914 research outputs found

    Robust and Flexible Persistent Scatterer Interferometry for Long-Term and Large-Scale Displacement Monitoring

    Get PDF
    Die Persistent Scatterer Interferometrie (PSI) ist eine Methode zur Überwachung von Verschiebungen der Erdoberfläche aus dem Weltraum. Sie basiert auf der Identifizierung und Analyse von stabilen Punktstreuern (sog. Persistent Scatterer, PS) durch die Anwendung von Ansätzen der Zeitreihenanalyse auf Stapel von SAR-Interferogrammen. PS Punkte dominieren die Rückstreuung der Auflösungszellen, in denen sie sich befinden, und werden durch geringfügige Dekorrelation charakterisiert. Verschiebungen solcher PS Punkte können mit einer potenziellen Submillimetergenauigkeit überwacht werden, wenn Störquellen effektiv minimiert werden. Im Laufe der Zeit hat sich die PSI in bestimmten Anwendungen zu einer operationellen Technologie entwickelt. Es gibt jedoch immer noch herausfordernde Anwendungen für die Methode. Physische Veränderungen der Landoberfläche und Änderungen in der Aufnahmegeometrie können dazu führen, dass PS Punkte im Laufe der Zeit erscheinen oder verschwinden. Die Anzahl der kontinuierlich kohärenten PS Punkte nimmt mit zunehmender Länge der Zeitreihen ab, während die Anzahl der TPS Punkte zunimmt, die nur während eines oder mehrerer getrennter Segmente der analysierten Zeitreihe kohärent sind. Daher ist es wünschenswert, die Analyse solcher TPS Punkte in die PSI zu integrieren, um ein flexibles PSI-System zu entwickeln, das in der Lage ist mit dynamischen Veränderungen der Landoberfläche umzugehen und somit ein kontinuierliches Verschiebungsmonitoring ermöglicht. Eine weitere Herausforderung der PSI besteht darin, großflächiges Monitoring in Regionen mit komplexen atmosphärischen Bedingungen durchzuführen. Letztere führen zu hoher Unsicherheit in den Verschiebungszeitreihen bei großen Abständen zur räumlichen Referenz. Diese Arbeit befasst sich mit Modifikationen und Erweiterungen, die auf der Grund lage eines bestehenden PSI-Algorithmus realisiert wurden, um einen robusten und flexiblen PSI-Ansatz zu entwickeln, der mit den oben genannten Herausforderungen umgehen kann. Als erster Hauptbeitrag wird eine Methode präsentiert, die TPS Punkte vollständig in die PSI integriert. In Evaluierungsstudien mit echten SAR Daten wird gezeigt, dass die Integration von TPS Punkten tatsächlich die Bewältigung dynamischer Veränderungen der Landoberfläche ermöglicht und mit zunehmender Zeitreihenlänge zunehmende Relevanz für PSI-basierte Beobachtungsnetzwerke hat. Der zweite Hauptbeitrag ist die Vorstellung einer Methode zur kovarianzbasierten Referenzintegration in großflächige PSI-Anwendungen zur Schätzung von räumlich korreliertem Rauschen. Die Methode basiert auf der Abtastung des Rauschens an Referenzpixeln mit bekannten Verschiebungszeitreihen und anschließender Interpolation auf die restlichen PS Pixel unter Berücksichtigung der räumlichen Statistik des Rauschens. Es wird in einer Simulationsstudie sowie einer Studie mit realen Daten gezeigt, dass die Methode überlegene Leistung im Vergleich zu alternativen Methoden zur Reduktion von räumlich korreliertem Rauschen in Interferogrammen mittels Referenzintegration zeigt. Die entwickelte PSI-Methode wird schließlich zur Untersuchung von Landsenkung im Vietnamesischen Teil des Mekong Deltas eingesetzt, das seit einigen Jahrzehnten von Landsenkung und verschiedenen anderen Umweltproblemen betroffen ist. Die geschätzten Landsenkungsraten zeigen eine hohe Variabilität auf kurzen sowie großen räumlichen Skalen. Die höchsten Senkungsraten von bis zu 6 cm pro Jahr treten hauptsächlich in städtischen Gebieten auf. Es kann gezeigt werden, dass der größte Teil der Landsenkung ihren Ursprung im oberflächennahen Untergrund hat. Die präsentierte Methode zur Reduzierung von räumlich korreliertem Rauschen verbessert die Ergebnisse signifikant, wenn eine angemessene räumliche Verteilung von Referenzgebieten verfügbar ist. In diesem Fall wird das Rauschen effektiv reduziert und unabhängige Ergebnisse von zwei Interferogrammstapeln, die aus unterschiedlichen Orbits aufgenommen wurden, zeigen große Übereinstimmung. Die Integration von TPS Punkten führt für die analysierte Zeitreihe von sechs Jahren zu einer deutlich größeren Anzahl an identifizierten TPS als PS Punkten im gesamten Untersuchungsgebiet und verbessert damit das Beobachtungsnetzwerk erheblich. Ein spezieller Anwendungsfall der TPS Integration wird vorgestellt, der auf der Clusterung von TPS Punkten basiert, die innerhalb der analysierten Zeitreihe erschienen, um neue Konstruktionen systematisch zu identifizieren und ihre anfängliche Bewegungszeitreihen zu analysieren

