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Abstract 

The emergence of hyperspectral imaging provides a new perspective for Earth 

observation, in addition to previously available orthophoto and multispectral imagery. 

This thesis focused on both the new data and new methodology in the field of 

hyperspectral imaging. First, the application of the future hyperspectral satellite EnMAP 

in impervious surface area (ISA) mapping was studied. During the search for the 

appropriate ISA mapping procedure for the new data, the spectral unmixing based on 

nonnegative matrix factorization (NMF) achieved the best success. The simulated 

EnMAP image shows great potential in urban ISA mapping with over 85% accuracy. 

Unfortunately, the NMF based on the linear algebra only considers the spectral 

information and neglects the spatial information in the original image. The recent wide 

interest of applying the multilinear algebra in computer vision sheds light on this problem 

and raised the idea of nonnegative tensor factorization (NTF). This thesis found that the 

NTF has more advantages over the NMF when work with medium- rather than the high-

spatial-resolution hyperspectral image. Furthermore, this thesis proposed to equip the 

NTF-based spectral unmixing methods with the variations adopted from the NMF. By 

adopting the variations from the NMF, the urban ISA mapping results from the NTF were 

improved by ~2%. 

Lastly, the problem known as the curse of dimensionality is an obstacle in hyperspectral 

image applications. The majority of current dimension reduction (DR) methods are 

restricted to using only the spectral information, when the spatial information is neglected. 

To overcome this defect, two spectral-spatial methods: patch-based and tensor-patch-

based, were thoroughly studied and compared in this thesis. To date, the popularity of the 

two solutions remains in computer vision studies and their applications in hyperspectral 

DR are limited. The patch-based and tensor-patch-based variations greatly improved the 

quality of dimension-reduced hyperspectral images, which then improved the land cover 

mapping results from them. In addition, this thesis proposed to use an improved method 
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to produce an important intermediate result in the patch-based and tensor-patch-based DR 

process, which further improved the land cover mapping results. 

Keywords 

Nonnegative matrix factorization, nonnegative tensor factorization, hyperspectral image, 

spectral mixture analysis, dimension reduction, patch-based dimension reduction, tensor-

patch-based dimension reduction. 
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1 Introduction 

1.1 Research context 

The urban impervious surface area (ISA) 1 and land cover are significant environment 

indicators (Arnold Jr and Gibbons 1996). Strong relations between the ISA/land cover 

and the urban hydrologic cycle (Miller et al. 2014, Arnold Jr and Gibbons 1996, Li et al. 

2009, Loperfido et al. 2014, Pauleit, Ennos and Golding 2005, Leopold 1968), urban 

microclimate (Yuan and Bauer 2007, Voogt and Oke 2003, Zhou et al. 2014, Carlson and 

Arthur 2000, Xian and Crane 2006), and urban biodiversity (Seto, Güneralp and Hutyra 

2012, McKinney 2008) have been found. The increase in urban ISA decreases the surface 

infiltration rate, increases water runoff, and triggers high peak streamflow (Paul and 

Meyer 2001). The land cover governs the behavior of the water runoff from urbanized 

and industrial areas discharges conveying large amount of nutrients, metals, pesticides, 

and other contaminants to streams (Karn and Harada 2001, Leopold 1968). Some impacts 

of the ISA on the urban energy budget are that, compared to previous areas, ISA absorbs 

more short-wave radiation, impedes release of long-wave energy to atmosphere, and 

increase the long-wave radiation to surrounding environment (Zhou et al. 2014), causing 

the urban heat island (Xu 2010). The land cover leads to intra-urban microclimate 

differences (Buyantuyev and Wu 2010). The increase of ISA also contributes to the loss 

of habitat, biomass, and carbon storage, jeopardizing biodiversity and ecosystem 

productivity (Seto et al. 2012). In addition, it has been found that the lack of urban green 

space due to ISA increase is disadvantageous to human physical activity, psychological 

well-being and the general public health of urban residents (Wolch, Byrne and Newell 

2014). Furthermore, in the age of rapid urbanization, the urban ISA and land cover 

experience intense changes over the short time. Thus, in order to achieve urban 

sustainability, it is important to obtain up-to-date knowledge about the composition and 

distribution of urban ISA and land cover distribution. 

                                                 
1 Impervious surfaces are mainly artificial structures that are covered by impenetrable 

materials such as asphalt and concrete. 
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Prior to the appearance of remote sensing, ISA/land cover studies were relatively 

disordered. For a long time, the ISA/land cover data were collected by agencies at various 

governmental levels under different standards, with little-to-no communication existing 

among them. This fact resulted in a confusing situation that forbid duplicated or shared 

work even in situations where the data were collected under similar premises (Anderson 

1976). Additionally, at that time, the ISA/land cover data were obtained through ground 

surveys, which was labor intensive and time-consuming. Since the development of 

remote sensors, the remote sensing data has gradually become the mostly chosen source 

of information of information for ISA/land cover study. 

The spectrum of a material is a plot of the percentage of reflectance, or emissivity, across 

a range of wavelengths. As all materials reflect, emit, transmit and absorb 

electromagnetic radiation based on the inherent physical structure and chemical 

composition of the material and the wavelength of the radiation (Vagni 2007), the 

spectrum of each material is unique. Remote sensors are designed to identify such 

spectral signatures and perform land cover mapping. The design of hyperspectral imaging 

of hundreds of spectral bands outperforms the traditional panchromatic (1 band), 

orthochromatic (usually has 3 bands), and multispectral (usually has 4~10 bands) sensors 

by providing more detailed spectral signatures (Figure 1-1). 

