3 research outputs found

    Tensor-based Hyperspectral Image Processing Methodology and its Applications in Impervious Surface and Land Cover Mapping

    Get PDF
    The emergence of hyperspectral imaging provides a new perspective for Earth observation, in addition to previously available orthophoto and multispectral imagery. This thesis focused on both the new data and new methodology in the field of hyperspectral imaging. First, the application of the future hyperspectral satellite EnMAP in impervious surface area (ISA) mapping was studied. During the search for the appropriate ISA mapping procedure for the new data, the subpixel classification based on nonnegative matrix factorization (NMF) achieved the best success. The simulated EnMAP image shows great potential in urban ISA mapping with over 85% accuracy. Unfortunately, the NMF based on the linear algebra only considers the spectral information and neglects the spatial information in the original image. The recent wide interest of applying the multilinear algebra in computer vision sheds light on this problem and raised the idea of nonnegative tensor factorization (NTF). This thesis found that the NTF has more advantages over the NMF when work with medium- rather than the high-spatial-resolution hyperspectral image. Furthermore, this thesis proposed to equip the NTF-based subpixel classification methods with the variations adopted from the NMF. By adopting the variations from the NMF, the urban ISA mapping results from the NTF were improved by ~2%. Lastly, the problem known as the curse of dimensionality is an obstacle in hyperspectral image applications. The majority of current dimension reduction (DR) methods are restricted to using only the spectral information, when the spatial information is neglected. To overcome this defect, two spectral-spatial methods: patch-based and tensor-patch-based, were thoroughly studied and compared in this thesis. To date, the popularity of the two solutions remains in computer vision studies and their applications in hyperspectral DR are limited. The patch-based and tensor-patch-based variations greatly improved the quality of dimension-reduced hyperspectral images, which then improved the land cover mapping results from them. In addition, this thesis proposed to use an improved method to produce an important intermediate result in the patch-based and tensor-patch-based DR process, which further improved the land cover mapping results

    Image-based Semantic Segmentation of Large-scale Terrestrial Laser Scanning Point Clouds

    Get PDF
    Large-scale point cloud data acquired using terrestrial laser scanning (TLS) often need to be semantically segmented to support many applications. To this end, various three-dimensional (3D) methods and two-dimensional (i.e., image-based) methods have been developed. For large-scale point cloud data, 3D methods often require extensive computational effort. In contrast, image-based methods are favourable from the perspective of computational efficiency. However, the semantic segmentation accuracy achieved by existing image-based methods is significantly lower than that achieved by 3D methods. On this basis, the aim of this PhD thesis is to improve the accuracy of image-based semantic segmentation methods for TLS point cloud data while maintaining its relatively high efficiency. In this thesis, the optimal combination of commonly used features was first found, and an efficient manual feature selection method was proposed. It was found that existing image-based methods are highly dependent on colour information and do not provide an effective means of representing and utilising geometric features of scenes in images. To address this problem, an image enhancement method was developed to reveal the local geometric features in images derived by the projection of point cloud coordinates. Subsequently, to better utilise neural network models that are pre-trained on three-channel (i.e., RGB) image datasets, a feature extraction method (LC-Net) and a feature selection method (OSTA) were developed to reduce the higher dimension of image-based features to three. Finally, a stacking-based semantic segmentation (SBSS) framework was developed to further improve segmentation accuracy. By integrating SBSS, the dimension-reduction method (i.e. OSTA) and locally enhanced geometric features, a mean Intersection over Union (mIoU) of 76.6% and an Overall Accuracy (OA) of 93.8% were achieved on the Semantic3D (Reduced-8) benchmark. This set the state-of-the-art (SOTA) for the semantic segmentation accuracy of image-based methods and is very close to the SOTA accuracy of 3D method (i.e., 77.8% mIoU and 94.3% OA). Meanwhile, the integrated method took less than 10% of the processing time (52.64s versus 563.6s) of the fastest SOTA 3D method
    corecore