    Geodetic monitoring of complex shaped infrastructures using Ground-Based InSAR

    Get PDF
    In the context of climate change, alternatives to fossil energies need to be used as much as possible to produce electricity. Hydroelectric power generation through the utilisation of dams stands out as an exemplar of highly effective methodologies in this endeavour. Various monitoring sensors can be installed with different characteristics w.r.t. spatial resolution, temporal resolution and accuracy to assess their safe usage. Among the array of techniques available, it is noteworthy that ground-based synthetic aperture radar (GB-SAR) has not yet been widely adopted for this purpose. Despite its remarkable equilibrium between the aforementioned attributes, its sensitivity to atmospheric disruptions, specific acquisition geometry, and the requisite for phase unwrapping collectively contribute to constraining its usage. Several processing strategies are developed in this thesis to capitalise on all the opportunities of GB-SAR systems, such as continuous, flexible and autonomous observation combined with high resolutions and accuracy. The first challenge that needs to be solved is to accurately localise and estimate the azimuth of the GB-SAR to improve the geocoding of the image in the subsequent step. A ray tracing algorithm and tomographic techniques are used to recover these external parameters of the sensors. The introduction of corner reflectors for validation purposes confirms a significant error reduction. However, for the subsequent geocoding, challenges persist in scenarios involving vertical structures due to foreshortening and layover, which notably compromise the geocoding quality of the observed points. These issues arise when multiple points at varying elevations are encapsulated within a singular resolution cell, posing difficulties in pinpointing the precise location of the scattering point responsible for signal return. To surmount these hurdles, a Bayesian approach grounded in intensity models is formulated, offering a tool to enhance the accuracy of the geocoding process. The validation is assessed on a dam in the black forest in Germany, characterised by a very specific structure. The second part of this thesis is focused on the feasibility of using GB-SAR systems for long-term geodetic monitoring of large structures. A first assessment is made by testing large temporal baselines between acquisitions for epoch-wise monitoring. Due to large displacements, the phase unwrapping can not recover all the information. An improvement is made by adapting the geometry of the signal processing with the principal component analysis. The main case study consists of several campaigns from different stations at Enguri Dam in Georgia. The consistency of the estimated displacement map is assessed by comparing it to a numerical model calibrated on the plumblines data. It exhibits a strong agreement between the two results and comforts the usage of GB-SAR for epoch-wise monitoring, as it can measure several thousand points on the dam. It also exhibits the possibility of detecting local anomalies in the numerical model. Finally, the instrument has been installed for continuous monitoring for over two years at Enguri Dam. An adequate flowchart is developed to eliminate the drift happening with classical interferometric algorithms to achieve the accuracy required for geodetic monitoring. The analysis of the obtained time series confirms a very plausible result with classical parametric models of dam deformations. Moreover, the results of this processing strategy are also confronted with the numerical model and demonstrate a high consistency. The final comforting result is the comparison of the GB-SAR time series with the output from four GNSS stations installed on the dam crest. The developed algorithms and methods increase the capabilities of the GB-SAR for dam monitoring in different configurations. It can be a valuable and precious supplement to other classical sensors for long-term geodetic observation purposes as well as short-term monitoring in cases of particular dam operations