 

Figure 1-1: Panchromatic/orthophoto/multispectral VS. hyperspectral images. 
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In high demand, new hyperspectral sensors have been constantly designed. The near-

future hyperspectral satellite project is Germany’s environmental mapping and analysis 

program (EnMAP). Studies are needed for the future hypersepctral satellite, in order to 

take advantage of its new features. Depending on the new features and the practical 

objectives, different image processing procedures can be tested to find the appropriate 

solutions for the new hypersepctral satellite in different situations. This thesis focused on 

the ISA mapping ability of the future EnMAP image. 

As the information in high dimensional data (e.g. hyperspectral images) are often 

redundant and contaminated by noise (Zhuo, Cheng and Zhang 2014), the efficient 

ISA/land cover mapping requires powerful processing methods. The majority of the 

current hyperspectral processing methods are applied in absence of the use of spatial 

information. Based on linear algebra, the spatial coordinates of pixels are often 

reconstructed into vectorized index during the process, which converts the original 

hyperspectral 3D cube into a 2D matrix (Figure 1-2). From now on, the methods based on 

linear algebra are referred to as the matrix-based methods. Fortunately, from the late 

2000s, multilinear algebra is widely being studied in computer vision. Although the 

application of multilinear algebra in remote sensing is still limited, this trend sheds light 

on the possibility of improving series of hyperspectral image processing methods by 

preserving the spatial information. From now on, the methods based on multilinear 

algebra are referred to as the tensor2-based methods. In addition, inspired by the different 

variations of the widely used matrix-based hyperspectral image processing methods, I 

proposed to adopt them in tensor-based methods, which may also improve the final 

results. This thesis focused on improving two typical hyperspectral problems: spectral 

unmixing and dimension reduction, by tensor-based methods. 

                                                 

2 In mathematics, an Nth-order tensor is a N-dimensional array (𝑁 ≥  3). 
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Figure 1-2: Hyperspectral image matricization (3D cube to 2D matrix). 

1.2 Research objectives 

The main objective of this thesis is to evaluate current, and develop new, remote sensing 

methodologies, on current/future hyperspectral images, in order to produce ISA/land 

cover maps with high accuracy and fidelity. Specifically, three sub-objectives for the 

three sub-studies are: 

(1) To find the appropriate image processing methods for ISA mapping using the new 

simulated hyperspectral satellite EnMAP image. 

(2) To upgrade one of the most robust spectral unmixing methods (nonnegative 

matrix factorization) from a matrix-based version to a tensor-based one and 

further improve the tensor-based method by incorporating additional constraints 

that have been previously added to the matrix-based method, to test improvement 

in the ISA mapping results. 

(3) To upgrade the graph-based dimension reduction method to its tensor version and 

further improve the tensor-based method by the use of a new method for the 

intermediate results of adjacency graph/weight matrix, in the hope to improve the 

land cover mapping results. 

Corresponding to the objectives, the following research questions are the focus of this 

thesis: 
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(1) Aiming to obtain accurate ISA maps, what processing procedures are appropriate 

for the new satellite EnMAP data when no additional data are available? 

(2) How does the newly developed tensor-based spectral unmixing method assist the 

ISA mapping compared to the matrix-based method? 

(3) Can the variations of the matrix-based spectral unmixing methods be 

implemented to the tensor-based methods? After this implementation, will the 

results of the tensor-based methods be improved? 

(4) How does the newly developed spectral-spatial dimension reduction methods 

assist the land cover mapping compared to the matrix-based method? 

(5) By improving the intermediate results (adjacency graph/weight matrix) of the 

tensor-based dimension reduction methods, can the final land cover mapping be 

improved? 

1.3 Studied images 

The quality of the final ISA and land cover maps relates to not only the discussed method, 

but also the studied hyperspectral images. Different processing methods may be 

appropriate solutions for different hyperspectral images. Features like spatial and spectral 

resolutions and locations (e.g. urban or suburban) of the hyperspectral images impact the 

outcomes for certain methods. Thus, one can seldom only work on image processing 

methods without considering the target. In order to comprehensively analyze the 

performances of studied methods regarding to different images, the hyperspectral images 

used for the analysis are carefully selected (Table 1-1). Firstly, this thesis provides 

spectral unmixing on one simulated EnMAP image (2013), whose results are valuable for 

the future application of the new hyperspectral sensor. The Copperas Cove, TX, Hydice 

image (1995) was also used in the spectral unmixing, for comparison purpose. As the 

EnMAP and Hydice images have different spatial and spectral resolution, they were able 

to reflect the different preferences of the spectral unmixing methods. In the dimension 

reduction experiments, the widely used Indian Pines AVIRIS image (1992) was used 

along with one newer CASI image (2013). The spectral band information of the EnMAP 
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and CASI data is provided in Appendix A. The spectral band information of the Hydice 

and AVIRIS data are open online (http://lesun.weebly.com/hyperspectral-data-set.html ). 

Table 1-1: Studied image. 

