of freedom. Here, I

marginalise over the variable y , which I define as the lateral position, perpendicular and

with respect to the channel axis (y “ 0). Let Upx, yq be the potential a Brownian particle is

subject to in the channel, then

e
´

Upxq

kB T “

wpxq{2
ż

´wpxq{2

dy e
´

Upx,yq

kB T (3.17)

defines the marginalised version. Crucially, Upxq will pick up an entropic component if

the channel width wpxq varies over x. Our channels are two-dimensional, only the width
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changes, not the height to the ceiling. For a flat, hard-sphere potential Upx, yq “ 0, the

above equation amounts to Upxq “ ´kB T lnpwpxqq, a classic entropic potential.

In the absence of forces, one can write down an approximate FPE called Fick-Jacobs

equation,

Bρ

Bt
px, tq “ D

B

Bx

ˆ

Apxq
B

Bx

ˆ

ρpx, tq

Apxq

˙˙

, (3.18)

where Apxq denotes the cross-sectional area at x.

Robert Zwanzig published an article in 1992 explaining that one can generalise Fick-

Jacob’s equation to cases with a potential using Eq. (3.17) and, at the same time, improve

on its accuracy by introducing a spatially-varying diffusion coefficient [166]

Bρ

Bt
px, tq “

B

Bx

ˆ

Dpxqe
´

Apxq

kB T
B

Bx

ˆ

e
Apxq

kB T ρpx, tq

˙˙

(3.19)

where Dpxq{D0 « 1´ 1
3 w 1pxq2. D0 here denotes the microscopic diffusion coefficient, that

fulfils some fluctuation-dissipation theorem such as Eq. (1.15). If one wants to actually

compare theory and microfluidic experiments, one has to incorporate the spatially-varying

drag γpx, yq as well [135]. The position-dependency of D above is just one of several

approximations that have been put forward in the literature [176]. Testing the accuracy

of Eq. (3.19) and comparing the various entropic diffusion corrections constituted the

original aim of this project.

3.3.2 Experimental results

Using my automation routine, I acquired several data sets each comprising around 300

uninterrupted trajectories, up to 10 minutes in length, of equilibrium Brownian motion in

channels of varying diameter. In Fig. 3.13, I plot mean transition-path times across two

different distances (black box in the upper image). The box is continuously moved across

the field of view, such that I can plot two continuous curves: mean transition-path times

left-to-right (blue) and vice-versa (red).

Interestingly, the behaviour of the times appears to crucially depend on the length of

the box: For larger distances (panel Fig. 3.13a), the expected entropic speed-up seems to

dominate. This situation is comparable to the right minimum of transition-path times

in Fig. 3.2d, which occurs over a maximum of the potential in Fig. 3.2a. It is important to

remember that the transition-path times considered in this thesis are conditional first-

passage times, which are conditioned on reaching their destination in one go. Without
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Fig. 3.13 Transition-path times across distances (black box) in channels of varying diameter.
The x variable in the lower row corresponds to the horizontal position of the centre of
the black rectangle shown in the upper row. The rectangle is dragged along the channel
axis, which results in a continuous curve of transition-path times, similar to the curve in
Fig. 3.2d. The scale bar in the images corresponds to 1µm. a Transition-path times across
larger distances are dominated by entropic effects. Across the constriction, transition-
path times are at a minimum. b Across shorter distances, hydrodynamic effects dominate
transition-path times. The increased drag in the constriction slows transitions down. This
leads to an inversion of the shape of the curve relative to panel a.
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Fig. 3.14 Comparison with theoretical mean transition-path times. a Histogram of local-
isation statistics in the channel. b Force estimate from equilibrium trajectories (blue).
Only x-position is considered for estimation. The red-dashed curve shows a sinusoidal
fit. c Estimated microscopic diffusion coefficients. The variation is not due to entropic
effects, it is caused by varying hydrodynamic drag. d Reprint of data from Fig. 3.13a with
theoretical predicion of mean transition-path time (black).

this condition, trajectories traversing a potential maximum or entropic constriction would

of course be impeded and the corresponding transition would appear slowed-down rather

than sped-up. By contrast, over short distances (panel Fig. 3.13b), a different effect seems

to dominate direct transitions: Here, the increased drag in the constriction slows the

dynamics down.

The entropic forces caused by the confinement are directly measurable. If I apply my

force-estimator Eq. (3.4) on the x-position of the trajectories, I obtain the curve shown in

Fig. 3.14b. An approximately sinusoidal force is what one would expect from Eq. (3.17),

since the width in this channel behaves roughly as wpxq « a`b sinpkxq with a “ 5µm , b “

4µm, and k “π{p5µmq (I note that these are effective widths for the colloidal centre point).

I thus have wmin “ 1µm and wmax “ 9µm. For a hard-sphere-like potential Upx, yq “ 0,

I find Upxq “ ´kB T logpwpxqq and thus f pxq “ ´BxUpxq “ kB T w 1pxq

wpxq
“ kB T kbcospkxq

a`bsinpkxq
,

which when plotted resembles a standard sine-curve sinpxq with triangular bulges. The

degree of deviation from a standard sine-curve will grow with the ratio a{b. The careful

observer will find a slight asymmetry in the bulges in Fig. 3.14b.

The diffusion can be estimated too, which yields the curve in panel Fig. 3.13c. The vari-

ation here shows again the position-dependence of hydrodynamic drag in confinement

discussed in Fig. 3.13b.

Using Eq. (1.52), I can now compute the mean transition-path time across the black

box in the microscope image in Fig. 3.14d. The result is shown in the plot below in
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Fig. 3.15 Colloidal dynamics in a funnel filled with a line trap. a Image of the funnel. The
scale bar represents 1µm. b Diffusion coefficients (grey) with standard error of the mean
envelope for all phase-gradients used. The mean diffusion coefficient is plotted in thick
black. c Transition probabilities across the black box as a function of the applied force. d
Mean transition-path times in both directions across the back box. e Mean residence time
of all trajectories leaving to the left (red) and to the right (blue). This includes returning
trajectories.

black. In this plot, I assumed a constant diffusion coefficient of D “ 0.155µm2{s, but

otherwise used the force-fit f pxq “ A sinpkx `ϕ0q` f0 shown in Fig. 3.14b. Again, I find

that transition-path time theory is applicable to experiments in a self-consistent way.

In the following, I turn to a different channel shape: the funnel shown in Fig. 3.15a.

The idea of the experiment described here is to counter entropic with actual forces. To this

end, I fill the funnel with a line trap and repeat essentially the experiment in Fig. 1.4d,e.

The entropic forces exerted by funnel which gets wider at a constant rate λ are given by

fentroppxq “ ´BxUpxq “ kB T w 1
pxq{wpxq “ kB Tλ{pw0 `λxq. (3.20)

In panel c, the transition probabilities over various phase-gradient forces are shown. The

offset to the right of the force that precisely counters the entropic effect is clearly visible.

The minimal width in this system is w̃0 “ 2µm, where the tilde indicates that I have not

yet accounted for the width of the colloid, which is d “ 1µm in this experiment. The

effective width that the centre of the colloid experiences is thus w0 “ 1µm. The rate of

change of the width can be approximated to λ« 0.3, by measuring the width at various

points. For instance, the left side of the white-dashed region-of-interest in Fig. 3.15a has a

width of w̃1 “ 3.6µm, so the effective width is w1 “ 2.6µm. The x-width of the this region

is wx « 5µm. Eq. (3.20) then yields fentroppx “ 5µmq « 0.5 fN and fentroppx “ 0q « 1.2 fN,

roughly in the regime of the experimentally determined break-even force f « 1.15 fN.
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Importantly, the phase-gradient forces for this experiment were calibrated within the

straight part of the channel, in the absence of entropic influences.

The mean back-and-forth transition-path times measured across the black box in

panel a, agree in both directions for all phase-gradient parameters. Interestingly, the

theoretical prediction Eq. (1.52) fails to capture the slight asymmetry of the experimental

transition-path times with respect to zero force.

Before I conclude, I want to briefly discuss the residence time plotted in panel e. The

residence time is defined as the weighted average of the average return time and the

translocation time, xτresy “ Pretxτrety ` Ptrxτtry [90]. This time is not direction indepen-

dent and, crucially, are typically measured in systems in which return and translocation

events cannot be distinguished, such as resistive-pulse sensing in nanopores [149]. Resi-

dence times might therefore offer a way to infer the orientation of asymmetrically-shaped

biological channels in electrophysiology experiments.

3.3.3 Conclusion

In this section, I investigate the kinetics of entropically-driven Brownian motion in con-

finement. My results repeatedly underline the importance of hydrodynamic friction as a

function of distance to the confining PDMS enclosure. In accord with theory, I find that

a spatially-varying width leads to the emergence of an entropic force pointed along the

channel as shown in Fig. 3.14. Interestingly, the speed-up of transition paths caused by this

force is partially countered by increased friction near constrictions. Even though the two

effects scale differently with the distance to the constriction, there must be a length scale

over which they cancel to some extent, which should result in a flatter transition-path

time profile (see Figs. 3.13).

Over the last decade, a number of publications have discussed whether a change in

drag causes measurable, albeit spurious forces [177–180]. According to theory [179], such

forces would behave as fspurious “ ´γpxqBx pkB T {γpxqq. In the case of the funnel geometry

in Fig. 3.15, this force can be approximated from the slope of the diffusion coefficients

in panel b. I find a value of fspurious « 0.35 fN, which might be just below what I can

reliably detect, given the presence of confounding factors such as entropic forces and

(often present) latent hydrodynamic flows. However, measuring spurious forces in more

abruptly changing geometries such as channel entrances could constitute an interesting

project in the future.

In the following, I briefly discuss another aspect of channel transport that is of impor-

tance in biological systems: selectivity.
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3.4 Brownian dynamics simulations of channel transport

Previous to this thesis, Pagliara et at used the predecessor of the HOT setup to study

optimal parameters and shapes of channel-filling potential landscapes [156]. The quantity

that is being optimised in their study is the flux of colloids through the channel, irre-

spective of the direction. However, in biological systems it is often not just the total flux

through a channel, e.g. a membrane channel protein, that is of interest, but relative

fluxes of different species of, say, ions or proteins [142]. To assist and inform the design of

my experiments, I set up three-dimensional Brownian dynamics simulations featuring a

channel geometry and line-shaped potentials.

Here, I discuss some of the results of these simulations. In particular, in Sec. 3.4.2 I

describe a recipe to spot violations of detailed balance in Brownian dynamics simulations

that may for instance originate from flawed implementations of interaction potentials.

3.4.1 White-list selectivity via channel-entrance binding

The aforementioned HOT study found that line traps which protrude from the channel

into the bulk increase the transition rate of colloids drastically [156]. The question I wish to

investigate here is whether entrance binding can also be used to make channels selective

for affine species. If a channel attracts a sufficient amount of the selected-for species,

these particles might then block particles of other species from translocating. The idea

is thus to compare the fluxes of two species, one of which, the affine species, feels the

potential to a greater extent than the other (non-affine species).

Details of the simulation

In Fig. 3.16c, I plot the number of attempts per hour. The dimensions in the x ˆ y-plane

are shown in panel a. The x ˆ z-plane perspective is exactly similar. The grey region in

panel a marks the wall, pierced by the channel. The boundary conditions in x are periodic

and reflecting in the y- and z-direction.

At t “ 0, 10 particles of two species, A and B, are initialized at random positions

inside the box, excluding the channel. Species A is attracted by the trap shown in panel

a, while species B is not. However, instances of the two species do interact with each

other as hard-spheres with radius r “ 250 nm. All particles have a diffusion coefficient

of D “ 0.8 µm2{s. Position and velocity of each particle are stepped using an Euler-step

of the (underdamped) Langevin Equation, Eqs. (1.3) and (1.4) for purely viscous kernels

α̂“ iωkB T {D . The timestep ∆t in all simulations is set to ∆t “ 0.2µs, the total simulation

amounted to T “ 400 s. However, I write results to file only in every 5000th step. The
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Fig. 3.16 Brownian dynamics simulations overview. a Geometry of the wall, channel
and line-trap in the x ˆ y-plane. b Example trace of the occupancy of the channel by
instances of the two species. c Number of attempts as defined as number of times a
particle entered the channel region. d Number of translocations of species A and B as a
function of potential depth U0. e Selectivity, defined as the number of translocations of
species A relative to the total number of translocations, over potential depth. At U0 “ 0,
the channel is unselective as expected.
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Fig. 3.17 Further results of the simulations. a Competition for line traps that do not
protrude from the channel between affine (A) and non-affine species (B). Selectivity is
markedly reduced compared to Fig. 3.16. b Similar simulations to Fig. 3.16, but species B
is made partially affine, UBp⃗xq “ 0.2UAp⃗xq.

program is parallelized with up to 12 instances running concomitantly. The simulation

was implemented in the Brownmove package [181, 182], which supports the channel

geometry shown in Fig. 3.16a. I customised the package and added the potential, affinity

and parallelisation.

Results

In panel b, I show a typical occupancy time series over all 400 seconds. The preference for

type A is clearly visible. Pagliara et al report an optimum depth of the binding potential

between 2´4kB T . The translocations in panel d clearly indicate a maximum around 4kB T

with higher potentials leading to a jamming and thus reduced fluxes. The attempt rate

appears to be monotonically increasing over the interval of potential depths considered

here. The selectivity for type A, defined as the translocations of A JA divided by the

translocations of all particles, Jtot, increases from no preference (selectivity = 0.5) to

fully-selective (selectivity = 1) as shown in panel e. These results are interesting when

contrasted with the results shown in Fig. 3.17a, where I repeat the same simulations but

with line-traps that only fill the interior of the channel.
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The selectivity, again shown in bottom panel, is markedly reduced. Overall, transloca-

tion numbers are subdued and attempt rates are magnitudes lower than in channels with

entrance-binding. The reduction in translocation can be explained with the difficulty of

exiting the attractive region inside the confining channel. It is generally more probable

to escape from a potential within a given period of time, the larger its exit-surface area.

In panel b, I show results where species B has an affinity of 0.2 for the trap, i.e. feels a

potential UBp⃗r q “ 0.2UAp⃗r q. While the channel largely remains selective, the number of

translocations peaks around U0 “ 4kB T before decreasing to zero. This could be due to

jamming, since more particles compete for the trap. For low translocation numbers, selec-

tivity is not meaningful in a statistical sense, since both numerator JA and denominator

Jtot might be close to zero.