    Synthetic Aperture Radar (SAR) Meets Deep Learning

    Get PDF
    This reprint focuses on the application of the combination of synthetic aperture radars and depth learning technology. It aims to further promote the development of SAR image intelligent interpretation technology. A synthetic aperture radar (SAR) is an important active microwave imaging sensor, whose all-day and all-weather working capacity give it an important place in the remote sensing community. Since the United States launched the first SAR satellite, SAR has received much attention in the remote sensing community, e.g., in geological exploration, topographic mapping, disaster forecast, and traffic monitoring. It is valuable and meaningful, therefore, to study SAR-based remote sensing applications. In recent years, deep learning represented by convolution neural networks has promoted significant progress in the computer vision community, e.g., in face recognition, the driverless field and Internet of things (IoT). Deep learning can enable computational models with multiple processing layers to learn data representations with multiple-level abstractions. This can greatly improve the performance of various applications. This reprint provides a platform for researchers to handle the above significant challenges and present their innovative and cutting-edge research results when applying deep learning to SAR in various manuscript types, e.g., articles, letters, reviews and technical reports

    Evaluation of Multi-frequency Synthetic Aperture Radar for Subsurface Archaeological Prospection in Arid Environments

    Full text link
    The discovery of the subsurface paleochannels in the Saharan Desert with the 1981 Shuttle Imaging Radar (SIR-A) sensor was hugely significant in the field of synthetic aperture radar (SAR) remote sensing. Although previous studies had indicated the ability of microwaves to penetrate the earth’s surface in arid environments, this was the first applicable instance of subsurface imaging using a spaceborne sensor. And the discovery of the ‘radar rivers’ with associated archaeological evidence in this inhospitable environment proved the existence of an earlier less arid paleoclimate that supported past populations. Since the 1980’s SAR subsurface prospection in arid environments has progressed, albeit primarily in the fields of hydrology and geology, with archaeology being investigated to a lesser extent. Currently there is a lack of standardised methods for data acquisition and processing regarding subsurface imaging, difficulties in image interpretation and insufficient supporting quantitative verification. These barriers keep SAR technology from becoming as integral as other remote sensing techniques in archaeological practice The main objective of this thesis is to undertake a multi-frequency SAR analysis across different site types in arid landscapes to evaluate and enhance techniques for analysing SAR within the context of archaeological subsurface prospection. The analysis and associated fieldwork aim to address the gap in the literature regarding field verification of SAR image interpretation and contribute to the understanding of SAR microwave penetration in arid environments. The results presented in this thesis demonstrate successful subsurface imaging of subtle feature(s) at the site of ‘Uqdat al-Bakrah, Oman with X-band data. Because shorter wavelengths are often ignored due to their limited penetration depths as compared to the C-band or L-band data, the effectiveness of X-band sensors in archaeological prospection at this site is significant. In addition, the associated ground penetrating radar and excavation fieldwork undertaken at ‘Uqdat al-Bakrah confirm the image interpretation and support the quantitative information regarding microwave penetration

    A review of technical factors to consider when designing neural networks for semantic segmentation of Earth Observation imagery