 Methods Platforms Location 

type 

Spatial 

resolution 

Spectral 

resolution 

Temporal 

resolution 

Simulated 

EnMAP 

Spectral 

unmixing 

Satellite Urban-

suburban 

30m 88 bands  

(420-990nm) 

4 days 

Hydice Spectral 

unmixing 

Airplane Urban 2m 162 bands 

(400-2500nm) 

NA 

AVIRIS Dimension 

reduction 

Airplane Agriculture 20m 200 bands 

(400-2500nm) 

NA 

CASI Dimension 

reduction 

Airplane Urban 1m 72 bands 

(360-1050nm) 

NA 

1.4 Background 

1.4.1 ISA/land cover mapping 

An ISA/land cover mapping literature search on Google Scholar, with approximately 80% 

- 90% of the articles being published in English, displayed literature from the 1990s to 

2018. The majority of current ISA/land cover mapping used multispectral images, instead 

of hyperspectral images. This was largely due to a lack of hyperspectral sensors suitable 

for detecting and estimating various types of land cover, immature digital image 

processing techniques, and constrained computing power. In the 1990s, the number of 

publications on ISA/land cover mapping was less than 150, and they were mainly based 

on satellite imagery, e.g, Landsat TM (thematic mapper), Landsat MSS (multispectral 

scanner), SPOT, and AVHRR, with a small amount of publications referencing 

digitalized thematic maps and other ancillary data (e.g. population). At that time, the 

majority of ISA/land cover mapping literature was on the global scale. In the 2000s, the 

popularity of ISA/land cover mapping grew rapidly in the remote sensing community. 

More than 3000 publications focused on the application of remote sensing in ISA/land 

cover mapping. Greater amounts of remote sensing data became accessible for this task, 

including satellite missions (Landsat ETM+ (enhanced thematic mapper plus), ASTER, 

http://lesun.weebly.com/hyperspectral-data-set.html
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MODIS, IKONOS, Quickbird, etc.); and airborne sensors (CASI, DAIS, etc.). Small-

scale urban studies on country/city levels were available. In the 2010s, remote sensing 

continued to dominate the field of ISA/land cover mapping and the number of 

publications increased exponentially. Although the widely used data remained to be 

Landsat, MODIS, IKONOS, etc., various new classification methods were studied to 

improve the ISA/land cover mapping accuracy. In recent ISA/land cover studies, both 

per-pixel (Schneider, Friedl and Potere 2010) and spectral unmixing method (detailed 

explanation is in 1.4.3.1), were used with medium spatial resolution remote sensing 

images (e.g. Landsat and MODIS). The spectral mixture analysis was the most popular 

spectral unmixing method and several variations were proposed: normalized spectral 

mixture analysis, multiple endmember spectral mixture analysis, spatially adaptive 

spectral mixture analysis, etc. (Yang, Matsushita and Fukushima 2010, Deng and Wu 

2013, Fan, Fan and Weng 2015). Other attempts with medium spatial resolution remote 

sensing often incorporated multi-temporal or multi-sensor remote sensing data (Lu, 

Moran and Hetrick 2011c, Lu et al. 2011b, Sung and Li 2012, Gao et al. 2012). With high 

spatial resolution images (e.g. IKONOS and Quickbird), object-oriented classification 

methods were popular (Hu and Weng 2011, Lu, Hetrick and Moran 2011a). In rough 

statistics, the overall classification accuracies ranged from 70% to 95% (Wickham et al. 

2013, Lu et al. 2014, Zhang, Weng and Shao 2017, Chen et al. 2015, Momeni, Aplin and 

Boyd 2016), depending on the images used and methods used. Although hyperspectral 

imagery has not been widely used in ISA/land cover mapping, the continuous reflectance 

spectra of the hyperspectral remote sensing is superior to multispectral remote sensing by 

enabling detailed, precise mapping of earth surface compositions (Van der Meer et al. 

2012). Further, experiments showed that hyperspectral images perform better in the low 

albedo areas (e.g. dark roofs and shadows) than multispectral images (Weng, Hu and Lu 

2008). 

1.4.2 Hyperspectral sensors 

The emergence of the first hyperspectral sensor Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS) in 1983 witnessed the beginning of the hyperspectral imaging era. 



 

  

 8 

The hyperspectral sensors enable simultaneous data acquisition of hundreds or thousands 

of spectral bands, strengthening the conventional one-band panchromatic/infrared, three-

band orthophoto and multispectral sensors and offering the information in the spectral 

ranges that are hidden from human eyes. Since then, a myriad of commercial airborne 

hyperspectral systems have been proposed: HyMap, Compact Airborne Spectral Imager 

(CASI), and digital airborne imaging spectrometer (DAIS) etc. In 2000, the launch of 

EO-1 Hyperion ended the absence of spaceborne hyperspectral sensors, arousing the 

development of a series spaceborne hyperspectral sensors (Buckingham and Staenz 2008). 

The compact high-resolution imaging spectrometer (CHRIS) designed by the European 

Space Agency (ESA) is another currently operating spaceborne hyperspectral sensor. It 

has been stated that the hyperspectral technology probably will be the future of remote 

sensing (Bioucas-Dias et al. 2013). The hyperspectral imagery has proved itself in urban 

ISA and land cover mapping (Fauvel et al. 2008, Benediktsson, Palmason and Sveinsson 

2005, Huang and Zhang 2009). 

1.4.3 Problems with hyperspectral image 

1.4.3.1 Mixed pixel problem 

For the hyperspectral images of coarse/medium spatial resolutions, the detailed ISA/land 

cover distribution can hardly be achieved by per-pixel analyses, since multiple land cover 

types co-exist in one pixel. This problem concerning the coarse/medium spatial resolution 

is often referred to as mixed pixel problem. The objective of the mixed pixel problem is 

to find an abundance map indicating the existing materials and their percentages in each 

pixel. To address this problem, spectral unmixing has been proposed in the early 1980s 

(Dozier 1981), and has since been widely adopted in coarse/medium hyperspectral 

imagery analyses (Powell et al. 2007, Roberts et al. 1998, Wu and Murray 2003, Liu et al. 