Conclusion

Taking only attempt and translocation numbers into account, I conclude that the sim-

ulations corroborate Pagliare et al, who found that entrance binding strongly increases

channel translocations. I here show, that entrance binding can also create a white-list-type

selectivity, in which a positive selection for affine species boosts their translocation num-

bers sufficiently such that other species get crowded out of the channel area. This effect,

however, requires a stark difference in affinity between the species as the last simulation

indicates in Fig. 3.17b.

My original intent was to reproduce the simulations using the HOT setup and let two

types of colloidal particles compete for access to microchannels filled with line-shaped

traps. Particle species consisting of different materials with different refractive indices

would feel the optical traps to a different extent, such that one species would be more

affine for these traps than the other. I planned to differentiate the two species using

fluorescence (hence the epi-fluorescence LED in the setup, see Fig. 2.6). However, the

green fluorescence signal of 500nm melamine particles (microParticles GmbH) used for

this purpose, turned out to be too weak and, crucially, appears in a different optical plane

than the out-of-focus plane typically used for imaging colloids.

3.4.2 A method to locate sources of non-equilibrium dynamics

Progress in this project was hampered by a bug in the Brownmove package. The bug

consists in a broken symmetry of wall-repulsion potentials near the sharp corners en-

countered at the mouth of the channel. The repulsive Lennard-Jones potential used to

ensure that no particle can diffuse into obstacles was implemented in such a way that
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detailed balance was violated in transitions near the channel entrances. More precisely,

the force vector in response to transitions into the wall close to the corner from either the

outside or inside of the channel pointed into the channel with a slightly higher frequency

than back into the bulk. The bug only occurred for ball-objects with finite volume, where

the geometry of the object surface in relation to the wall or corner needs to be considered.

In the following, I briefly describe the method I used to locate the bug, since it might be of

help for future projects. The method is inspired by a former project I worked on, which

attempted to establish non-equilibrium indicators for biological matter [155, 61]. The idea

is to look for points in phase-space where detailed balance breaks down. In a finite data

set, detailed balance will, of course, never be perfectly maintained. However, as I indicated

in Sec. 1.1.3, a violation of detailed balance in steady-state will cause circular probability

currents. Such patterns are unlikely to develop by chance; the presence of circular currents

is thus strong indication of non-equilibrium activity. Secondly, one can try to estimate

error bounds for the direction and length of probability currents in discretised spaces as

explained in Battle et al [155].

In Fig. 3.18, I plot discretised probability fluxes over the x ˆ y-plane of the simulation.

The boundary conditions here were set to be reflective everywhere.

As the Fig. 3.18 clearly shows, the flawed stochastic dynamics near the channel en-

trances break detailed balance and cause local circular probability currents. The external

potential in panel a, which protrudes from the channel only on one side of the barrier,

rectifies these currents into a current through the channel. This results in a steady-state

imbalance in particle numbers between the left and right side of the channel as shown in

panel c.

3.5 Conclusion

In this chapter, I explore several different flavours of first-passage times on the microscale

using my automated holographic optical tweezers setup. In particular, I demonstrate

exit- and transition-path time symmetries over confined pathways and show a break-

down of this symmetry once the system is forced to diversify transition pathways. More-

over, I demonstrate that escape rates across fine-tuned energy-neutral barriers exceed

Kramers rates by up to a factor of 2. I find excellent agreement of experimentally measured

transition-path times in channels of varying width with predictions based on marginalised,

entropic potentials and demonstrate that entropic forces in such channels can be coun-

terbalanced by directed optical scattering forces. Finally, I show in Brownian dynamics

simulations that channel-entrance binding can result in a white-list type selectivity for
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Brownian particles which feel the attracting potential to a greater extent than competing

species. Whenever possible, I directly compare my experimental results with first-passage-

time predictions based on overdamped Fokker-Planck theory. Overal, the results in this

chapter turn out to be in excellement agreement with theory, often without any free

parameters.

In the future, combining the theoretical and experimental methods and approaches

used in Secs. 3.1 and 3.2 might result in fruitful projects. For instance, one could compute

the optimal potential landscape filling a microfludic channel by applying variational

calculus to Eq. (1.51). Of course, the crucial question here is what optimality in this

context means. In the case of Eq. (1.51), one would optimise the speed of transitions

across a channel while requiring a certain potential difference ∆U between both ends 3.2.

The profile of the resulting optimal potential could be implemented using a combination

of optical and entropic potentials, since the results obtained in Sec. 3.3 support Fick-

Jacobs-based theory.

As both my simulation results in Sec. 3.4 and previous results from our group show [156],

the accessible surface of a channel-solute-interaction potential to the bulk is of significant

importance. Differences in surface area between the channel entrances can even rectify

localised non-equilibrium effects, such as the flawed interaction potential mentioned in

Sec. 3.4.2, into a permanent particle flux through the channel (see Fig. 3.18c, d). Potential-

geometry-related effects, such as ’entrance binding’, could also be accounted for in a

numerical optimisation of channel transition times, which should lead to more widely

applicable conclusions.

Finally, the experimental difficulties described in Sec. 3.2 indicate a need for better

algorithmic tools to create precise light intensity landscapes on the micronscale. To

address this need, I describe a proof-of-principle realisation of what is, to my knowledge,

a novel approach to the optical inverse problem encountered in holographic tweezing in

the next chapter.





Chapter 4

Inverse digital holography using

conditional generative models

4.1 Ill-posed inverse problems

The term ’inverse problem’ can mean different things, depending on the context. In

this thesis, it refers to finding the inverse f ´1 : y Ñ x to a function f : x Ñ y , or an

approximation thereof.

Of course, using this definition, the inverse of the inverse problem is the original prob-

lem of finding the ’forward’ mapping f : x Ñ y . For well-behaved invertible functions,

finding the inverse from a given data set is as difficult as finding the forward function:

One simply exchanges the order in the inference engine. However, many mappings and

relationships in experimental situations are not invertible in the sense of mathematical

functions. Under such circumstances, mathematicians speak of ’ill-posed inverse prob-

lems’. A problem is ill-posed if it is not well-posed. In the context of finding the (an)

inverse mapping, well-posedness requires, according to J. Hadamard, (1) the existence

of a solution, (2) uniqueness of that solution, and (3) that the solution has a continuous

dependency on the data (stability) [183].

In Sec. 2.2.5, I introduce digital holography as an inverse problem. In this section, I

explore if some of the novel machine learning techniques that have been publicised in the

last few years might help solve the inverse problem that appears in digital holography:

Given a desired intensity distribution I in the image plane, find one or all holograms h that

get closest to reproducing I.
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This inverse problem is certainly ill-posed. Since, as I show in Sec. 2.2.5, at least

the second condition (uniqueness) is violated. The first condition (existence) is fulfilled

whenever the algorithm is asked to recreate a previous intensity distribution (disregarding

noise). This is the natural situation that occurs when an intensity is drawn from a data

set, where the existence of hologram that lead to that distribution is guarantueed. The

third condition (stability), is more involved. For single Fourier components, Fig. 2.9b

suggests a smooth, albeit non-monotone dependency of the laser intensity on Fourier

amplitudes. The situation is less clear for mixtures of components. Barring possible

intensity-thresholds of the camera sensor, there appears to be no physical reason to

expect discontinuities.

While a number of deep learning frameworks are publicly available, such as tensorflow

or pytorch, I chose to publish yet another full-fledged, modular deep-learning library,

written in C++. The library can be loaded into LabView as external DLL and is available

on my GitHub page [184]. The idea was to train the models discussed in this section

directly on the setup, which would have enabled the learning algorithm to interact with

the problem and, for instance, request the light pattern that corresponds to a newly created

hologram during training. Even though the library is fully-functional and supports almost

all of the normalisations or gradient-descent optimisers required here, the advantages

of online learning turned out to be smaller than expected. Quantity of training data and

speed of training are more important factors. I therefore followed the typical machine-

learning workflow and trained all models on fixed data sets and used GPU-accelerated

tensorflow-based code for swift training.

Finally, I want to point to a connection between thermodynamics and deep learning. In

the latter, the goal usually is to minimise some sort of error function by means of stochastic

gradient descent. As has recently been pointed out, this problem can be mapped to a

Langevin-gradient descent of a free-energy function as encountered in problems such as

protein folding [185]. One of the key lessons of this mapping is that deeper networks seem

to generate error-landscapes with minima that feature larger basins and hence larger

entropies. This appears to be one of the factors of the success of deep neural networks

when compared to large, but shallow networks. More generally, this result indicates that

lessons from protein folding may indeed help explain the success of deep learning.

But before I introduce the problem in this chapter, I proceed with a concise introduc-

tion to neural-network-based regression in order to put my thinking into context and

introduce relevant notation.
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4.1.1 Introduction to neural-network-based regression

In this section, I introduce the concepts underlying neural-network-based regression

(”curve fitting”) and, importantly, define the notation used in this chapter.

A regression example using polynomials. In a typical regression scenario, one is given

a data set of input-output pairs of an unknown functional relationship

D “ tpx1, y1q,px2, y2q,px3, y4q, . . . ,pxN , yN qu, (4.1)

with x, y respectively representing input and output values.

Conceptually, neural-network-based regression is very similar to regression using

other, perhaps more familiar function families, such as polynomials. I shall therefore

begin this introduction using polynomials. In its most simple form, polynomial regression

aims at finding an optimal set of coefficients θ˚ “ tp0, . . . , pnu for a polynomial of the form

ŷθ˚pxq “ p0 ` p1x `¨¨¨` pn xn (4.2)

which minimises the mean-squared-error

E pθ,Dq “

N
ÿ

i“1

pŷθpxi q´ yi q
2 . (4.3)

Mathematically speaking, the aim is to perform θ˚ “ argminθ E pθ,Dq. Importantly, the

function in Eq. (4.2) has the desirable property of a linear dependence of the output

value to the parameters θ. Indeed, when the parameters are rewritten as a vector, θ⃗T “

pp0, p1, . . . , pnq, Eq. (4.2) can be written as y
θ⃗
pxq “ θ⃗T φ⃗pxq where φ⃗T pxq “ px0, x1, . . . , xnq.

The key advantage of linear regression is that the optimal parameter vector θ⃗˚ can be

written down immediately. Following Bishop’s notation [186], I write t⃗ as the vector

containing all target values t⃗ “ py0, y1, . . . , yN q and Φk,l “φkpxl q as a matrix where each

element consists of the kth-basis function (here φk “ xk ) evaluated on the lth-input from

the training set, xl . The optimal choice of parameters for a given polynomial degree n is

then

θ⃗˚
“

`

ΦTΦ
˘´1

ΦT t⃗ . (4.4)
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a b

Fig. 4.1 Polynomial regression of a data set of noisy input-output pairs of a function. a For-
ward regression of the x-to-y dependence. b Inverting the order (y-to-x) of the regression
leads to severe problems if the underlying function is not invertible: polynomials, like any
other function, cannot assume multiple values at once.

In Fig. 4.1a, I show an example of polynomial regression with n “ 3 (cubic) for N “ 100

data points. The true function that I wish to approximate here is ypxq “ x ` 0.3sinp2πxq,

which is perturbed by Gaussian noise ξ„ N p0,σ2 “ 0.01q on the output end.

In contrast to the successful regression in Fig. 4.1a, I show what happens when I

switch the role of x and y in each data point in Fig. 4.1b [186]. Like all mathematical

functions, polynomials cannot assign more than one value to an input. Any attempt to

fit polynomials to distributions of x, y-pairs, which are multimodal in the y-direction

will result in a potentially severe approximation error, since the fit will try to average the

different y-modes. This is a simple example of an ill-posed inverse problem.

Neural-network-based regression is non-linear. Neural-network-based regression is

analogous to the example of polynomial regression shown above in the sense that it too

seeks to minimise a given error function, E pθ,Dq. However, an important difference is

that the dependency between output y and parameters θ is non-linear, which makes it

impossible to directly find the optimal parameter set. Instead, one resorts to an iterative

procedure which gradually descends the loss function in parameter space, an approach

that is aptly named ’gradient descent’. In a popular variant of this approach, one computes

the gradient ∇⃗θE pθ,Bq only for a small ’batch’ B Ă D of data points instead of over all

data points in D. In each step n, a different batch Bn is chosen. These batch gradients are

then successively applied to the parameters as shown below in Eq. (4.5),

θn`1
“ θn

´η∇⃗θE pθn ,Bnq (4.5)
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where η is referred-to as learning rate. Since this succession of gradients will randomly

switch direction based on the data contained in the respective batch, this approach is

known as ’stochastic gradient descent’ and has become a cornerstone of modern neural-

network-based learning [186].

For the sake of simplicity, I will consider here simple neural-networks which only

consist of fully-connected layers. A fully-connected layer performs a matrix multiplication

of its inputs with a ’weight’ matrix, followed by an addition of a bias term and a non-

linearity. The operation of a single p-q-layer can be summarised as follows

¨

˚

˚

˝

ŷ1
...

ŷp

˛

‹

‹

‚

“ h

¨

˚

˚

˝

¨

˚

˚

˝

w11 w12 . . . w1q
...

...
. . .

...

wp1 wp2 . . . wpq

˛

‹

‹

‚

¨

˚

˚

˝

x1
...

xq

˛

‹

‹

‚

`

¨

˚

˚

˝

b1
...

bp

˛

‹

‹

‚

˛

‹

‹

‚

(4.6)

with hpxq denoting some non-linear function, which is applied element-wise. A few non-

linear functions are particularly popular for deep learning such as tanhpxq, the sigmoid

σpxq “ p1 ` e´xq´1, and the rectified-linear function ReLupxq “ maxpx,0q [186]. The aim

is thus to find optimal values for a set of parameters θ“ tw11, w12, . . . , wpq ,b1, . . . ,bpu.