    Full text link
    Semantic segmentation (classification) of Earth Observation imagery is a crucial task in remote sensing. This paper presents a comprehensive review of technical factors to consider when designing neural networks for this purpose. The review focuses on Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and transformer models, discussing prominent design patterns for these ANN families and their implications for semantic segmentation. Common pre-processing techniques for ensuring optimal data preparation are also covered. These include methods for image normalization and chipping, as well as strategies for addressing data imbalance in training samples, and techniques for overcoming limited data, including augmentation techniques, transfer learning, and domain adaptation. By encompassing both the technical aspects of neural network design and the data-related considerations, this review provides researchers and practitioners with a comprehensive and up-to-date understanding of the factors involved in designing effective neural networks for semantic segmentation of Earth Observation imagery.Comment: 145 pages with 32 figure

    Mineralogy of the Venus Surface

    Get PDF
    Surface mineralogy records the primary composition, climate history and the geochemical cycling between the surface and atmosphere. We have not yet directly measured mineralogy on the Venus surface in situ, but a variety of independent investigations yield a basic understanding of surface composition and weathering reactions in the present era where rocks react under a supercritical atmosphere dominated by CO2, N2 and SO2 at ∼460 °C and 92 bars. The primary composition of the volcanic plains that cover ∼80% of the surface is inferred to be basaltic, as measured by the 7 Venera and Vega landers and consistent with morphology. These landers also recorded elevated SO3 values, low rock densities and spectral signatures of hematite consistent with chemical weathering under an oxidizing environment. Thermodynamic modeling and laboratory experiments under present day atmospheric conditions predict and demonstrate reactions where Fe, Ca, Na in rocks react primarily with S species to form sulfates, sulfides and oxides. Variations in surface emissivity at ∼1 μm detected by the VIRTIS instrument on the Venus Express orbiter are spatially correlated to geologic terrains. Laboratory measurements of the near-infrared (NIR) emissivity of geologic materials at Venus surface temperatures confirms theoretical predictions that 1 μm emissivity is directly related to Fe2+ content in minerals. These data reveal regions of high emissivity that may indicate unweathered and recently erupted basalts and low emissivity associated with tessera terrain that may indicate felsic materials formed during a more clement era. Magellan radar emissivity also constrain mineralogy as this parameter is inversely related to the type and volume of high dielectric minerals, likely to have formed due to surface/atmosphere reactions. The observation of both viscous and low viscosity volcanic flows in Magellan images may also be related to composition. The global NIR emissivity and high-resolution radar and topography collected by the VERITAS, EnVision and DAVINCI missions will provide a revolutionary advancement of these methods and our understanding of Venus mineralogy. Critically, these datasets must be supported with both laboratory experiments to constrain the style and rate weathering reactions and laboratory measurements of their NIR emissivity and radar characteristics at Venus conditions

    How to describe a cell: a path to automated versatile characterization of cells in imaging data

    Get PDF
    A cell is the basic functional unit of life. Most ulticellular organisms, including animals, are composed of a variety of different cell types that fulfil distinct roles. Within an organism, all cells share the same genome, however, their diverse genetic programs lead them to acquire different molecular and anatomical characteristics. Describing these characteristics is essential for understanding how cellular diversity emerged and how it contributes to the organism function. Probing cellular appearance by microscopy methods is the original way of describing cell types and the main approach to characterise cellular morphology and position in the organism. Present cutting-edge microscopy techniques generate immense amounts of data, requiring efficient automated unbiased methods of analysis. Not only can such methods accelerate the process of scientific discovery, they should also facilitate large-scale systematic reproducible analysis. The necessity of processing big datasets has led to development of intricate image analysis pipelines, however, they are mostly tailored to a particular dataset and a specific research question. In this thesis I aimed to address the problem of creating more general fully-automated ways of describing cells in different imaging modalities, with a specific focus on deep neural networks as a promising solution for extracting rich general-purpose features from the analysed data. I further target the problem of integrating multiple data modalities to generate a detailed description of cells on the whole-organism level. First, on two examples of cell analysis projects, I show how using automated image analysis pipelines and neural networks in particular, can assist characterising cells in microscopy data. In the first project I analyse a movie of drosophila embryo development to elucidate the difference in myosin patterns between two populations of cells with different shape fate. In the second project I develop a pipeline for automatic cell classification in a new imaging modality to show that the quality of the data is sufficient to tell apart cell types in a volume of mouse brain cortex. Next, I present an extensive collaborative effort aimed at generating a whole-body multimodal cell atlas of a three-segmented Platynereis dumerilii worm, combining high resolution morphology and gene expression. To generate a multi-sided description of cells in the atlas I create a pipeline for assigning coherent denoised gene expression profiles, obtained from spatial gene expression maps, to cells segmented in the EM volume. Finally, as the main project of this thesis, I focus on extracting comprehensive unbiased cell morphology features from an EM volume of Platynereis dumerilii. I design a fully unsupervised neural network pipeline for extracting rich morphological representations that enable grouping cells into morphological cell classes with characteristic gene expression. I further show how such descriptors could be used to explore the morphological diversity of cells, tissues and organs in the dataset