2004). The spectral unmixing aims at unmixing the pixels by modeling the reflectance 
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value of the target pixel from more than one endmember3. A wide range of classification 

algorithms has been proposed on a subpixel level. The spectral mixture analysis (SMA) is 

one of the most commonly used spectral unmixing methods (Liu et al. 2004), thanks to its 

simplicity. The SMA assumes the reflectance of a given pixel equal to the sum of the 

reflectance of each material multiplied by its fraction within a pixel (Figure 1-3).  

 

Figure 1-3: Spectral mixture analysis illustration of one pixel. 

However, the SMA method requires the input of endmembers. Thus, a pre-processing 

step of endmember extraction is often involved. The process of endmember extraction is 

to build a reference spectral library. For a successful reference spectral library, it is 

necessary to have good representation of both groups within the library collection and its 

class on the ground (Powell et al. 2007). Two data sources are normally used for 

endmember extraction: field/lab spectrometer and remote sensing images. Using the 

                                                 

3 An endmember is a pure spectrum that is chosen to represent pure surface materials in a 

spectral image. 
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spectrometer to measure the spectra of target materials in the field or lab is 

straightforward and a myriad of spectral libraries are built up using this method. The 

widely accepted USGS spectral library collects the endmember spectra in a lab, where 

researchers measure the pure material surface using four different spectrometers to cover 

the spectral range of 0.2 to 150µm (Clark et al. 2007). Though lab-based endmember 

collection procedures have been established as the current standard, remote sensing 

images in natural settings may have different spectral signatures compared to the data 

collected on the ground or in the lab. Firstly, lab endmember data is seldom acquired 

under the same condition as the airborne or spaceborne data (Plaza et al. 2004). Secondly, 

the atmospheric effects that play a great role in airborne or spaceborne data cannot be 

revealed in lab data. Thus, a more precise method is to extract endmembers directly from 

the remote sensing imagery. Most of the time, the endmember by nature is small in 

number in a remote sensing image. As a result, their appearances are often anomalies, 

making it difficult to locate them (Chang et al. 2006). 

More recently, a new solution for SMA has been proposed: nonnegative matrix 

factorization (NMF). The NMF simultaneously calculates the endmember and abundance 

maps, by applying linear algebra to decompose the original hyperspectral image into an 

endmember matrix and an abundance matrix. Stemming from computer vision studies, 

the original NMF passes through various modifications to accommodate the physical 

concepts in the SMA process.  

1.4.3.2 Curse of dimensionality 

The problem of the curse of dimensionality, which refers to the noise and redundancy in 

the high dimensional data, is an obstacle in the application of hyperspectral image. An 

appropriate dimension reduction (DR) process prepares the data for more effective 

information retrieval by revealing low-dimensional structures hidden in high-dimensional 

spaces. The DR methods can be roughly divided into linear and nonlinear. Generally, 

linear DR methods assume that the data lie close to a lower dimensional linear subspace 

and result in linear combinations of the original variables. Due to this simple 

implementation, the linear DR algorithms are well developed and embrace great 
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popularity. The principal component analysis (PCA) is one of the widely-used linear DR 

solutions. It is a non-targeting linear DR algorithm and can be applied to various datasets 

without complex modification. PCA was first proposed by Pearson in 1901 and has 

experienced several modifications to become the transformation we know today 

(Hotelling 1933, Wold 1968). PCA provides solutions to various multivariate problems, 

including data reduction and finding classes of similar objects (Wold, Esbensen and 

Geladi 1987). The multispectral or vector character of most remote sensing imagery 

enables it to transform the original spectral space to feature spaces constructed by new 

components (Richards and Richards 1999). The PCA is a statistical procedure that uses 

orthogonal transformation to convert a set of observations of possibly correlated variables 

into a set of values of linearly uncorrelated variables called principal components (PCs) 

(Figure 1-4).  

 

Figure 1-4: Principal component analysis illustration. 

Yet, the results from linear DR can fail to be optimal due to the nonlinear features lying 

in a lot of data. For example, to linearly project data that is on or near a curved low 

dimensional space onto a linear subspace will lead to a large error (e.g. Swiss roll dataset 

(Figure 1-5)), unless the subspace has a higher dimension than the original curved space, 

which contradicts the objective of DR (Kambhatla and Leen 1993). In light of this, more 

complex nonlinear DR algorithms that address the underlying nonlinear features in these 

data have been proposed (e.g. locally linear embedding (LLE) and Laplacian eigenmaps 

(LE)). The nonlinear DR implies that the linear DR only focuses on preserving the 
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straight-line Euclidean distance of the data and neglects the nonlinear structure in the data 

(Zhang and Zha 2004). Two streams of nonlinear DR algorithms are based on geodesic 

distances and local structures, respectively. The first stream of nonlinear DR algorithms 

uses the geodesic distance to reveal the true data structure (Tenenbaum, De Silva and 

Langford 2000). The second stream of nonlinear DR algorithms maintains the local 

nonlinear structure during any transformation (Hastie and Stuetzle 1989). 

 

Figure 1-5: Swiss roll dataset illustration: 

(a) original Swiss roll dataset; dimension-reduced result from (b) PCA (principle 

component analysis); (c) LLE (locally linear embedding); and (d) LE (Laplacian 

eigenmaps). 