In Fig. 4.2, I give an example of neural-network-based regression using the same

sample function as used in Fig. 4.1. The succession of increasingly visible red lines in

Fig. 4.2b, c shows the convergence of the output of the network sketched in Fig. 4.2a to

the noise-less ground truth, ypxq “ x ` 0.3sinp2πxq. Like polynomial regression, neural-

network-based regression with a l2-loss averages and interpolates noisy data. However,

due to the sequential nature of stochastic gradient descent, neural-network training

requires large datasets. In this case, convergence to a loosely N-shaped curve requires on

the order of 100 ´ 1000 training samples and several thousand batched gradient descent

steps at a learning rate of η“ 10´4. The required ratio of training samples to adjustable

parameters is a question of ongoing research: Large nets with many adjustable parameters

have the risk of memorising training data which can lead to a deteriorating ability to

generalise [186].

Implementing gradient descent using backpropagation

In order to implement stochastic gradient descent for the operation described in Eq. (4.6),

one has to find a way to calculate the gradient in Eq. (4.5) with respect to each parameter in

θ. Of course, modern deep networks consist of more than one layer. Fortunately, the rules

derived for gradient calculation for a single layer can be applied iteratively to each layer in

a deeper network. All one has to do is to specify how gradients flow from one layer to the
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b ca

Fig. 4.2 Regression using neural networks. a Sketch of a 3-weight-layer neural network
with 12 hidden units in each hidden layer and one in- and output. b Convergence of
the neural-network-based regression over training steps. The intensity of the red colour
encodes the stage of training. c Same plot as in panel b, but with inverted roles of x and y .

next. Successive layers are viewed as functions that are iteratively applied to the ouput of

the previous function. The gradient of a deeper layer can therefore be calculated using the

chain rule of differentiation, which leads to a set of recursive equations that allow for an

error propagation through the layers. This technique is known as backpropagation [186].

The rules of backpropagation can be derived by calculating the gradient of an error

function, e.g. E ptx, yu;θq “
N
ř

n“1
||ŷpxnq ´ yn||2

l2
”

N
ř

n“1
En with respect to each parameter,

i.e. BEn{Bw l
i j ,BEn{Bbl

i where l marks the layer number. Again, following Bishop [186],

I define abbreviations for the layer output al
i “

ř

j w l
i j z l´1

j ` bl
i with z l

i denoting the

activation, z l
i “ hpal

i q.

An application of the chain rule to BEn{Bw l
i j yields BEn{Bw l

i j “ BEn{Bal
j Bal

j {Bw l
i j .

The definition of al
j can then be used to simplify the second factor, al

j {Bw l
i j “ z l

i , while

the first factor itself is abbreviated as BEn{Bal
j “ δl`1

j , such that one arrives at

BE

Bw l
i j

“ δl`1
j z l

i . (4.7)

Even though the layer indexing may appear strange at first, the underlying logic is that

the to-be-updated weight matrix w l
i j will receive a gradient which consists of the product

of activations coming from below, z l
i and δ’s coming from above, i.e. δl`1

j . Crucially,

the δ’s can be passed from layer to layer using again the chain rule: δl`1
i “ BEn{Bal

i “
ř

m BEn{Bal`1
m Bal`1

m {Bal
i , where the index m runs only over upstream nodes which are

connected to node i . This sum can be simplified using the definition of δl
i , which leads
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to [186]

δl`1
i “ h1

pal
i q

ÿ

m

w l`1
mi δ

l`2
m . (4.8)

A C++-implementation of this logic can be found in the FullyConnectedLayer-class in my

custom-written deep learning library [184]. The last remaining brick is the identification

of the direct derivative of the error with respect to the network output with the most-

upstream δ, i.e. δL`1
i “ h1paL

i qpŷi ´ yi q, where L is the total number of layers.

A single step in neural-network training has therefore three phases: (1) Forward pass

(compute and save activations al
i ), (2) error computation and backpropagation (compute

and save δl
i ), and (3) computation and application of the gradient, w l

i , j “ w l
i , j ´ηδl`1

j z l
i

and bl
i “ bl

i ´ηδl`1
j . In matrix notation, the last step is written as wl “ wl ´ηδl`1pzl qT .

Although the regression examples presented here are fairly simple, they do not differ

in terms of the workflow from the more complex types of regression undertaken in this

chapter. An important difference is that the models trained in this chapter seek to regress

distributions, rather than functions.

4.2 Problem definition & inference models

In recent years, deep-neural-network-based machine learning has revolutionized a num-

ber of inference problems, such as image comprehension [187–193] or natural language

processing [194–196]. During training, for instance on classification tasks, the network

shapes a flow of increasingly abstract representations, from layer to layer, suppressing

unnecessary features, while relevant ones are amplified [197]. As shown in the preceding

section, under a supervised scheme, training refers to a minimisation of a loss function E ,

e.g. E pŷ , yq “ ||ŷ ´ y ||2
l2

over a labelled data set, such that the neural network output ŷpxq

approaches the target output y given the input x. The crucial question is then whether

the network will accurately predict the corresponding target value of previously unseen

inputs and distill features that are relevant for generalisation [186].

This, however, necessitates the existence of some underlying generalising structure

in the data. Such a structure can be conceptualised as a mapping f : x Ñ y , for instance,

between images of handwritten digits and their numeric label. This mapping is usually

only implicitly present in the data and needs to be inferred. Crucially, such an approach is

limited to modelling data relations that can be expressed by functions in the mathematical

sense, i.e. by one-to-one- or many-to-one-type relations. Many relevant real-world
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problems, such as inverse holography, however, are ill-posed inverse problems, amenable

only to certain algorithms including generative models [198, 199].

Before I introduce generative models, I briefly define the physical problem that I wish

to solve in this chapter. Furthermore, I describe the choice of features made here as well

as the process of data acquisition, which is shown in Fig. 4.3a and b.

4.2.1 Dimensionality reduction by Fourier-feature preselection

Only a small number of hologram patterns actually result in light being recorded on the

camera. Most patterns correspond to spatial frequencies that redirect the laser beam

somewhere else into the setup. To reduce the number of ”empty” patterns and overall

complexity of the problem, I restricted the holograms h to only include frequencies from

a preselected 8 ˆ 8-matrix in Fourier-space, fi , j as shown in Fig. 4.3a. These 64 Fourier

components are selected such that when one displays any of these frequencies fk,l in

isolation, i.e. fi , j “ f0δi´k, j ´l , the SLM directs light to a region of interest (ROI) on the

camera, with pixel dimensions 100 ˆ 100. By restricting these 64 Fourier components to

the real plane, I eliminate any relative phase difference between the Fourier components

(see Fig. 2.9a). Global phase offsets, such as the example shown in Fig. 2.8, are prevented

from occurring in this configuration too.

My workflow of acquiring data sets is sketched in Fig. 4.3b: I begin by setting all

corresponding matrix coefficients to zero. Then, I draw 64 random numbers from a

uniform distribution and reconsider those coefficients where the respective random

number surpasses a predefined sparseness-threshold C . The so-selected coefficients are

then redrawn from the distribution in order to ensure that Fourier coefficients can take up

all possible values fi , j P r0,100s. This is done in order to avoid overloading the holograms,

which would lead to low light intensities. The sparseness is thus a data-set parameter

(typically C P r90,97s). By restricting the values to the interval r0,100s, I eliminate even the

bi-modality shown in Fig. 2.9b at least for Fourier matrices with only a single non-zero

component. However, pixel values in holograms corresponding to Fourier matrices with

several non-zero components can still exceed the 100-mark, since their hologram pattern

superimpose. Its highly non-linear nature in conjunction with imaging noise, such as

shot noise, and the remaining high number of variables (10k + 64) still make this problem

enough of a challenge.

Once the 8 ˆ 8-matrix is obtained, it is embedded into a 200 ˆ 200-matrix of zeros, on

which I perform a Fast Fourier Transformation (FFT) and subsequently take the real part

(see Fig. 4.3a and b). The resultant 200 ˆ 200-hologram h is then embedded centrally in
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Fig. 4.3 a I consider the intensity within a 100x100 pixel sized region-of-interest (ROI)
on the camera. Only a small number of spatial frequencies send rays towards that ROI,
so that one can reduce the dimensionality in Fourier space considerably to an 8x8 ma-
trix. All other Fourier components are always set to zero. b Workflow of sample acqui-
sition approach: Generate real-valued random 8 ˆ 8 Fourier matrices f, embed them
centrally into the overall 200x200-Fourier matrix, calculate the corresponding 200x200-
hologram h, display it centrally in the 800x600-sized SLM, and measure the ensuing
100x100-intensity distribution I. c The conditional generative model is then trained on
the mapping pS ˝ F q

´1 : pI, zq Ñ f, omitting the intermediate hologram h. In principle,
conditional generative models could be used to learn S´1 : pI, zq Ñ h, which is more
computationally demanding.
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the 800 ˆ 600-pixel matrix of the SLM. Before feeding the intensity and Fourier matrices

into the models, I normalise all values such that Ii , j P r0,1s and fi , j P r0,1s.

4.2.2 Conditional generative models

The approach that I describe here consists in training conditional generative models

in order to (re)construct 8 ˆ 8-Fourier matrices f̂ from a given intensity distribution I.

Conceptually, the approach is not entirely novel; generative models in inverse problems

have been applied to molecular design [200] or computer tomography [201].

Conditional Generative-Adversarial Networks

Arguably, the best-known generative model are ’generative-adversarial networks’ (GAN).

Ever since their discovery, GAN have received attention due to their expressive abilities to

create realistic, but purely synthetic pictures [202, 203]. However, from a mathematical

viewpoint, GAN are an approach to learning a probability distribution ρpxq in a generative

way [198, 204].

More precisely, a GAN is a scheme aimed at training a generative model such that it

is able to morph ”latent space” vectors z “ tz1, . . . , zl u drawn from a standard probability

distribution into samples x̂ “ tx̂1, . . . , x̂mu that appear to be drawn from the data set. This

ability of GAN to learn distributions, can be used to solve one-to-many-type inverse

problems f ´1 : y Ñ txkukPK pyq where K pyq is the subspace over which f pxq “ y . To

this end, the GAN must be conditioned on the output variable y (here the intensity I) to

approximate the conditional distribution ρpx|yq [205]. Once trained, one can generate

multiple estimates x̂ (here Fourier matrices f̂) by redrawing latent space vectors z P Z for a

given y and test for the optimum.

Since GAN are notoriously difficult to train, a number of normalisation schemes

have been proposed to prevent an otherwise likely loss of multi-modality of the learned

distribution ρθpf̂|z,Iq, known as mode collapse [206–209]. This approximative distribution

is controlled by the generator Gθ. It is only defined by samples drawn from the generator,

i.e. f̂ “ Gθpz,Iq. I trained all conditional GAN-models by applying gradient descent to the

following loss function [198]

EcGANptf,Iu;φ,θq “ E I„ρpIq

“

E f„ρp¨|Iq rv pDφpf,Iqqs`E z„U l rw pDφpGθpz,Iq,Iqqs
‰

`βErec ptf, I u;θq (4.9)



4.2 Problem definition & inference models 103

with respect to the parameters controlling the discriminator Dφ and generator Gθ,φ and θ.

As discussed in the introduction in Sec. 4.1.1, the parameter sets, φ and θ, contain all train-

able weights and bias terms of the respective underlying neural network. As Nowozin et

al [204] show, Eq. (4.9) leads to an approximate minimisation of the symmetric Jensen-

Shannon divergence JSHpρ||ρθq between the data distribution ρ and its approximation,

ρθ.

The functions vp¨q and wp¨q in Eq. (4.9) depend on the type of GAN: in standard GAN,

for instance, they are given by vpxq “ logpσpxqq and wpxq “ logp1 ´σpxqq with σpxq “

p1 ` e´xq´1. In practice, wpxq is often changed to wpxq “ ´logpxq [198]. Importantly,

using this notation, the discriminator network does not apply non-linear functions to

its output nodes. Expectations in Eq. (4.9) are estimated by running averages over small

batches of data (mini-batching). The last term in Eq. (4.9) denotes a reconstruction loss,

implemented throughout this chapter as Erec ptf,Iu;θq “ L´1E I,f,z

”

||f ´ f̂pz,Iq||2
l2

ı

with

L “ 64, the dimensions of f. The hyperparameter β controls its relative importance in

relation to the rest of the GAN-loss. The flow of gradients for cGAN models is sketched in

Fig. A.5a. The cGAN model and its training workflow are described in further detail in the

appendix Secs. A.2.1 and A.2.2.

Wasserstein GAN (WGAN) are a particular type of GAN, which I use in this study. In

WGAN, one seeks to minimise the Wasserstein distance between the distribution that

the GAN implicitly learns and the target distribution [210]. For WGAN, the functions

in Eq. (4.9) are simpler than in standard GAN and read vpxq “ x and wpxq “ ´x. How-

ever, the discriminator-network in WGAN is required to fulfil a K-Lipschitz condition,

|Dpf1q ´ Dpf2q| ď K ||f1 ´ f2||l2 for a scalar K , which was originally achieved by weight-

clipping. Other methods have since been put forward to ensure the Lipschitz condition

and render training of WGAN more stable, such as gradient-penalty [211]. Furthermore,

some of the benefits of Lipschitz-constrained discriminators have been shown to extend

to standard GAN as is exemplified by spectrally-normalised GAN, which exhibit increased

expressiveness and reliable training progress [208].

Conditional VAE model

Importantly, GAN do not attempt to structure their latent space Z , which may complicate

finding a suitable z-vector for minimal loss (see example in Sec. 4.2.2). By contrast,

Variational Autoencoder (VAE) [212] enforce a particular distribution over z P Z ; typically

a standard Gaussian is chosen. Similar to GAN, VAE can be trained in a conditional way to

approximate ρpy |xq while preserving their regularised latent-space structure. VAE consist

of two networks, a decoder and an encoder. The latter is trained to transform input and
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conditioned-on variables x, y into a standard-normally distributed latent space vector

z „ N p0,1q. The decoder then generates a sample x̂ from a newly drawn latent space

vector z 1 and conditional variable y . The expected output of the trained model is thus

solely determined by the conditional variable y .

In addition to the three GAN models (cGAN, cWGAN, and cGAN with reconstruction

loss), I trained a conditional VAE (cVAE) on my data set. As mentioned before, VAE consist

of two networks. The primary network is the decoder, which controls the probability of

Fourier candidates f̂, pθpf̂|z,Iq as a function of latent space vectors z and desired intensity

I. During training, the latent space vector is drawn from a distribution qφpz|fq which is

controlled by the second, the encoder network. Once trained, the encoder can be removed;

all latent space vectors are then drawn from z „ N p0,1q. The loss function of a cVAE is

given by

EcVAEptf,Iu;φ,θq “ E I„ρpIq

”

βE z„qφp¨|fq rlog pθpf|z,Iqs´E f„ρp¨|Iq rDKL pqφpz|fq||N p0,1qqs

ı

.