    Soil moisture estimation of eucalyptus forests in Portugal with l-band SAR using polarimetric - Decompositions and machine learning

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesSoil moisture is a critical ecological parameter because it is a primary input for all processes that involve the complex interaction between land surface and the atmosphere. Remote sensing, especially using microwaves, has shown great promise in measuring soil moisturewith several operating satellites focused on its continuous estimation and monitoring on a global scale. Portugal is predominantly characterized by Mediterranean and semi-arid climates that feature low and sporadic precipitation. Over 10% of Portugal’s land area has been planted with Eucalyptus globulus- a non-native, fast-growing tree primarily planted for industrial use. Some studies have demonstrated that eucalyptus plantations adversely affect water availability, but overall results have been inconclusive as there are numerous other confounding variables. The goals of this study were to determine, using fully polarimetric L-band SAR and machine learning, if soil moisture could be accurately predicted in eucalyptus forests, and if there is a significant difference in soil moisture inside eucalyptus forests relative to other forests. Vegetated surfaces complicate the estimation of soil moisture because their structure and water content contribute significantly to backscatter of the radar signal. Thus, four polarimetric decompositions were compared to separate vegetative versus surface backscatter. The inputs from those decompositions, as well as several additional radar indices and polarizations from the microwave images, were used as feature inputs into two different machine learning models. After a feature selection process, the soil moisture estimations were retrieved and compared using cross-validation. The best overall soil moisture retrieval for Eucalyptus forests came from Random Forest with a RMSE of 0.021, a MAE of 0.017, and a MBE of 0.001. Through a statistical t-test, predicted soil moisture values in eucalyptus forests did not differ significantly as compared to other forest types in the study area

    MULTISPEKTRALNO DALJINSKO OČITAVANJE PODRUČJA DISTRIBUCIJE MINERALA SA SADRŽAJEM SKANDIJA U RUDNICIMA BOKSITA POKRAJINE ZAPADNI KALIMANTAN, INDONEZIJA