1.4.4 Multilinear algebra notation and preliminaries 

The above descriptions of the two hyperspectral image processing methods (SMA 

(spectral mixture analysis) and DR (dimension reduction)) both have the potential to 

benefit from the current trend of multilinear algebra. Before introducing how to apply 

multilinear algebra in SMA and DR, I will first provide the basic concepts of multilinear 

algebra. In mathematics, an Nth-order tensor is a N-dimensional array: 𝓧 ∈ ℝ𝐼1×𝐼2×⋯×𝐼𝑁. 

In simple cases, a vector is a first-order tensor, a matrix is a second-order tensor, and a 

data cube (e.g. a hyperspectral image) is a third-order tensor. The order of a tensor is the 
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number of dimensions, which can be also called ways or modes. In this thesis, I 

maintained the widely used notations among mathematical articles. Vectors (first-order 

tensor) are denoted by boldface lowercase letters, e.g. a, and their ith entry is denoted by 

𝑎𝑖. Matrices (second-order tensor) are denoted by boldface capital letters, e.g., A, and 

their element (𝑖, 𝑗) is denoted by 𝑎𝑖𝑗. Third-order or higher-order tensors are denoted by 

boldface Euler script letters, e.g. 𝓧, and elements (𝑖, 𝑗, 𝑘) of a third-order tensor are 

denoted by 𝑎𝑖𝑗𝑘. Subscript indices range from 1 to their capital versions, e.g., 𝑖 = 1, ⋯ , 𝐼. 

The nth element in a sequence is denoted by a superscript in parentheses, e.g., 𝓧 
(𝑛)

 

denotes the nth tensor in a sequence. Subarrays are derived from fixing a subset of index. 

A colon is used to denote all elements of a mode. In the case of matrices, the subarrays 

are rows (𝑎𝑖:) and columns (𝑎:𝑗). For higher-order tensors, the subarrays are called fibers 

when fixing all but one indices or called slices when fixing all but two indices (Figure 1-

6). 

 

Figure 1-6: Fibers and slices of a third-order tensor:  

(a) Mode-1 fibers 𝒂:𝒋𝒌; (b) Mode-2 fibers 𝒂𝒊:𝒌; (c) Mode-3 fibers 𝒂𝒊𝒋:; (d) Horizontal 

slices 𝑿𝒊∷; (e) Lateral slices 𝑿:𝒋:; and (f) Frontal slices 𝑿∷𝒌 (Kolda and Bader 2009). 
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Unfolding is another basic transformation of a tensor, and is also referred to as 

matricization and flattening. The unfolding process reorders the elements of a tensor into 

a matrix, which is a step required by certain analyses. There are many ways to assemble 

the elements from a tensor into a matrix. This thesis only applied the mode-𝑛 unfolding, 

denoted by X(n) . The mode-n unfolding takes the mode-n fibers as columns in the 

resulting matrix. 

Analogous to the matrix Frobenius norm denoted as ∥ 𝐴 ∥, the norm of a tensor 𝒳 ∈

ℝ𝐼1×𝐼2×⋯×𝐼𝑁 is the square root of the sum of the squares of all its elements: 

 ∥ 𝒳 ∥= √∑ ∑ ⋯
𝐼2
𝑖2=1

𝐼1
𝑖1=1

∑ 𝑥𝑖1𝑖2⋯𝑖𝑁

2𝐼𝑁
𝑖𝑁=1 , (1-1) 

Tensors can be multiplied by matrices using the n-mode product. It is a basic tensor 

calculation that is used in tensor-based multilinear operations. The n-mode product 

multiplies a tensor 𝒳 ∈ ℝI1×⋯×In×⋯×IN by a matrix U ∈ ℝJ×In in mode n, and is denoted 

by 𝒳 ×𝑛 𝑈. The product result has a size of 𝐼1 × ⋯ 𝐼1 × ⋯ × 𝐼𝑛−1 × 𝐽 × 𝐼𝑛+1 × ⋯ × 𝐼𝑁. 

The element of the result is calculated as below: 

 (𝒳 ×𝑛 𝑈)𝑖1⋯𝑖𝑛−1𝑗𝑖𝑛+1⋯𝑖𝑁
= ∑ 𝑥𝑖1𝑖2⋯𝑖𝑁

𝑢𝑗𝑖𝑛

𝐼𝑛
𝑖𝑛=1 , (1-2) 

The n-mode product can be also interpreted as multiplying each mode-n fiber with the 

matrix: 

 𝒴 = 𝒳 ×𝑛 𝑈 ⟺  𝑌(𝑛) = 𝑈𝑋𝑛 (1-3) 

In order to explore the hidden information in a tensor, different tensor decomposition 

methods have been proposed to deal with different problems. Two main tensor 

decomposition methods include CANDECOMP/PARAFAC (CP) decomposition and 

Tucker decomposition. Hitchcock proposed the initial idea of CP decomposition in 1927 

(Hitchcock 1927). CP decomposition did not become popular until 1970 when Carroll 

and Chang re-introduced the concept of CANDECOMP (canonical decomposition) 

(Carroll and Chang 1970) and Harshman re-introduced the concept of PARAFAC 

(parallel factors) (Harshman 1970) in the psychometrics community. The CP 

decomposition adopts a polyadic form, expressing a tensor as the sum of a finite number 
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of rank-one tensors (Figure 1-7). A rank-one tensor 𝒳 ∈ ℝ𝐼1×𝐼2×⋯×𝐼𝑁  is an Nth-order 

tensor that can be obtained from the outer product of N vectors. The outer product is the 

tensor product of two coordinate vectors. Given two tensors 𝒜 ∈ ℝ𝐼1×𝐼2…×𝐼𝑝  and ℬ ∈