(4.10)

Broadly speaking, the idea behind Eq. (4.10) is to maximise (a lower bound to) the prob-

ability of the distribution controlled by the decoder pθpf̂|Iq of matching the actual, but

unknown distributionρpf|Iq. The first term corresponds to the aforementioned reconstruc-

tion error in Fourier space, Erec ptf,Iu;θq, with β again controlling its relative importance.

In all experiments with standard cVAEs, I set β“ 1. The second term in Eq. (4.10) enforces

a particular distribution of the latent space variable z P Z , its effect can thus be conceptu-

alised as a latent-space regularisation. A sketch of the gradient flow can be found in the

appendix in Fig. A.5b. VAE are typically used for data compression: the dimensionality of

the latent space, for instance, in this study could be made smaller than 8 ˆ 8. However, I

am not interested in this feature of VAE: my encoder network is only tasked with ensuring

that the latent space variables z adhere to a standard normal distribution. Finally, I should

add that I tacitly assume here that normally distributed latent space vectors work well

for the problem at hand. The optimal latent space distribution is, admittedly, an open

question. More details regarding the architecture and the training workflow can be found

in the appendix Secs. A.2.3 and A.2.4.

Descending the forward loss (cVAE with a forward loss)

As I show in the introductory regression examples, an important property of regression

techniques is the ability to interpolate the function of interest in the presence of noise

or measurement error on the output end. However, what I attempt in this chapter is

an interpolation in the opposite direction: I need to find input values for given output
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a b

Fig. 4.4 Forward/backward polynomial interpolation. The function to interpolate is
spxq “ 0.9x5 ` 0.1 ` ξ where ξ „ N p0,σ “ 0.1q. A noiseless version of this function is
plotted in black. The interpolation polynomial (red) is restricted to third degree. The total
interpolation failure is printed in both panels. a Result when pxi , yi q-pairs are interpo-
lated in y-space. b Result when pxi , yi q-pairs are interpolated in x-space, followed by a
subsequent application of spxq (including noise). The sample size is 200 in both panels.

values using (effectively) a regression technique. In Fig. 4.4 I give an example of the kind

of distortion that this inverted interpolation may cause. Importantly, the function spxq

considered in Fig. 4.4 is invertible (see caption). The specific error that results from an

inverted interpolation discussed here should not be confused with the fundamental failure

of inverted interpolation for non-invertible functions shown in Figs. 4.1b, and 4.2b. In the

example in Sec. 4.2.2, I investigate this issue further.

Attempting to solve an inverse problem by seeking to reconstruct function inputs

could therefore be a problematic strategy: Descending the Fourier reconstruction loss

only bends the models towards reproducing Fourier components given the intensity,

which is the wrong error to minimise here. However, any attempt at directly minimising

the forward error, ||̂I ´ I||2
l2

, requires a differentiable approximation U : f Ñ I. Such an

approximation can be provided, of course, using neural-networks, particularly of the

convolutional type. Indeed, training a forward model on this problem proved to be so

simple, that I omit this result here. However, connecting the forward model U with the

Fourier output of my generative models, f̂, turns out to be involved: Roughly speaking, the

forward network needs to only relate actual Fourier inputs f, not some incorrect matrix f1,

to the observed intensity I. Otherwise it might nudge the generative model into producing

Fourier matrices that satisfy the forward network, but not the actual forward operation,

S ˝ F : f Ñ I . This can be remedied, to some degree, by retaining the reconstruction-loss

term in the Fourier plane, ||f̂ ´ f||2
l2

, however adding this loss term may result in trade-offs

with the forward loss.
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A strategy, which appears to work (see Sec. 4.3.1) looks as follows: The forward network

Uξ : fi , j Ñ Ik,l with parameters ξ is pre-trained on the data set using a forward loss,

Eforwptf,Iu;ξq“ E I„ρpIq

“

E f„ρp¨|Iq||Uξpf̂q´ I||2
l2

‰

. (4.11)

Once pretraining is completed, the forward network is used to evaluate the Fourier matrix

candidates f̂ proposed by the generative models in terms of their likely intensity pattern

Ĩ “ Uξpf̂q (note the difference to Î, which is the actual setup output for f̂). During the actual

training, I continue to minimise Eq. (4.11) with respect to ξ in a separate training step as

shown in Fig. A.5c. Importantly, the gradient descent steps of the VAE are taken only with

respect to the encoder and decoder parameters φ, θ, not ξ.

In principle, one can train any conditional generative model in this way. I here choose

a cVAE as an example. This forward-cVAE is updated using the following loss function

EcVAE + forw.loss ptf,Iu;ξ,φ,θq “αEforwptf,Iu;ξq`EcVAEptf,Iu;φ,θq. (4.12)

where the new hyperparameter α controls the relative strength of the forward loss. After

a minimal comparison of results of different combinations of α and β, I set α “ 1 and

β“ 0.01. The forward error is thus significantly more important than the reconstruction

error. Again, once training is completed, the encoder and the forward networks are

obsolete; only the decoder is retained.

Example: Inverting a square function

In order to illustrate the difference of behaviour between cVAE and cGAN in inverse

problems, I here study a simple model of a non-invertible function. Furthermore, I

demonstrate the benefits of a forward-loss introduced in the previous section. The task

is to invert the noisy-square function spxq “ x2 `ξ on x P r´1,1s where ξ is zero-mean

Gaussian noise with a standard deviation of σξ “ 0.05.

In Fig. 4.5a, I sketch the variable-flows through a standard cVAE (top) and cVAE with

forward loss (bottom). In Fig. 4.5b, I show the results for four simple conditional generative

models, a cVAE and a cGAN without (top row) and with forward loss (bottom row). All four

panels in Fig. 4.5b show the predicted x̂ values over the respective original forward value y .

The colour code differentiate the latent space values that feed into the decoder (left two

panels in b) and generator (right to panels in b): red colours correspond to z P r´3,0s

while blue-coloured points are the result of z P r0,3s. As the figure shows, the cVAE

approximately separates the latent space into disjoint sets where the corresponding x̂-sets

appear to touch only at the x “ 0-axis. The cGAN on the other hand has an unstructured
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Fig. 4.5 Inverting a noisy square function spxq “ x2 ` ξ using conditional generative
models. a Sketch of the gradient flow during training for standard cVAE (top) and cVAE
with forward loss (bottom). b Examples of cVAE (left column) and cGAN (right column)
trained without (top row) and with (bottom row) forward loss for a noise level of σ“ 0.05.
c Average y-reconstruction error of a cVAE trained with (violet, α“ 4) and without (teal,
α “ 0) forward loss as a function of the level of noise. The shaded areas indicate the
respective standard error of the mean.

latent space where x̂-values appear to be grouped, but the two sets are overlapping (the

blue branch interfuses with the red branch). In an ideal cVAE one has thus some control

over which branch is realised. In reality, the sign of the branch would, of course, be hidden

to the observer.

All models in this example have been trained over n “ 105 steps using the ADAM

optimiser [213] at a learning rate of η “ 3 ¨ 10´4. The generator in the cGAN and the

decoder in the cVAE model each consist of three layers with 100, 100, and 50 nodes

respectively. In cGAN and cVAE models, the input layer has two input nodes to accept

the latent space variable z and the conditioned-on variable y . The output layer returns

a single value, the prediction, x̂. The output of each but the final layer is subject to a

rectified-linear (ReLu) function. The discriminator and encoder share the same simple

architecture with the difference that they accept the true function input x instead of the

latent space variable z.

The latent space variables in the cVAE model are drawn from a standard normal

distribution zVAE „ N p0,1q after training. In the case of the cGAN, latent space variables

are drawn from a standard normal distribution zGAN „ N p0,1q both during training and

afterwards.
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In Fig. 4.5c, I plot the y-error that a forward operation using the actual function s on a

proposed input x̂ achieves. This y-error constitutes the analogue of the relevant metric in

my intensity-reconstruction experiments. The cVAE trained with a forward loss achieves

a lower forward error as its standard counterpart, especially for low noise variances. For

noise standard deviations approaching σ“ 0.5, the two square-branches begin to overlap

significantly which results in a deteriorating performance across all models.

Direct parametrisations of the conditional density

A complementary neural-network-based approach to inverse problems is to directly

parametrise a model of the probability distribution ρpx|yq and explicitly allow for mul-

timodality, such as a sum of Gaussians with learnable relative amplitudes, means, and

variances. This is the idea behind mixture-density networks (MDN) [214, 215]. In the

original implementation of MDN, the network outputs pL`2qK parameters tµ
plq

1 , . . . ,µ
plq

K u,

tσ1, . . . ,σK u, and tπ1, . . . ,πK u for a L-dimensional problem and K Gaussian modes. Since

the network accepts y as input, all parameters are functions of y . The model for the

density assumes output dimensions to be uncorrelated and hence reads

ρpx|yq “

K
ÿ

k“1

πkpyqe
´ 1

2

L
ř

l“1

pxplq´µ
plq

k
pyqq2

σk pyq2
. (4.13)

The details of MDNs are described in Christopher Bishops book [186]. Recently, MDNs

have been generalised to models of continuous mixtures of Gaussians, called compound

density networks [216].

A parametrisation has the advantage that the model is able to quantify the uncertainty

of its prediction of a given input. However, at least in the case of discrete-mixture-density

networks, this approach may fail to invert high-dimensional mappings, where a continu-

ous range or manifold of inputs is mapped to the same output. Moreover, the parametri-

sation of the density often requires a larger output dimension of the neural network, as

shown above, which may be prohibitive. And, finally, even if the network-parametrised

distribution converges, the problem of sampling from it remains. Admittedly, in the

case of Gaussian models, sampling is easily accomplished by sampling from standard

normal distributions ε⃗„ N p⃗0,1q. The obtained random numbers can then be shifted

to the desired distribution N pµ⃗,Sq, i.e. z⃗ “
?

S⃗ε` µ⃗ where the square-root denotes the

matrix-square-root.
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In the case of more involved distributions, generative models have the clear advantage

that they directly generate samples. The probability distribution they learn is encoded

implicitly in their network weights.

I did attempt to apply mixture density networks to the problem at hand, but the

model failed to converge on 8 ˆ 8-Fourier matrices (explained in Sec. 4.2.1). It only visibly

converged for a much reduced problem of maximum dimensionality of 4 ˆ 4-Fourier

components. Furthermore, I noticed that in higher dimensions it becomes increasingly

difficult to avoid floating point underflows in mixture-density networks.

An expert system for Fourier-matrix inference

Finally, I should add that I also attempted naive approaches to finding the Fourier matrix.

The first idea was to find a convolution matrix g that transports the 100x100 intensity

image into the 8x8-Fourier plane. To this end, I minimised the ||fi , j ´pgf Iqi , j ||l2 -norm of

the convolved intensities (second term) and the Fourier matrix (first term) to estimate the

elements of the convolution matrix. This approach, however, leads to non-sparse Fourier

matrices, which, when transferred into holograms, fail to result in any measurable output

intensity, due to overloaded holograms.

I conclude that the problem requires a thresholding non-linearity: Using a peak-

finding technique, I inferred affine transformations, i “ ay I peak
y `by and j “ ax I peak

x `bx ,

which transform peak-positions in the intensity plane into Fourier-matrix indices i , j . The

elements at these indices can now be set to some value, e.g. fi, j “ c ¨ I peak
y,x , where c is a

linear scaling factor (I used c “ 1). The peak-finder requires a threshold to binarise the

image, which must be seen as a model parameter. In all experiments, I used thr=0.5¨maxpIq.

The peak position is then inferred using a centroid from the non-binarised image within a

region of interest extracted from the binarised image, similar to the colloid-localization

routine described in Sec. 2.2.4. Of course, one cannot hope that the shape of the peak gets

replicated with this technique. Since the Gerchberg-Saxton or other algorithms cannot be

directly applied to the problem at hand, this naive approach serves as an ”expert-system”

or baseline against which I can compare the generative models.

4.3 Results

4.3.1 Validation data set results

In this study, I compare (1) spectrally normalised conditional GAN with reconstruction

loss (β“ 1), (2) without reconstruction loss (β“ 0), and (3) conditional Wasserstein GAN
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with gradient penalty without reconstruction loss (β“ 0) with (4) standard conditional

VAE, and (5) conditional VAE with forward loss, and, finally, the (6) the naive expert-system

described in Sec. 4.2.2.

The architecture used for the spectrally normalised cGAN models can be found in the

appendix in Figs. A.2 and A.3. The architecture of the cWGAN, but also of the cVAE are

quite similar. As the figures show, every convolutional and dense layer is subject to either

batch normalisation [217] (cGAN, cVAE) or, in the case of WGAN, layer normalisation [218].

Furthermore, to avoid overfitting, I generally applied dropout to dense layers with rates

between r “ 0.2 and r “ 0.3 [219].

Hyper parameters, such as the gradient-descent optimiser used, or the number of

epochs trained are summarised for all models in Tbl. A.1.

I trained all models on my ”040319”-data set, which comprises 99801 samples and was

acquired at P “ 1 W laser power with a camera exposure time of 0.001s, a gain of 8x, and

with a Fourier-sparseness parameter of C “ 97. The camera settings are carefully chosen

to ensure that strong, single-frequency spots do not reach the maximum dynamic range

of the camera. At the same time, the weaker intensity distributions created by multiple

frequencies need to be visible as well.

Before recording the intensity reconstruction error in Fig. 4.6, I briefly realigned the

setup to reproduce the conditions of the training data set as well as possible. However, a

significant error E
misalign
forw „ 500 ´ 1000 depending on overall intensity remains, which all

results are subject to. In addition, before the experiment, I wait 30 min in order for the

laser to stabilise and ensure that all optical elements involved reach stable equilibria.

The error that I am interested in, is the minimal forward error over five latent space

redraws z0, z1, . . . , z4

Eforw“ minz0,...,z4 ||I ´ Îpzi q||l2 . (4.14)

In Eq. (4.14), I denotes the target intensity I, while Îpzq represents the intensity cor-

responding to the Fourier-estimate f̂pzq, i.e. Î “ S ˝ F pf̂pzqq (see Fig. 4.3c). I will therefore

compare the performance of all models with respect to the forward error.