    Get PDF
    The rising demand for scandium led to massive exploration activities for its discovery from mining by-products. Therefore, this study attempts to delineate the distribution of scandium-bearing minerals in the surrounding bauxite mining area, Tayan District, West Kalimantan Province, Indonesia. Preliminary studies were conducted by applying optical sensors to discriminate the types of minerals, such as kaolinite, gibbsite, goethite, and quartz. The spectral information aids the reconnaissance study by providing data on specific rocks and minerals using the short-wave infrared (SWIR), processed into a series of bands with spectral ranges from 0.35 to 2.5 μm. The data was then compared with the structural lineament from the ALOS PALSAR imagery to infer the prospective area with the structural pattern. The integrated band math minerals and geochemical data taken from X-ray fluorescence and Inductively Coupled Plasma-Mass Spectrometry suggest that the Sc-bearing minerals were disseminated predominantly on the bauxite laterite profile from pyroxene diorite and diorite parent rock weathering. The spectral range for goethite as the Sc-bearing minerals is from 0.43 to 1.03, with the main absorption features from 2.0 to. 2.4. Furthermore, goethite is mainly concentrated at the top bauxite horizon associated with the structurally related hill. The ore-bearing minerals also occupied the tailing pond and some beneficiation areas in relatively minor proportion. This study is undoubtedly valuable for the practical need to support mineral exploration through remote predictive mapping.Rastuća potražnja za skandijem dovela je do velikih istraživanja sa svrhom njegova otkrivanja na jalovištima rudarskih postrojenja. U radu se prikazuje distribucija minerala sa sadržajem skandija u okolici rudnika boksita u okrugu Tayan, provincija Zapadni Kalimantan, Indonezija. Provedeno je preliminarno istraživanje primjenom optičkih senzora za razlikovanje minerala kao što su kaolinit, gibsit, getit i kvarc. Spektralni podatci prospekcije daju informacije o specifičnim stijenama i mineralima pomoću infracrvenoga (SWIR) kratkog vala, obrađenoga u niz traka sa spektralnim rasponima od 0,35 do 2,5 μm. Podatci su zatim uspoređeni sa strukturnim lineamentima iz slika ALOS PALSAR kako bi se otkrilo perspektivno područje s obzirom na strukturni sklop. Skup minerala, matematički obrađen, te geokemijski podatci dobiveni pomoću rendgenske fluorescencije i masene spektrometrije s induktivno spregnutom plazmom upućuju na to kako su minerali koji nose Sc raspršeni pretežito u boksitnome, bočno izduženome tijelu nastalom trošenjem ishodišnoga (piroksenskoga) diorita. Spektralni je raspon getita kao minerala koji sadržava Sc od 0,43 do 1,03 μm, s glavnim apsorpcijskim značajkama od 2,0 do 2,4 μm. Nadalje, getit je uglavnom koncentriran na gornjemu boksitnom horizontu koji je u vezi sa strukturama boranja. Minerali koji sadržavaju rudu također su rasprostranjeni u jalovini i u još nekim područjima gdje se oplemenjivalo, ali u relativno niskome udjelu. Ovaj je rad nedvojbeno vrijedan jer prezentira praktičnu upotrebu daljinskoga prediktivnog kartiranja prilikom istraživanja mineralnih sirovina

    GLCM FEATURES FOR LEARNING FLOODED VEGETATION FROM SENTINEL-1 AND SENTINEL-2 DATA

    Get PDF
    Efforts on flood mapping from active and passive satellite Earth Observation sensors increased in the last decade especially due to the availability of free datasets from European Space Agency’s Sentinel-1 and Sentinel-2 platforms. Regular data acquisition scheme also allows observing areas prone to natural hazards with a small temporal interval (within a week). Thus, before and after datasets are often available for detecting surface changes caused by flooding. This study investigates the contribution of textural variables to the predictive performance of a data-driven machine learning algorithm for detecting the effects of a flooding caused by Sardoba Dam break in Uzbekistan. In addition to the spectral channels of Sentinel-2 and polarization bands of Sentinel-1, two spectral indices (normalized difference vegetation index and modified normalized difference water index), and textural features of gray-level co-occurrence matrix (GLCM) were used with the Random Forest. Due to high dimensionality of input variables, principal component (PC) analysis was applied to the GLCM features and only the most significant PCs were used for modeling. The feature stacks used for learning were derived from both pre- and post-event Sentinel-1 and Sentinel-2 images. The models were validated through model test measures and external reference data obtained from PlanetScope imagery. The results show that the GLCM features improve the classification of flooded areas (from 82% to 93%) and flooded vegetation (from 17% to 78%) expressed in user’s accuracy. As an outcome of the study, the use of textural features is recommended for accurate mapping of flooded areas and flooded vegetation
    corecore