ℝ𝐽1×𝐽2…×𝐽𝑄, the outer product is written as 𝒜 ∘ ℬ ∈ ℝ𝐼1×𝐼2…×𝐼𝑝×𝐽1×𝐽2…×𝐽𝑄. The element is 

obtained as below: 

 (𝒜 ∘ ℬ)𝑖1𝑖2…𝑖𝑃𝑗1𝑗2…𝑗𝑄
= 𝑎𝑖1𝑖2…𝑖𝑃

𝑏𝑗1𝑗2…𝑗𝑄
, (1-4) 

The CP decomposition for a third-order tensor 𝒳 ∈ ℝ𝐼×𝐽×𝐾 can be written as: 

 𝒳 ≈ ∑ 𝑎𝑟
𝑅
𝑟=1 °𝑏𝑟°𝑐𝑟, (1-5) 

where R is the number of dimensions of 𝒳. The smallest R that fulfills the Equation (1-5) 

is the rank of a tensor. Unfortunately, there is no straightforward way to determine the 

rank of a tensor. 

The Tucker decomposition was first proposed by Tucker in 1963 (Tucker 1963) (Figure 

1-7). It decomposes a tensor into a core tensor multiplied by a matrix along each mode: 

 𝒳 ≈ 𝒢 ×1 𝐴 ×2 𝐵 ×3 𝐶, (1-6) 

The size of the core 𝒢 is the key input in Tucker decompositions, which is not readily 

available but is obtained through experiments. 
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Figure 1-7: Tensor decomposition illustration: 

(a) CP (CANDECOMP/PARAFAC) decomposition; (b) Tucker decomposition. 

As the majority of current image processing methods are based on 2D matrix calculation, 

the hyperspectral 3D cube needs to be matricized in order to be processed, which discards 

the spatial information along the two spatial dimensions. The above-introduced 

multilinear algebra enables the direct calculation between 3D cubes that are referred to as 

3D tensors. Thus, the tensor-based image processing method preserves the spatial 

information in the original image.  

1.5 Organization of the thesis 

The thesis consists of five chapters. Chapter 1 provides the research context, explains the 

thesis objectives, states the major research questions, and provides the necessary 

background. Chapters 2-4 separately covers: 

(1) Evaluation of SMA methods for simulated EnMAP hyperspectral imagery. 

(2) Constrained nonnegative tensor factorization for SMA of hyperspectral image. 
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(3) The application of spectral-spatial representation of hyperspectral images in DR. 

Chapter 2 concerns the application of the future EnMAP image in ISA mapping. Chapter 

3 concerns the application of the multilinear algebra in spectral unmixing for ISA 

mapping using hyperspectral images. Chapter 4 concerns the application of the 

multilinear algebra in dimension reduction for land cover mapping using hyperspectral 

images. Figure 1-8 shows the relations between Chapters 2-4. The ultimate achievement 

of them is to obtain accurate and reliable ISA/land cover maps from hyperspectral images. 

Chapter 5 concludes the main findings from Chapters 2-4. 

 

Figure 1-8:  Relationship among the three sub-studies. 
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2 Evaluation of unmixing methods for simulated EnMAP hyperspectral 

imagery 

The distribution of impervious surface area (ISA) is an important input in a wide range of 

urban ecosystem studies, including urban hydrology, urban climate, land use planning, 

and resource management (Arnold Jr and Gibbons 1996, Voogt and Oke 2003, 

McKinney 2008, Wolch, Byrne and Newell 2014). Remote sensing has been playing a 

key role in ISA mapping. To date, the majority of ISA mapping literatures used 

multispectral sensors, for example MODIS, Landsat ETM+, and QuickBird, etc. Thus, 

more efforts have been oriented to spatial heterogeneity and much less effort has been 

devoted to spectral diversity (Weng 2012). It may due to the lack of economic, timely, 

and global hyperspectral data. The future launch of EnMAP (Environmental mapping and 

Analysis Program) hyperspectral satellite in 2019 provides new opportunities for ISA 

mapping (Kaufmann et al. 2006, Guanter et al. 2015). Although hyperspectral sensors 

have been studied for more than three decades, most mature hyperspectral sensors are 

mounted on airplanes: FLI and CASI (Gower et al. 1992), AVIRIS (Vane et al. 1993), 

Hydice (Rickard et al. 1993), HyMap (Cocks et al. 1998), etc. The only three active 

hyperspectral satellites are NASA’s Hyperion (Pearlman et al. 2003), NASA’s HICO 

(Corson et al. 2008), and ESA’s CHRIS (Barnsley et al. 2004). However, the CHRIS and 

HICO are limited to the visible to near-infrared (VNIR) region (400-1400 nm), and 

Hyperion has a low signal-to-noise ratio, which limits its feature detection capabilities. 

Therefore, the EnMAP mission is a milestone towards a comprehensive hyperspectral 

observation from space (Guanter et al. 2015). The designed EnMAP hyperspectral sensor 

has a 30 m spatial resolution and its spectral range is between 420 and 2450 nm with a 

spectral sampling distance varying between 5 and 12 nm. The global revisit capability of 

EnMAP hyperspectral satellite is 21 days. The potential of using EnMAP images in urban 

environments has been extensively discussed by Heldens et al, 2011, and ISA mapping 

has been recognized as one of the great strengths of the EnMAP hyperspectral sensor 

(Heldens et al. 2011). 
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2.1 Background 

2.1.1 Previous studies on EnMAP 

An EnMAP end-to-end simulation tool (EeteS) was designed by Segl et al. (Segl et al. 