In Fig. 4.6, I plot the error in Eq. (4.14). The validation data set on which the models

are tested here is separate from the training data set, but is created following the same

workflow as sketched in Fig. 4.3b. The average error for each model is shown in th figure

as well: The cVAE with forward loss (panel a) achieves the lowest forward error with

xE min
forwy “ 798. The expert system, for comparison, results in an average forward error of

xE min
forwy “ 1029, worse than both versions of cVAE.
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Although the forward error Eforw provides a metric by which I can compare different

models, visual inspection is still useful to assess the quality of intensity reconstructions.

This is especially true for this project, since the precise position of laser spots is not as

important as their shape.

For the sake of avoiding any selection bias, I plot the first 20 samples of the validation

data set in Figs. 4.7-4.11 (with the respective minimum forward-error). The brightness of

the intensity distributions in these figures is slightly increased for better visibility.

Especially the cVAE-models manage to recreate not just position and intensity of the

intensity rather well, but in addition, in some cases, reproduces the shape of the laser

spots. An inspection of Figs. 4.7 and 4.8 shows that the shapes reproduced by the standard

cVAE appear more similar to the input patterns than those reproduced its forward-trained

counterpart (compare e.g. 6, 10, 15, or 17 in Figs. 4.7 and 4.8).

Moreover, the Fourier matrix candidates proposed by the cVAE with forward loss in

Fig. 4.7 appear remarkably different from the originals. The standard cVAE, on the other

hand, essentially recreates the original Fourier matrices (see Fig. 4.8). This underlines the

difficulty of the problem: very different Fourier matrices may result in quite similar output

patterns.

All generative models retained some, albeit in some cases low variability in their pre-

dictions as can be seen from the spread of grey points in Fig. 4.6. In the forward-direction,

it is difficult to asses whether the models have actually learned the true distribution ρpf|Iq,

since all proposed Fourier candidates f̂ should, in theory, lead to similar intensities Î.

However, the impression of lower variance in both cVAE models and the cGAN with re-

construction loss is correct. Indeed, especially the cVAE with forward loss yielded almost

always the same Fourier prediction f̂ independent of the latent space vector z drawn. The

model might suffer from a conditional mode collapse, which would see it only output a

single prediction µf̂pIq given an input intensity I. There are several possible reasons for

this: As mentioned before, mode collapse is a well-described problem in the machine

learning literature. The fact that it occurs here should therefore not be too surprising. It

is also possible that I sufficiently reduced the complexity of the problem as described

in Sec. 4.2.1 and successfully eliminated most of the input-invariance in the data. This,

however, is unclear since I studied the phase problem in Sec. 2.2.5 only for isolated Fourier

components.

Furthermore, models without l2-loss terms, such as the cWGAN and the cGAN, how-

ever, do exhibit significant conditional variability. The collapse could thus simply originate

from the unrelenting constraints of the l2-loss.
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In any case, a conditional-mode-collapsed model is still useful for productive purposes

as long as one wants to reproduce intensity patterns - the original aim of this project. All

models except the cGAN manage to produce an almost black (zero) intensity when asked

to in example 9. I find this noteworthy, because many of the models and architectures I

tested until this point failed to do this reliably.
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Fig. 4.6 Overview of the the minimum forward error Eq. (4.14) achieved by the different
models (black) on the validation data set. The other 4 draws from the model are plotted in
grey to give a sense of the spread in intensity error. The ordinate is sorted according to
minimum error. The panels are sorted according to the average minimal forward error.
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Fig. 4.7 First 20 cVAE + forw. loss minimum forward-error (see Eq. (4.14)) samples of the
validation data set.
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Fig. 4.8 First 20 cVAE minimum forward-error Eq. (4.14) samples of the validation data set.
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Fig. 4.9 First 20 cGAN + rec. loss minimum forward-error Eq. (4.14) samples of the valida-
tion data set.
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Fig. 4.10 First 20 cGAN minimum forward-error Eq. (4.14) samples of the validation data
set.
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Fig. 4.11 First 20 cWGAN minimum forward-error Eq. (4.14) samples of the validation data
set.
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4.3.2 Test set results

In many applications of digital holography, the target intensity distribution will vary

across a wide range of possible patterns. Importantly, from an applied perspective, it is

often not a priori clear whether a hologram that results precisely in the target intensity

even exists. A desirable property of a generative model for inverse digital holography is

therefore to propose Fourier matrices or holograms, that result in an intensity that is as

close as possible to the target. However, with the exception of the cVAE with forward loss,

all models discussed here optimise for similarity in Fourier space, not intensity space.

Moreover, the models are trained on holography data sets which may not include the

patterns necessary to create the desired intensity.

In the following, I test the generative models on entirely synthetic intensity distri-

butions I. I create these distributions using a Gaussian-mixture model with a variable

number of peaks 0 ă k ď Np , peak-positions pµ
pkq
x ,µ

pkq
y q, amplitudes Ak , peak variances

pvar
pkq
x ,var

pkq
y q, and x-y-covariances cov

pkq
x,y ,

ρsynthpx, yq “

Np
ÿ

k“0

Apkqe
´ 1

2

var
pkq
y px´µ

pkq
x q2´2cov

pkq
x,y px´µ

pkq
x qpy´µ

pkq
y q`var

pkq
x py´µ

pkq
y q2

var
pkq
x var

pkq
y ´cov

pkq
x,y cov

pkq
x,y . (4.15)

In a loose attempt at creating realistic intensity patterns which could have been part of

the training data set, I required peak positions µx ,µy in Eq. (4.15) to respect a margin to

the image boundaries of 24 pixels (left, top) and 30 pixels (right, bottom). The variances

are restrained by 50 ď var ď 65. Furthermore, the maximum achievable intensity for

each test set sample is restricted to Imax “ 200{
a

Np , where Np is a discrete uniformly-

distributed random number drawn initially Np P t1,2,3u. Despite these restrictions, the

intensities might still be unrealistic: in reality, just to give one example, spot amplitudes

and spot-shape variances are not independent parameters.

The resultant minimum forward error achieved by the generative models is shown in

Fig. 4.12. I show ten examples for each model of the best three models in Fig. 4.13.

Surprisingly, the standard cVAE fares worse on synthetic data (Fig. 4.12e). Perhaps less

surprising is the fact that the cVAE with forward loss still performs well and, again, achieves

the lowest forward error (Fig. 4.12a). The examples shown in Fig. 4.13b underline its strong

performance. It generally attempts to produce an approximative intensity distribution, as

the double-peak example 7 in Fig. 4.13b shows.

The data-set-agnostic expert system, too, performs well, but slightly worse than the

best trained model (panel b). It fails, for instance, to realise that there are two close-by

spots in example 7.
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The cGAN with reconstruction loss (panel c) exhibits the third best performance with

xE min
forwy “ 1163. The cGAN version without reconstruction loss (not shown) performs just

slightly worse with xE min
forwy “ 1170.

4.4 Conclusion

In this chapter, I introduce a, to my knowledge, novel approach to inverse holography

using conditional generative models. Importantly, my approach takes optical aberrations

or alignment artefacts into account and directly relates desired intensity distributions to

Fourier tables, which can then be used to compute holograms.

The approach is geared towards applications in holographic optical tweezers where

required intensity landscapes may only span a few diffraction-limited-spot sizes. How-

ever, as my experiments in chapter 3 show, it is is necessary to construct such intensity

landscapes with high precision. High precision on small patterns is often not achieved by

phase-retrival algorithms. The standard Gerchberg-Saxton, for instance, assumes a direct

correspondence between Fourier-components and resultant intensities and disregard

point-spreading effects, non-linearity of phase-SLM pixel value relations, interference, or

other optical aberrations.

My results paint a clear picture, in terms of which generative model is best suited

for the purpose. The cVAE model with forward loss proved excellent at all tasks. The

standard cVAE, by contrast, perfomed well when asked to reconstruct intensities that were

created by a given workflow and Fourier-component distribution, it failed to generalise

well to synthetic data. Since it only learns the structure of the training data set, it tends

to react to synthetic data with zero output. GAN, on the other hand, have a more fuzzy,

semi-supervised training objective: in GAN with reconstruction loss, the generator at

the same time needs to fool the discriminator and satisfy the reconstruction error. In

earlier stages of training, the discriminator itself will not have a precise idea about which

Fourier components should result in which spot position. Under these circumstances,

approximately correct outputs by the generator will likely satisfy the discriminator. Admit-

tedly, mathematical properties of GAN, let alone conditional GAN, are subject of ongoing

research and more detailed explanations might be found in the future.

What becomes clear in this chapter is the fact that in order to deploy (non-Bayesian)

deep learning models one may have to conduct a comprehensive model and hyperparam-

eter search.

The architectures and hyperparameters identified in this study are the result of a

number of educated trial-and-error over several generations of data sets with different
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Fig. 4.12 Similar to Fig. 4.6 but for a synthetic intensity data set, created by a mixture of
Gaussians, see Eq. (4.15). The forward error measured here is defined in Eq. (4.14).



122 Inverse digital holography using conditional generative models
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Fig. 4.13 a First ten examples of input synthetic intensity distributions. b-d Corresponding
minimum-forward-error samples of intensity reconstruction.
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workflows and camera settings. The setting that I converged to provides the required

dynamic range of the camera for the intensity patterns while retaining a sufficient degree

of permissible hologram complexity such that the generative models could be used for

tweezing purposes.

Irrespective of the type of approximation method, the focus in this chapter firmly lies

on (re)producing output intensity patterns. Indeed, by fixing all Fourier components to

the real plane, I fix all relative phases between the Fourier components. Nevertheless, the

method presented here should still be classified as phase-retrieval since the SLM is still a

phase-only device.

From a thermodynamics-perspective, one wants to be able to realise a given force

landscape; the nature of the force is often secondary. The idea here is to create models

that are powerful enough to create force landscapes solely by shaping intensities.

While the restriction to an 8 ˆ 8-Fourier matrix is a severe limitation, it also makes the

model more portable: Should, for instance, the angle of the SLM change (see Fig. 4.3a),

the model would not need to be retrained. One would rather embed the Fourier matrix at

a different position in Fourier space.

The choice I made in Sec. 4.2.1 to consider Fourier gratings instead of blazed gratings

(see Sec. 2.2.1) is mainly out of convenience. The technique discussed in this chapter

should be applicable to blazed gratings as well. In my arXiv submission, I apply the

technique discussed here to data sets created from blazed gratings [220].

Finally, I want to stress that my work in this chapter is merely a proof of concept. The

models used were not too complex: For instance, the generator in Fig. A.2 ”only” has

on the order of 800k parameters, which pales in comparison with modern deep vision

systems, such as the ResNet-class [221]. There is no fundamental reason, why this study

could not be repeated on the direct and unrestricted mapping between 800 ˆ 600-sized

holograms to all 1280 ˆ 1024-pixels on the camera. Such models, however, appear to be

currently beyond the computational reach of standard deep-learning on desktop GPUs.





Chapter 5

Towards massively parallel

fluorescence-based nanopore

experiments

One of the aims of this thesis is to bridge the gap between the micron- and the nano-scale

in experimental control and availability of data. This chapter describes an ongoing project

which is thus, again, part of the outlook. In contrast to previous chapters, the challenges

involved in this project are mainly of technical nature. The idea here is to recreate the

setup described by our colleague F. Montel at ENS Lyon [222] and combine it with recently

designed FRET-DNA origami platforms [223, 224]. Crucially, the DNA-origami study by

Hemmig et al [224] was carried out on single glass nanopores and thus on single DNA-

origami platforms. While this single-pore approach offers a high degree of control, it

suffers from an inherently low signal-to-noise ratio, particularly in FRET measurements.

Even though I carried out exploratory measurements with the mentioned DNA-origami

system, I here focus on simpler DNA-translocation experiments, which demonstrate the

functionality of the setup and established protocols.

Polymer capture and translocation through confining pores is a problem of theoreti-

cal and practical interest [225–228], particularly in the context of nanopore sensing and

sequencing of DNA, RNA, and proteins [148]. If electrical fields serve as driving force

for translocations, the non-equilibrium thermodynamics of charged-pore systems in

aquaeous electrolyte solutions becomes relevant. In particular the phenomenon of elec-

troosmotic flow (EOF), which arises as an Onsager reciprocal flux in response to applied

gradients in electrical potential, complicates the force balance on particles attempting to

translocate through nanopores [229]. Typically, EOF becomes pertinent at low salt con-

centrations where the charges on the walls of the nanochannel are insufficiently screened
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Fig. 5.1 Overview sketch of the DNA translocation experiments on track-etched mem-
branes. a Sketch of the microfluidic chip. Arrows indicate direction of the electrical field
applied. b Close-up sketch of the dynamics of λ-DNA near and within the pores. c Time-
averaged microscope image to show translocation-event density. The scale bar represents
8µm.d SEM image of gold-labelled 50 nm membranes.
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by surrounding ions in the solution, a phenomenon conceptualised in the theory of Debye

layer. The associated length scale of this layer is the Debye length, which for a single

species of monovalent ions is given by λD “
a

εkB T {p2n8e2q where ε denotes the elec-

trostatic permittivity of the medium and n8 represents the bulk concentration of ions

with elementary charge e.

The flow strength of the EOF critically depends on λD and the surface charge density

of the pore. In order to reduce the influence of EOF, one can therefore either attempt

to increase the salt concentration to improve screening of wall charges or reduce the

surface charge that gives rise to the effect in the first place. This is typically achieved by

reducing the pH of the solution, since surface charges in aquaeous electrolytes can often

be neutralized or their origin eliminated at low pH [230].

Both strategies, however, may come at a cost in terms of their compatibility with

stability or functionality of fluorescent reporters such as intercalating dyes [231].

5.1 Microfluidic design and methods

The microfluidic system that I designed is shown in Fig. 5.1a. It consists of two parts: a

3D-printed insertion (shown in dark grey) and a microfluidic chip which accomodates it

(shown in light blue ). The membrane perforated by the nanopores is glued to the bottom

of the insertion, such that it can be placed within 50 ´ 100µm of the surface of the cover

slip. These polycarbonate membranes are commercially available (Whatman) in large

quantities and are fabricated using the track-etching technique [232]. This technique has

the advantage of producing well-defined nanopores with low dispersion in pore sizes.

Available pore diameters range from 15 nm to 1 µm. The pores are irregularly scattered

across the membrane with an average distance of d “ 1{
?
ρpore « 400 nm (the pore

density is specified by the manufacturer as ρpore “ 6 ¨ 108{cm2 [233]). The total imaged

area in my setup corresponds to 31 ˆ 31 µm2, which encompasses around 6000 pores (see

panel c).

However, a number of pores might be blocked by debris. An image of the (gold-coated)

surface obtained using a scanning electron microscope is shown in Fig. 5.1d.

The electrodes shown in Fig. 5.1a consist of platinum to minimise the risk of electro-

chemical degradation during the experiment. The voltage is provided by a source-meter

(2450 Keithley), which is controlled via USB by a custom-written LabView program.

The choice of adhesive in Fig. 5.1a proved to be critical and colleagues and I had to go

through a number of iterations before we converged to Loctite 3430 (Henkel).
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Technical drawings containing all relevant dimensions of the metal mold for the

microfluidic chip and the insertion can be found in the appendix in Fig. A.6.

As far as this project is concerned, the optical setup is a standard widefield fluorescence

setup. It is, however, in principle capable of performing FRET measurements as described

in Hemmig et al [234, 224].

The resistance of the track-etched membrane scales inversely with the number of

active pores and thus varies considerably from sample to sample due to variations in the

amount of excess adhesive. However, for 500 mM KCl and 10 mM MES at pH 5, I measure a

resistance of R « 13.7kΩ. The theoretical value for a single pore with diameter I “ 50 nm

in this salt solution (σ“ 5.4 S/m) [235], and a membrane thickness of d “ 6µm is given

by [229]

Rtheo, single “σ´1

ˆ

d

πI2
`

1

2I

˙

« 6 ¨ 1010Ω. (5.1)

An active area of a disk with radius r “ 0.1 mm corresponds to around npores « 5¨104 pores,

assuming the aforementioned pore density. The corresponding total resistance amounts

to Rtheo, total “ Rtheo, single{npores « 11887Ω, which is in the correct regime. However, the

estimate of the radius r is probably too small. A realistic estimate would be r “ 0.5mm,

which results in Rtheo, total “ 475Ω. This suggests that a significant number of pores is

somehow blocked or other, unknown factors create such high resistance.

5.1.1 Chip assembly protocol

The protocol I used to assemble the microfluidic system in Fig. 5.1a is summarised below.

1. (Day before) Place insertion upright on double-sticky tape under 4x-microscope.

Apply adhesive in low quantity to top mouth of insertion. Punch out a 3 mm disk

from the Whatman membrane with nanopore diameter of choice using a biopsy

punch and place carefully on the adhesive. The adhesive is prone to spreading

on the membrane. Ensure that the centre of the membrane is not wetted by the

adhesive. Store in sealed container overnight.

2. (Before experiment) Wash membrane on insertion using ddH20, but avoid rinsing

the membrane directly. Then, insert the insertion into a PCR vial filled with measure-

ment buffer (filtered with syringe filter, I “ 220 nm). Centrifuge for 1 min in table

top centrifuge to wet nanopores and remove air bubbles. The insertion is designed

so that the membrane will not touch the bottom of the vial.
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3. (Before experiment) Punch out central inlet in PDMS chip using a 4 mm biopsy

punch (only when PDMS has cooled down from baking). Punch out side-inlets in

PDMS chip using 1mm or 1.5 mm biopsy punch.

4. Plasma-bond PDMS chip onto cover slip, then fill chip with measurement buffer.

5. Insert insertion into punched inlet of PDMS chip, avoid formation of air bubbles.

The water column in the insertion should not rise, otherwise a leak is likely to have

formed.

6. Place PDMS chip on optical setup, fill top or bottom chamber with target solution

and commence measurement.

5.2 Experimental results

5.2.1 DNA pore insertion and escape

In this section, I show the results of a proof-of-principle experiment. In this experiment,

I insert sytox-orange (Invitrogen, Thermo-fisher) labelled λ-phage DNA into the lower

chamber of the setup. The density of sytox orange to DNA-basepairs was set to 1:10, the

measurement buffer used contained 3 mM KCl, 0.5x TBE at pH 8 which corresponds to a

Debye length of around λD « 4 nm. The exposure time is set to 50 ms at a gain of 200x.

The 532-laser intensity remained fixed at a current of 67 % of maximum. The pore size

used in this experiment was 30 nm.

The idea of the experiment is to observe pore-insertion and subsequent escape of the

DNA under positive and negative voltage respectively. This direction of DNA movement

would be in line with the anticipated flow direction of EOF. The focus of the microscope

rests just below the lower surface of the membrane, ascertained by the presence of aut-

ofluorescence coming from the membrane.

Indeed, as Fig. 5.2 shows, the DNA can be observed to disappear into the membrane

upon application of U “ `3 V, but reappears once the voltage is switched to U “ ´3 V.

This cycle is repeated 2-3 times as shown.

For reasons currently unknown, a similar experiment in which the DNA is loaded into

the upper chamber failed to result in any visible translocation events.
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Fig. 5.2 Time series of the ping-pong DNA experiment under switching voltage U “ ˘3 V.
The images are colour-inverted for better visibility in print. The pore size is I “ 30 nm,
the buffer contains 3 mM KCl, 0.5x TBE at pH 8.
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5.2.2 Visualising DNA translocations

In a subsequent experiment, I increased the pores size to I “ 50 nm and applied the λ-

phage DNA into the top chamber of the microfluic chip. Imaging parameters are similar to

the previous experiment. The voltage was set to various levels in order to scan for the right

conditions under which translocations can be detected. A translocation should appear as a

bright, brief flash-like event on the camera, since the focus of the microscope was set such

that neither the top chamber nor much of the bottom chamber was visible. Interestingly,

a few bright events could be detected for almost all voltage levels, but appeared more

frequent for negative voltages.

In Fig. 5.3, I give a frame-by-frame time series of a video recorded under U “ ´5 V.

I marked a particularly long-lasting event, commencing around t0 “ 0.85s, with a red-

dashed circle.

Fig. 5.3 shows that counting λ-DNA-translocations appears now to be within reach.

For instance, one could apply a Gaussian blur and subsequently subtract each frame from

the previous image in the stack. The resultant image stack can be thresholded to provide

an event count. Similarly, one could extract an estimate of event durations, another

variable of interest in Auger et al [222], by measuring for how many frames a certain image

region surpasses the threshold. Importantly, events in Fig. 5.3 are likely to span multiple

physical processes as I discuss in the conclusion.

5.3 Conclusion

The design of the microfluidic chip has been completed and its functionality has been

demonstrated in a first series of proof-of-principle experiments. However, a number

of factors remain unknown in the setup. It is unclear whether the DNA interacts in a

non-specific way with the polycarbonate as I speculate in Sec. 5.2.1. Once in the pore, the

fluorescence of intercalating dyes seems to disappear, which might indicate a quenching

interaction between dye and membrane.

For pore sizes larger than 30 nm, I do observe translocation events, albeit with some-

times suspiciously long durations. For instance, the event that I highlight in Fig. 5.3 lasts

for around 600-700 ms, vastly longer than typical nanopore translocations (see e.g. [231]).

The main drawback (or feature) of the method presented in this chapter consists in its

inability to clearly distinguish between attempt and actual translocation. In all likeli-

hood, the data in Fig. 5.3 captures an ’entrance waiting time’ caused by entropic barrier

effects [226] or EOF-caused entrance trapping [236]. Another possible explanation of
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t=0

t=0.3 s
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t=2.1 s

Fig. 5.3 Frame-by-frame series of images recorded under U “ ´5 V. The images are colour-
inverted for better visibility in print. Bright (here dark), lasting events are believed to
be translocation events from the upper chamber. A long-lasting event is marked with a
red-dashed circle.
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the long event duration might be the aforementioned unspecific pore-DNA interactions,

which I cannot rule out.

Progress in this project was hampered considerably by unreliable adhesives, which

often resulted in membranes detaching during the experiment. This, however, is not

immediately noticeable, but can only be observed after the experiment, voiding all results

obtained during measurements. The current adhesive (Loctite 3430) appears to be more

stable under the harsh experimental conditions.

Initial FRET experiments failed to yield conclusive results, especially since the presence

of autofluorescence coming from the membrane made it difficult to detect the rather weak

FRET signal, despite apparent colocalisation of donor- and acceptor dyes. This problem

can potentially be overcome by coating the membrane with a gold layer, which should

suppress autofluorescence and increase fluorescence near channel entrances due to the

zero-mode-waveguide effect [237, 222]. This, however, appears to require a homogeneous,

high-quality coating with gold, which I failed to produce in the shortness of time. Attempts

to use custom gold-coated membranes created by vacuum-deposition were unsuccessful

due to the formation of what presumably are surface-plasmons. These plasmons resulted

in intense, localised background fluorescence. Data from darkfield emission spectroscopy

carried out in the group of Prof. J Baumberg corroborates this hypothesis.

Problems arising from low signal-to-noise ratios and the large depth-of-field could,

however, be potentially alleviated by exchanging the optical setup for a total-internal-

reflection-fluorescence (TIRF) microscope, which requires the nanopore membrane to

placed within 50-200 nm of the cover slip. The membrane should, of course, not touch the

cover slip but leave space for the measurement solution. I designed the microfluidic mold

(see Fig. A.6b, c) such that the experimenter can opt to create a 50µm-high PDMS-spacer

between the cover slip and the membrane. In order to use a TIRF setup, this spacer cannot

be used as the distance it creates would be prohibitive.

Finally, my results in Chapter 3 show that in order to accurately measure first-passage-

related effects, one needs to gather large amounts of data. The multi-pore approach

described in this section is designed to overcome the limitation inherent to single-pore

setups, such that detailed studies of nanopore translocations now come within reach.





Chapter 6

Conclusion

In this thesis, I describe an automated holographic optical tweezers setup, which is capable

of performing first-passage time experiments over several days almost without human

supervision. I use holographic light shaping here not only to (re)position colloidal particles,

but also to create intricate energy landscapes, which allows me to test various theoretical

predictions of first-passage-time behaviour. Furthermore, I combined these light-based

force landscapes with forces from pressure-driven flows, entropic forces resulting from

channels of varying width, and forces resulting from externally applied electrical potentials.

The versatility of the setup has grown steadily over time and is now at a point where all

the aforementioned forces can be superimposed in a well controlled fashion. Due to the

online localisation of colloids, almost all parameters can be driven in a feedback-mode

such that the state of the system can be put under active control. For instance, one

could create pre-defined force landscapes within microchannels by adjusting the external

voltage depending on the position of a confined colloid. A fluctuating electrical field with

a spatially-varying variance could be used to model stochastic walks under multiplicative

noise. The capacitance of the microchannels appears to be such that the force-change is

effectively instantaenous on colloidal timescales.

The first-passage time results desribed in Chapter 3 are encouraging, since they un-

equivocally support modern thermodynamic theory, often without any adjustable param-

eters. In this sense, this thesis fits well into the field of applied thermodynamics, which

has seen a number of realisations and verifications of thermodynamic predictions, the

more famous of which include verifications of fluctuation theorems [238, 239, 22] or a

realisation of Landauer’s principle [106]. It appears that the underlying assumptions that

allow for direct comparison of confined dynamics of colloids with stochastic theory are

well fulfilled: Single colloids in PDMS microchannels immersed in low-salt aquaeous

solutions indeed behave as hard spheres undergoing confined Brownian walks.
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Nevertheless, I regard the escape-rate optimisation that I present in Sec. 3.2 as a

significant result. It casts doubt on the general applicability of Arrhenius-like scaling of

rates in thermally-induced transitions. Indeed, since the barrier shape can fundamentally

alter the dependence of the transition rate on the barrier height, one should consider

the full integral in Eq. (1.56) in cases of doubt. Moreover, it would be interesting to see if

free-energy landscapes in nature are fine-tuned to such rate-boosting effects. The theory

developed by my coauthors covers a wide range of physical regimes; the effect should

extend into the inertial regime and higher dimensions. The experiments show that the

barrier shapes can indeed be realised, despite the limited agility of holographic tweezers.

Our result is therefore quite fundamental and I suspect of wider interest to the community.

The automation routine used in Chapter 3 is supposed to turn the HOT setup into

a ”real-world Brownian simulator”. The setup could therefore potentially benefit from

strategies originally devised for molecular or Brownian dynamics simulations. A good

example are ”steered molecular dynamics” simulations [240], in which a weak harmonic

potential is created around the solute of interest (here colloid), that is slowly dragged

along the channel. Using Jarzynski’s equality, one can then infer the external forces acting

on the colloid. This strategy will not work if the external forces are created by the laser

itself, since the hologram used to create the weak optical dragging potential will distort

the intensity profile. However, the approach might be useful to efficiently map out other

forces including entropic, spurious, or electrical forces.

Finally, a technical note: The biggest obstacle in microfluidic experiments turned out

to be latent hydrodynamic flows, which typically do not subside even over days. In order

to cope with this problem, I had to develop a workflow in which I check in the beginning

of each experiment carefully the splitting probabilities in a straight channel without any

externally applied forces. While the strength of such flows was markedly reduced after the

introduction of macroscopic equilibration channels, which short-circuit both sides of the

microchannels, the problem never completely disappeared. The most likely cause seems

to be a steady absorption of water by the surrounding PDMS, which then somehow gets

rectified into a directed, permanent flow.

Going forward, instead of using colloids, one could try to establish protocols for

trapping of oil droplets in water or, conversely, aquaeous droplets in oil. With a sufficiently

high difference in refractive indices, these systems should be amenable to optical tweezing.

Crucially, the single-particle approach of optical tweezers would alleviate any problems

arising from a dispersion of droplet sizes. The experimenter can choose a suitably-sized

droplet and isolate it in a microchannel using the tweezers. This would open up a path

to, for instance, measurements of depletion forces between oil droplets. Exploratory
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experiments with sunflower oil/tween-20 droplets in water were encouraging: I managed

to find a small-enough droplet, which fitted into 1µm-wide channels. The trapping

strength was high enough to reliably move the droplet around and the droplet did not stick

to the PDMS or glass. In order to take this idea to the next level, one could explore tweezing

Sorbitol-enriched-aquaeous droplets in flourinated oil, an established oil/water-system

in microfluidic experiments which appears to have just the right ratio of refractive indices

and viscosities (see Eqs. (2.1) and (2.2)).