2012) for calibrating the fundamental instrument parameters, developing the data pre-

processing steps, and evaluating the exploitable algorithms. The EeteS software simulates 

EnMAP images using reflectance data that has spectrally and spatially oversampled 

resolution than the EnMAP final sampling interval. To date, 18 publications have used 

the simulated EnMAP images for various earth observation applications (Braun, Weidner 

and Hinz 2012, Okujeni, van der Linden and Hostert 2015, Rogge et al. 2014, Schwieder 

et al. 2014, Suess et al. 2015, Yokoya, Chan and Segl 2016, Locherer et al. 2015, 

Marcinkowska-Ochtyra et al. 2017, Fassnacht, Weinacker and Koch 2011, Lehnert et al. 

2014, Dotzler et al. 2015, Steinberg et al. 2016, Clasen et al. 2015, Malec et al. 2015, 

Leitão et al. 2015, Xi et al. 2015, Siegmann et al. 2015, Mielke et al. 2014) (Table 1), 

most of which target natural or agricultural environments and only one is in urban 

environments. In order to produce classification maps or predict certain geographic 

features, 14 of the publications used the endmembers or training samples obtained from 

other high-resolution images or existed reference data. Only four publications extracted 

endmembers directly from simulated EnMAP images, but they are large-scale studies in 

natural environments, where land cover changes less rapidly than in urban environment. 

The reason why we want to extract endmembers directly from remote sensing imagery is 

that field/lab reference data is acquired under different conditions from the airborne or 

spaceborne data and can cause errors in following analyses. 
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Table 2-1: Publications on the application of simulated EnMAP images. 

Year Authors Applications Endmember extraction 

methods/ training sample 

sources 

Methods 

2017 Marcinkowska-
Ochtyra, et. al. 

Per-pixel vegetation 
classification in subalpine 

and alpine areas. 

Field survey reference map 
and pixel purity index (PPI) 

from the airborne APEX 

images. 

 

Support vector machines (SVM). 

2016 Yokoya, et. al. Sub-pixel geologic material 

classification in temperate 
bare rock area. 

Vertex component analysis 

(VCA) and visual inspection 
from reference image. 

Coupled nonnegative matrix 

factorization (CNMF) fusion (Yokoya, 
Yairi and Iwasaki 2012) and multiple 

endmember SMA (MESMA) (Roberts 

et al. 1998b). 

 

2016 Steinberg, et. al. 

 

Predict common surface soil 

properties 

 

Ground truth measurements. Partial least squares regression (PLSR) 

(Oldenburg, Schmidtlein and 

Feilhauer). 

2015 Okujeni, et. al. Sub-pixel land cover 

classification in urban-rural 

gradient area. 

 

Reference spectral library 

from airborne HyMap images. 

 

Support vector regression (SVR) 

(Okujeni et al. 2013). 

2015 Suess, et. al. Per-/sub-pixel shrub cover 
abundance classification. 

Manually selected from 
simulated EnMAP images. 

 

Support vector classification (SVC) 
and adapted SVC (classification). 

 2015 Clasen, et. al. Sub-pixel forest crown 

classification. 

 

Field survey measurements. MESMA. 

2015 Malec, et. al. Sub-pixel soil degradation 

cover abundance 
classification. 

Extracted from the EnMAP 

image using updated spatial 
spectral endmember 

extraction tool (SSEE) method 

(Rogge et al. 2012). 

 

MESMA. 

2015 Leitão, et. al. Predict shrub cover 
abundance classification. 

 

Reference map. Boosted regression tree (BRT) (Elith, 
Leathwick and Hastie 2008). 

2015 Locherer, et. al. Predict leaf area index (LAI) 
during agriculture growing 

season. 

 

Field survey measurements. Look-up-table based inversion of the 
PROSAIL model. 

2015 Siegmann, et. al. Predict LAI in wheat field. Field survey measurements. Ehlers fusion and PLSR. 

2015 Xi, et. al. Predict phytoplankton 
taxonomic groups 

Lab measurements. Similarity index and hierarchical 
cluster analysis. 

 
2015 Dotzler, et. al. 

 

Predict drought stress 

phenomena in deciduous 

forest communities. 

 

Reference map. Analyses of variance (ANOVA), and 

Tukey’s HSD post-hoc tests using 

drought-sensitive spectral indices. 
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Year Authors Applications Endmember extraction 
methods/ training sample 

sources 

Methods 

2014 Rogge, et. al. Sub-pixel geologic material 

classification in subarctic 
bare rock area. 

 

Extracted from the EnMAP 

image using updated SSEE 
method. 

 

Iterative SMA (ISMA) (Rogge et al. 

2006) 

2014 Schwieder, et. al. Sub-pixel shrub cover 
abundance classification. 

Reference map. SVR (Karatzoglou, Meyer and Hornik 
2005), random forest regression (RF) 

(Liaw and Wiener 2002), and PLSR 

(Wehrens and Mevik 2007). 

 2014 Lehnert, et. al. 

 

Sub-pixel classification of 
rangeland degradation in the 

Tibetan Plateau and predict 

chlorophyll content. 

 

Field survey measurements. Linear SMA and PLSR. 

2014 Mielke, et. al. Predict secondary iron 

bearing minerals 

 

Field survey measurements. Iron feature depth (IFD) (Mielke et al. 

2014). 

2012 Braun, et. al. Per-pixel land cover 

classification in alpine 
foreland and irrigation 

agriculture area. 

Manually selected from 

simulated EnMAP images. 