In Chapter 4, I describe what I believe is a novel phase-retrival method based on state-

of-the-art machine learning techniques. Conceptually, I treat possible invariances arising

in the Fourier coefficient-to-intensity relation using a concept from machine learning

known as latent space. I compare different generative models with an expert system

with respect to their ability to recreate or approximate given intensity distributions by

tweaking the value of 64 Fourier components. Unlike existing phase-retrival algorithms,

the approach is model-free and therefore could, in theory, be used on misaligned optical

setups. All one has to do is to find a set of contiguous Fourier components which direct the

light towards the region of interest. Once this set is identified, one can record training data

sets with relative ease. However, I find it conceivable that the approach would also work

on the direct hologram-to-intensity relation. Furthermore, I propose a, to my knowledge,

novel forward-looking cVAE architecture, which makes use of an additional network to

directly descent the loss in the intensity plane.

The crucial question in all machine-learning approaches is how well the method

generalises to unseen inputs or how well it approximates impossible intensity distributions.

Using validation and test sets, I explore the generalising ability of all models. Clearly, both

versions of cVAE proved to be excellent at reproducing previously unseen intensity shapes

in the validation data set. Even though the standard cVAE model fared worse on synthetic

test set data, I believe that the results in Figs. 4.7 and 4.8 are encouraging. In an application,

one could vary the desired intensity perhaps slightly to find the best approximation within

the scope of the model. A formal, algorithmic way to do this might be of great benefit.

The machine learning field is currently evolving at a breath-taking pace. Novel meth-

ods are being proposed at high frequency. Some of these methods, such as invertible

neural networks [241, 242], might be even better suited than the conditional generative

approach discussed here.

Perhaps, one could get even higher perfomance with adaptable algorithms, i.e. al-

gorithms that are able to check the intensity distribution they create and propose new

holograms based on their previous output. Instead of asking for the best hologram h, one



138 Conclusion

could ask such a model for the best algorithm to arrive at that hologram. This thinking

leads into the territory of reinforcement learning, an area of intense research.

The final results chapter of this thesis, Chapter 5, forms part of the outlook. Progress in

this project was slowed down by various technical challenges in establishing a working, but

more importantly, a reliable experimental platform for studying nanopore translocations

in parallel. The microfluidic design, choice of electrodes, choice of adhesive, and handling

protocols are now at a point that serious experimentation can begin: The setup is able

to count translocation events in a highly parallel fashion, which should greatly improve

the accuracy of experimentally-inferred variables in polymer translocation experiments,

an area of intense study. As I discuss at the end of Sec. 5.3, I advocate switching to a TIRF

microscope in order to overcome some of the remaining issues identified in experiments.

Even though this thesis is not directly contributing to efforts of finding a possible

’thermodynamic niche’ mentioned in Sec. 1, it nevertheless establishes a setup capable

of scanning for thermodynamic effects associated with a large variety of parameters

and forces. An entirely different blue-sky avenue of future research would therefore be to

harness the demonstrated degree of control over laser light and voltage to create controlled

temperature- and voltage-gradients in order to activate thermo- and electrophoretically-

driven processes within droplets or directly in microchannels.
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Appendix

A.1 The multichannel automation routine

The following description of the Labview automation routine can be used as commentary

of the source code in the newest version of the modified RedTweezers programme. Fig. A.1

provides a rough idea of the experimental situation for which the routine is designed.

The mulitchannel automation routine is executed in the interface thread. This thread

has a refresh rate of 50 Hz and asynchronously requests data from other threads, notably

the image processing thread, which manages and refills the list of particle localisations

r_particles. The routine also interacts with the recording routine, which takes care of

storing channel localisations, ROI corner positions, and other meta data into tdms files.

Moreover, after each completed automation cycle, the automation routine notifies the

parameter-list routine, which then updates the parameter under study, e.g. the phase-

gradient parameter p, to the next value in a user-defined list.

The routine is implemented as a state machine, which recomputes its current state s

each time the code is invoked. There are five states, each with an integer s P t0 (default),

1 (moving_to_target), 2 (wait_for_other_ROI), 3 (record), 4 (error_clean_up)u.

The routine has a number of input parameters, the most relevant of which is a list of

user-defined regions-of-interest (ROI), specified by their four corner positions. Each ROI is

treated separately, that is, each ROI has its own state variable s. The array of state variables

is stored locally in the loop together with a reference to the array of ROI-corner positions,

and an array of the current position of particle-track ROIs particle_follow_roi_list.

The latter are used to check for additional particles in the vicinity of currently actuated

particles and there are as many of them as there are channel ROIs. Furthermore, the rou-

tine has access to the array of traps trap_list, which is an array of containers containing

trap positions, trap IDs, and further trap parameters (e.g. trap type (line, point, etc)). The
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Fig. A.1 Simplified sketch of the automation routine. a Two example stages of the au-
tomation routine. b Exemplary geometry of multi-channel microfluidic mask. Here, the
5µm mask is shown. The autofocus region (light blue) is used to measure the extend of a
dark-appearing cavity, which provides an approximately linear scale of the current axial
position of the focal plane relative to the chip.

range of trap IDs used by the automation begins at 666, where 666 itself is reserved for

traps engaged in clean-up operations. Each ROI has its own drag-and-drop-trap ID 667`r

where r P t0, . . . ,R ´ 1u.

The user needs to specify a number of parameters, such as (float) trap_increment,

(bool) randomise_initial_x_position, (bool) randomise_initial_y_position, (float)

rand_init_x_range, (float)rand_init_y_range, (float) deterministic_init_x, (float)

deterministic_init_y, (bool) kickout, (unsigned int) permissible_out_takes.

The following list of operations is executed for each ROI r P t0, . . . ,R ´ 1u:

(prep) Check the state variable srr s and switch to that state.

Initialise out_takes“permissible_out_takes (left assign).

srrs ““ 0 Check the current number of particles in the r th ROI using r_particles. If this

number is smaller or equal to one, find the localisation in r_particles that is (i)

closest to the centre point of the r th ROI, and (ii) not currently actuated by other

ROIs r 1 ‰ r . In order to comply with (ii), check if the closest particle is contained in

any of the ROIs in particle_follow_roi_list if so, find the next best particle.
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Get the position of the so-obtained particle pxp , ypq and create a particle-follow

ROI around that position with a margin of 15 pixels, overwriting the r th ROI in

particle_follow_roi_list. Furthermore, purge trap_list of any traps with

ID=667`r , then request a new point trap to be dispatched to pxp , ypq by appending

a new point trap object to trap_list with ID=667 ` r . The trap-handling routine

will then take care of creating the trap.

If, however, there are more than one particle in the ROI, and if the user has set

kickout““ True, then request a new point trap with ID=666 to be dispatched

to the left edge on the y-centreline of the ROI. Set srr s “ 4. If the user has set

kickout““ False, set srr s “ 0.

srrs ““ 1 If the number of localisations in r_particles that falls within the r th-particle track

ROI in particle_follow_roi_list is equal to one, find the corresponding trap

which is the one with ID==667 ` r . There should be only one at a time. Then,

compute the trap-increment vector p∆tx ,∆ty q to the target position in the r th ROI.

The step size along x and y is determined by trap_increment. The trap completes

the y-part of the drag-and-drop operation first to avoid the barrier in Fig. A.1.

Update the position of the r th particle-follow ROI as well. If the trap position is

closer to the target than a predefined ε, set srr s “ 2, otherwise srr s ““ 1. If however,

the particle number in the r th-particle track ROI in particle_follow_roi_list
is not equal to one, then delete the trap with ID=667 ` r from trap_list and set

srr s “ 0. The moving trap has probably hoovered up several particles, so start anew.

srrs ““ 2 Check the number of localisations nROIpr q in the r th ROI. If nROIpr q ““ 1, set

ready_for_recordingpr q “ True. Also, request the ready_for_recording state

of the other ROIs. If at least one of the other ROIs has ready_for_recording““

False and nROIpr q ‰ 1, then set srr s “ 0, if, however, nROIpr q ““ 1, then wait by

setting srr s “ 2.

If, on the other hand, all ready_for_recordingpr q ““ True, set srr s “ 3. Further-

more, if nROIpr q “ 1, and r ““ R with R being the total number of ROIs, then purge

all traps with IDs between 666 and 666 ` R from trap_list, wait 1 s, and start the

recording routine.

srrs ““ 3 Check the current number nROI of particles in the r th ROI using r_particles. If it

is greater than one, stop the recording and set srr s “ 0.

If is not greater than one and if data is still being recorded, check if all ROIs are

empty. If so, check the current value of out_takes, which tracks the number of
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reported frames in which no particle was localised in any of the ROIs. Decrement

this variable. Before that, check if out_takes““ 0, and if so, set srr s “ 0 and stop

the recording. If out_takesą 0, just set srr s “ 3 and move on.

If, however, data is not being recorded, set srr s “ 3 if nROI ““ 1, and srr s “ 0 if

nROI ‰ 1. This happens, if one of the other ROIs has terminated data acquisition.

srrs ““ 4 Get the position of the trap where ID==666 and advance it to the right along the

channel with a stepsize determined by trap_increment. If the trap has reached

its target (ROI centre+500 pixel in x-direction), delete it and set srr s “ 0. Otherwise

keep this ROI in the error state by setting srr s “ 4.

The algorithm outlined above ensures a smooth operation of the localisation routine

and, importantly, makes sure that the recording is only terminated once all channels are

empty. Dragging new particles into ROIs, while other ROIs record data is a situation that

has to be avoided, since the trap-shapes used to create energy-lanscapes in the recording

ROIs would be distorted by the dispatched drag-and-drop traps and weakened because of

the laser power diverted to them.

A.2 Details of cGAN and cVAE training and architecture

A.2.1 What kind of functions are the generator and discriminator?

The publications of Goodfellow et al [198] and Kingma [212] define GAN and VAE as gen-

eral principles, which do not necessarily rely on neural-networks as underlying regression

Property S.n. cGAN (rec. loss) cWGAN cVAE (forw. loss)

Optimizer: ADAM [213] ADAM RMSprop
Learning rate (η): 10´4 10´4 10´4

Disc. : Gen. updates: 5 5 N.A.
Init. weight std: 0.02 0.02 0.02
Latent space dim. 64 64 64
Random seed: 42 42 42
Batch size: 60 60 60
Epochs: 40 (20) 40 20

Table A.1 Training parameters for all generative models tested in this study. The forward
network in the cVAE with forward loss was trained using ADAM, other parameters are
similar.
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Fig. A.2 Generator and decoder architecture of the spectrally-normalised cGAN model
and cVAE model (with and without forward or reconstruction loss).
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Fig. A.3 Discriminator archicture of the spectrally-normalised cGAN model (with and
without reconstruction loss).
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Encoder architecture
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Fig. A.4 Encoder archicture of the cVAE model (with and without forward loss).

engines. In practice, however, GAN and VAE are usually implemented using neural net-

works. This abstraction highlights an important point: irrespective of their precise form,

neural networks behave as mathematical functions, that is, they map inputs to outputs

like any other function.

In this case, the generator in a conditional GAN is a function which maps a pair pI, zq

to f̂. The cardinality of its input is thus the sum of cardinalities of I, which is problem-

dependent (here 104) and z, which is down to choice. The cardinality of the latent variable

z is the cardinality of the latent space, which is here fixed to 64. Of course, the precise

form of this high-dimensional function called generator depends on the number of layers

and the number of nodes chosen for each layer in between input and output (hidden

layers). The architecture of the generator used here is shown in Fig. A.2 and is the result of

a design decision. I ensured correct in- and output dimensions, which requires a certain

minimal number of layers. For instance, as can be seen in Fig. A.2, I need at least three

convolutional layers to reduce the 100 ˆ 100 intensity input to an 8 ˆ 8-sized tensor using

a stride of s “ 3. Of course, input cardinality could be reduced with fewer layers at the cost

of having to use a higher kernel stride, which reduces resolution. The two convolutional

layes which follow the concatenation in Fig. A.2, are then used to offer the network the

ability to establish a sense of locality over the latent space.

Importantly, purely convolutional networks lack the ability to model differences in

behaviour between different locations of the image. While the mapping I am interested in
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should, in principle, be translationally invariant from f-matrix space to intensity space,

optical aberrations and misalignment may result in small differences in laser-spot shapes

between, say, S ˝ F p f e1,1q and S ˝ F p f e8,8q with ei j denoting a Kronecker-matrix. In order

to give the network the ability to accomodate such differences, I chose to endow the

network with fully-connected layers.

The conditional discriminator is a function which accepts pairs of the form px, yq

and returns a single scalar, D . The architecture chosen here for the discriminator largely

followed similar a chain of reasoning as for the generator (e.g. the convolutional side-chain

for the intensity input is the same). The discriminator architecture is shown in Fig. A.3.

However, I admit that a more principled hyperparameter and network architecture

search as it is done in some studies (e.g. [243, 244]) is beyond the scope of this study and

would also require vastly more computational resources.

A.2.2 How to train a conditional GAN

Training of cGAN proceeds in several distinct gradient-descent steps, which I outline

below. A graphical version of these steps showing the flows of gradients can be found in

Fig. A.5a. Every forward pass through any of the networks will cause the network to store

the activations required for calculating the gradient (see Sec. 4.1.1). The following is a

mixture of pseudocode and text:

For i “ 0, i ă nsample{nbatch, i` “ 1

Di Ð Batch sampleptf,Iu, i ,nbatchq

For each pf j ,I j q in Di

1. Discriminator step:

(a) (Real sample) Calculate Dreal Ð Discpf j ,I j q.

(b) Backpropagate result and calculate partial derivative of first term in Eq. (4.9)

(without the expectations) with respect to discriminator parameters φ and

store in variable ”Grad_disc”.

(c) (Fake sample) Draw random z j „ U 64, then generate fake sample f̂ j Ð GenpI j , z j q

and calculate Dfake Ð Discpf̂ j ,I j q.

(d) Backpropagate result and calculate partial derivative of second term in Eq. (4.9)

(without the expectations) with respect to discriminator parameters φ and add

it to Grad_disc. Store the result in batch-gradient store.
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a cb

sampling sampling

forward loss

Fig. A.5 Overview of training procedures and gradient flows. The widths of the network-
elements (grey shapes) indicate the dimensionality of input and output matrices. The
colour code relates the network variable sets tθ,φ,ξu to the respective loss terms. For a
variable set, such as θ, to be subject to the gradient of a loss, it must have the same colour
and a directed connection to it. For instance, a Conditional GAN with (βą 0) or without
reconstruction loss (β“ 0). b Conditional VAE. c Conditional VAE with forward loss. The
greyed-out part is the underlying original cVAE architecture shown in panel b.

2. Generator step:

(a) If a custom generator loss is used, insert Dfake into the generator loss, and

backpropagate through discriminator.

(b) Pass backpropagation δ’s from input end of discriminator (without applying a

gradient there) to generator and calculate gradient with respect to generator

parameters θ. Store this gradient in batch-gradient store.

(c) Calculate reconstruction loss Erec “ ||f̂ j ´ f j ||
2
l2

and backpropagate through

generator. Calculate gradient with respect to generator parameters θ and add

this gradient to stored gradient.

Average all stored gradients over batch and apply them to their respective parameters.

In modern deep learning frameworks, many of these steps happen without explicit

commands. Passing on backpropagation results, for instance, is implicit in concatenated

functions, such as DφpGθpI, zq,Iq in tensorflow or pytorch.
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A.2.3 What kind of functions are the encoder and decoder?

In the original implementation of conditional VAE, the encoder would accept a pair pf,Iq

and return a latent space variable z. However, here I use a restricted version which only

accepts f (see Fig. A.4). This works, because we are approximating an actual function,

namely S ˝ F . The input dimension of the encoder is thus 64, not 10,064. The decoder

on the other hand is conceptually similar to the generator in cGAN, it accepts pairs of

the form pI, zq and returns Fourier-matrix candidates f̂. Its input dimensions are thus

10,064, since the latent space cardinality is set to 64. The output cardinality is, too, 64

since Fourier matrices are of size 8 ˆ 8. The architecture chosen here for the decoder is

precisely similar to the generator.

A.2.4 How to train a conditional VAE

The training steps involved in training an encoder-decoder pair are similar in some ways

to the steps outlined for conditional GAN in Sec. 4.2.2. The flow of gradients is visualised

in Fig. A.5b.

For i “ 0, i ă nsample{nbatch, i` “ 1

Di Ð Batch sampleptf,Iu, i ,nbatchq

For each pf j ,I j q in Di

1. Encoder step:

(a) Calculate pµ j ,σ2
j q Ð Encpf j q.

(b) Calculate second term in Eq. (4.10) (without expectations) and backpropagate

through encoder, calculate gradient with respect to encoder parameters. Store

in batch-gradient store.

(c) Sample z j „ Npµ j ,σ2
j q and pass to decoder.

2. Decoder step:

(a) Calculate f̂ j Ð DecpI j , z j q.

(b) Calculate reconstruction loss (first term in Eq. (4.10)), ||f j ´f̂ j ||
2
l2

, and backprop-

agate through decoder, calculate gradient with respect to decoder parameters

θ and store in batch-gradient store.

(c) Pass δ’s from decoder input to encoder and calculate gradient there with

respect to encoder parameters φ. Add to stored encoder gradient.

Average all stored gradients over batch and apply them to their respective parameters.
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A.3 Technical sketches of the microfluidic chip in Chapter 5

Fig. A.6 shows the dimensions of the insertion (panel a) and the metal mold used to

create the PDMS chip (panel b). In detail A, I highlight the 50µm-high spacer defining

the height of the micro-channel. The mold is constructed in such a way, that one can

opt to use a preperforated chip using the lid shown in panel c. The stencil on the lid is

designed to give a 3 mm-wide round perforation to accomodate a suitably-sized insertion.

Importantly, this leaves a thin 50µm PDMS layer on the edges of the microchannel on

which the insertion and the membrane can rest. This way, one can create a 50µm-minimal

distance between the membrane and the cover glass.
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a

b

c

Fig. A.6 All distances are given in mm. a Technical sketch of the insertion (3D printable). b
Technical sketch of the mold used to cast the microfluidic chip in PDMS. c Sketch of the
lip with a 3 mm-wide stencil used to preperforate the PDMS chip, such that a 50µm-thin
PDMS spacer is created on the rim of the central inlet.



References

[1] S Lloyd. Going into reverse. Nature, 430(7003):971, 2004.

[2] CB Mast, N Osterman, and D Braun. Disequilibrium First: The Origin of Life. J
Cosmol, 10:3305–3314, 2010.

[3] VN Kompanichenko. Inversion Concept of the Origin of Life. Orig. Life Evol. Biosph.,
42(2-3):153–178, 2012.

[4] JL England. Statistical physics of self-replication. J. Chem. Phys., 139(12):121923,
2013.

[5] VN Kompanichenko. Thermodynamic Inversion. Springer International Publishing,
Cham, 2017.

[6] CB Mast, S Schink, U Gerland, and D Braun. Escalation of polymerization in a
thermal gradient. Proc. Natl. Acad. Sci. U.S.A., 110(20):8030–8035, 2013.

[7] M Morasch, D Braun, and CB Mast. Heat-Flow-Driven Oligonucleotide Gelation
Separates Single-Base Differences. Angew. Chemie Int. Ed., 55(23):6676–6679, 2016.

[8] LMR Keil, FM Möller, M Kieß, PW Kudella, and CB Mast. Proton gradients and pH
oscillations emerge from heat flow at the microscale. Nat. Comm., 8(1):1897, 2017.

[9] N Lane. Proton gradients at the origin of life. BioEssays, 39(6):1600217, 2017.

[10] I Prigogine. The end of Certainty, time, chaos and new laws of nature. Cybernetics,
1(1), 1997.

[11] I Prigogine. Time, Structure, and Fluctuations. Science, 201(4358):777–785, 1978.

[12] L Boltzmann. Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen.
Sitzungsberichte der Akad. der Wissenschaften, 66:275–370, 1872.

[13] E Schrödinger. What is life? The physical aspect of the living cell and mind. Cam-
bridge University Press Cambridge, 1944.

[14] FS Gnesotto, F Mura, J Gladrow, and CP Broedersz. Broken detailed balance and non-
equilibrium dynamics in living systems: a review. Reports Prog. Phys., 81(6):066601,
2018.

[15] R Klages, W Just, and C Jarzynski. Nonequilibrium Statistical Physics of Small Systems.
Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2013.



152 References

[16] C Jarzynski. Stochastic and Macroscopic Thermodynamics of Strongly Coupled
Systems. Phys. Rev. X, 7(1):011008, 2017.

[17] DJ Evans, EGD Cohen, and GP Morriss. Probability of second law violations in
shearing steady states. Phys. Rev. Lett., 71(15):2401–2404, 1993.

[18] GE Crooks. Entropy production fluctuation theorem and the nonequilibrium work
relation for free energy differences. Phys. Rev. E, 60(3):2721–2726, 1999.

[19] C Jarzynski. Nonequilibrium Equality for Free Energy Differences. Phys. Rev. Lett.,
78(14):2690–2693, 1997.

[20] U Seifert. Entropy Production along a Stochastic Trajectory and an Integral Fluctua-
tion Theorem. Phys. Rev. Lett., 95(4):40602, 2005.

[21] U Seifert. Stochastic thermodynamics, fluctuation theorems and molecular ma-
chines. Reports Prog. Phys., 75(12):126001, 2012.

[22] TM Hoang, R Pan, J Ahn, J Bang, HT Quan, and T Li. Experimental Test of the
Differential Fluctuation Theorem and a Generalized Jarzynski Equality for Arbitrary
Initial States. Phys. Rev. Lett., 120(8):080602, 2018.

[23] RD Astumian and M Bier. Fluctuation driven ratchets: Molecular motors. Phys. Rev.
Lett., 72(11):1766–1769, 1994.

[24] H Wang and G Oster. Ratchets, power strokes, and molecular motors. Appl. Phys. A
Mater. Sci. Process., 75(2):315–323, 2002.

[25] P Hänggi and F Marchesoni. Artificial Brownian motors: Controlling transport on
the nanoscale. Rev. Mod. Phys., 81(1):387–442, 2009.

[26] AC Barato and U Seifert. Thermodynamic Uncertainty Relation for Biomolecular
Processes. Phys. Rev. Lett., 114(15):158101, 2015.

[27] P Pietzonka, AC Barato, and U Seifert. Universal bounds on current fluctuations.
Phys. Rev. E, 93(5):1–16, 2016.

[28] TR Gingrich, JM Horowitz, N Perunov, and JL England. Dissipation Bounds All
Steady-State Current Fluctuations. Phys. Rev. Lett., 116(12):120601, 2016.

[29] P Mehta and DJ Schwab. Energetic costs of cellular computation. Proc. Natl. Acad.
Sci. U.S.A., 109(44):17978–17982, 2012.

[30] G Lan, P Sartori, S Neumann, V Sourjik, and Y Tu. The energy–speed–accuracy
trade-off in sensory adaptation. Nat. Phys., 8(5):422–428, 2012.

[31] P Sartori, L Granger, CF Lee, and JM Horowitz. Thermodynamic Costs of Information
Processing in Sensory Adaptation. PLoS Comput. Biol., 10(12):e1003974, 2014.

[32] Y Cao, H Wang, Q Ouyang, and Y Tu. The free-energy cost of accurate biochemical
oscillations. Nat. Phys., 11(9):772–778, 2015.



References 153

[33] JMR Parrondo, JM Horowitz, and T Sagawa. Thermodynamics of information. Nat.
Phys., 11(2):131–139, 2015.

[34] JJ Hopfield. Kinetic Proofreading: A New Mechanism for Reducing Errors in Biosyn-
thetic Processes Requiring High Specificity. Proc. Natl. Acad. Sci. U.S.A., 71(10):4135–
4139, 1974.

[35] L Bachelier. Theorie de La Speculation. In Louis Bachelier’s Theory Specul. Orig.
Mod. Financ. 1900.

[36] P Wilmott. Paul Wilmott introduces quantitative finance. John Wiley & Sons, Ltd,
London, 2nd edition, 2007.

[37] C Gardiner. Stochastic Methods: A Handbook for the Natural and Social Sciences.
Springer-Verlag, 2009.

[38] A Einstein. Über die von der molekularkinetischen Theorie der Wärme geforderte
Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys.,
322(8):549–560, 1905.

[39] W Sutherland. LXXV. A dynamical theory of diffusion for non-electrolytes and
the molecular mass of albumin. London, Edinburgh, Dublin Philos. Mag. J. Sci.,
9(54):781–785, 1905.

[40] JL Lebowitz and E Rubin. Dynamical study of brownian motion. Phys. Rev.,
131(6):2381–2396, 1963.

[41] L Bocquet and JL Barrat. Hydrodynamic boundary conditions, correlation functions,
and Kubo relations for confined fluids. Phys. Rev. E, 49(4):3079–3092, 1994.

[42] I Pagonabarraga, MHJ Hagen, CP Lowe, and D Frenkel. Short-time dynamics of
colloidal suspensions in confined geometries. Phys. Rev. E, 59(4):4458–4469, 1999.

[43] G Hummer and IC Yeh. System-size dependence of diffusion coefficients and vis-
cosities from molecular dynamics simulations with periodic boundary conditions.
J. Phys. Chem. B, 108(40):15873–15879, 2004.

[44] SL Dettmer, S Pagliara, K Misiunas, and UF Keyser. Anisotropic diffusion of spherical
particles in closely confining microchannels. Phys. Rev. E, 89(6):062305, 2014.

[45] K Misiunas, S Pagliara, E Lauga, JR Lister, and UF Keyser. Nondecaying Hydrody-
namic Interactions along Narrow Channels. Phys. Rev. Lett., 115(3):1–6, 2015.

[46] B Fabry, GN Maksym, JP Butler, M Glogauer, D Navajas, and JJ Fredberg. Scaling the
microrheology of living cells. Phys. Rev. Lett., 87(14):148102, 2001.

[47] B Schnurr, F Gittes, FC MacKintosh, and CF Schmidt. Determining Microscopic
Viscoelasticity in Flexible and Semiflexible Polymer Networks from Thermal Fluctu-
ations. Macromolecules, 30(25):7781–7792, 1997.

[48] F Gittes, B Schnurr, PD Olmsted, FC MacKintosh, and CF Schmidt. Microscopic Vis-
coelasticity: Shear Moduli of Soft Materials Determined from Thermal Fluctuations.
Phys. Rev. Lett., 79(17):3286–3289, 1997.



154 References

[49] AWC Lau, BD Hoffman, A Davies, JC Crocker, and TC Lubensky. Microrheol-
ogy, Stress Fluctuations, and Active Behavior of Living Cells. Phys. Rev. Lett.,
91(19):198101, 2003.

[50] M Doi and SF Edwards. The Theory of Polymer Dynamics. Clarendon Press, Oxford,
1. edition, 1986.

[51] R Kubo. The fluctuation-dissipation theorem. Reports Prog. Phys., 29(1):306, 1966.

[52] J Prost, JF Joanny, and J Parrondo. Generalized Fluctuation-Dissipation Theorem
for Steady-State Systems. Phys. Rev. Lett., 103(9):90601, 2009.

[53] BJ Alder and TE Wainwright. Decay of the Velocity Autocorrelation Function. Phys.
Rev. A, 1(1):18–21, 1970.

[54] R Zwanzig and M Bixon. Hydrodynamic theory of the velocity correlation function.
Phys. Rev. A, 2(5):2005, 1970.

[55] L Onsager. Reciprocal Relations in Irreversible Processes. II. Phys. Rev., 38(12):2265–
2279, 1931.

[56] J Gladrow, CP Broedersz, and CF Schmidt. Nonequilibrium dynamics of probe
filaments in actin-myosin networks. Phys. Rev. E, 96(2):022408, 2017.

[57] FC MacKintosh. Notes on Linear Response Theory. Technical report, Vrije Univer-
siteit, 2006.

[58] T Franosch and S Jeney. Persistent correlation of constrained colloidal motion. Phys.
Rev. E, 79(3):031402, 2009.

[59] T Franosch, M Grimm, M Belushkin, FM Mor, G Foffi, L Forró, and S Jeney.
Resonances arising from hydrodynamic memory in Brownian motion. Nature,
478(7367):85–88, 2011.
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