SVM, import vector machines (IVM) 

(Zhu and Hastie 2005), and relevance 
vector machines (RVM) (Tipping and 

Faul 2003). 

 2011 Faßnacht, et. al. Predict tree-covered areas. Reference map. Extended NDVI (normalized 

difference vegetation index). 

2.1.2 Previous studies on spectral mixture analysis 

Pixels in EnMAP images with 30 m spatial resolution are expected to be highly mixed, 

especially in urban scenes. Spectral unmixing is designed for this problem. The spectral 

mixture analysis (SMA) is one of the mostly used spectral unmixing method. The SMA 

process usually consists of two steps: endmember extraction and abundance 

quantification. The traditional geometry-based endmember extraction methods (e. g. N-

Findr, pixel purity index (PPI), and vertex component analysis, etc.) only search for the 

endmember in the original image and their success heavily depend on the abundant 

presence of pure pixels (Bioucas-Dias et al. 2012). Thus, the geometry-based endmember 

extraction methods may encounter difficulty when working with EnMAP imagery of 30m 

spatial resolution, which have limited endmembers in the original image. The statistical 

methods are potential alternatives to deal with the lack-of-pure-pixel situation (Ma et al. 

2014) and the independent component analysis (ICA) is a widely-used method 

(Nascimento and Dias 2005). The ICA uses the statistical characteristics of hyperspectral 
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data to identify the potential endmember. However, a key assumption in ICA that the 

abundance matrix is statistically independent is compromised due to the sum-to-one and 

nonnegativity constraint on the abundance matrix in the SMA (Nascimento and Dias 

2005). 

Another rising group of SMA methods based on nonnegative matrix factorization (NMF) 

addresses both the problems of lack-pure-pixel and statistical dependency. The NMF has 

been successfully applied in hyperspectral image SMA over the past 10 years. The NMF 

is based on the algebraic feature of images (Miao and Qi 2007). Because of the often 

found nonnegativity in the underlying models, Paatero and Tapper first suggested the 

positive matrix factorization in 1994 for dimension reduction (Paatero and Tapper 1994). 

The NMF method factorizes the original data matrix V into one basis matrix W and one 

encoding matrix H. The fundamental NMF equation (Equation (2-4)) is analogous to the 

SMA objective function, by reinterpreting base matrix W and encoding matrix H 

separately as endmember and abundance matrix. The solution space of the NMF method 

is in the entire nonnegative space, which is larger than the original image. Thus, the NMF 

method can find the endmember that do not exist in the original image. Figure 2-1 shows 

the advantages of NMF method over the geometry-based method. At the left side, in 

spectral space, the light blue area represents the image simplex. Only one of the three true 

endmembers E3 exists in the image simplex. As the geometry-based endmember 

extraction methods can only locate the pixels in the image simplex as endmemebrs, the 

mixed pixels M1 and M2 may be selected by the geometry-based endmember extraction 

methods as endmemebrs. At the right side, the solution space of the NMF in light orange 

color is much larger than the original image space in light blue, which makes it possible 

to find true endmembers E1 and E2 that are outside of the image simplex. 
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Figure 2-1: Original image simplex and solution space. 

However, with only the nonnegativity constraint, the solution space of the NMF is very 

large and prone to inefficient convergence. To address this defect, multiple extensions of 

the NMF have been proposed: symmetric NMF, semi-NMF, non-smooth NMF, and 

multilayer NMF (Cichocki et al. 2009). Among different extensions, three are very 

suitable for the task of SMA, as they accurately depict certain characteristics of the 

hyperspectral imagery. They are sparse, minimum volume, and nonlinearity extensions. 

In details, the sparse NMF (sNMF) put the constraint (Bioucas-Dias et al. 2012, Lu et al. 

2013) on the abundance matrix accounts for the fact that in one image most of the pixels 

are mixtures of only a few of the endmembers, instead of using all the reference 

endmembers . It prefers the sparse abundance matrix (H) with a lot of zero entries. For 

example shown in Figure 2-2, the whole image area has eight different endmembers 

listed at left. However, each pixel in the image is not likely to have all the eight land 

covers, but only a few of them. This will lead to a lot of zeros in the abundance matrix. 
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Figure 2-2: Sparse abundance matrix. 

The minimum volume NMF (vNMF) has the constraint working on the endmember 

matrix (W) through minimization of the simplex volume determined by the endmembers 

among all possible simplexes that circumscribe the data scatter space (Miao and Qi 2007). 

This constraint is based on one effective endmember extraction criterion that the vertices 

of a minimum-volume simplex enclosing all the observed pixels should serve as high-

fidelity estimates of the endmembers (Craig 1994). In other words, the selected 

endmembers should not be too far away from the original image space. In Figure 2-3, the 

green simplex on the left is circumscribed by the preferred endmembers; while the red 

simplex on the right though encloses all the image pixels does not serve as high-fidelity 

estimates of the endmembers, as the vertices are too far away from the original image 

area.  
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Figure 2-3: Left: preferred solution; Right: not preferred solution simplex. 

In the end, the traditional NMF is under a linear mixture framework. The linear spectral 

mixture analysis works well in most of the situations, when the incident radiation is 

directly reflected back to the sensor. In some complicated situations shown in Figure 2-4, 

second-order scattering happens as the red line, when the incident radiation first hit the 

tree, then the soil beneath and in the end back to the sensor. Then, the received 

reflectance by the sensor is not a linear combination of the existed endmembers in that 

pixel. The robust nonlinear NMF (rNMF) (Févotte and Dobigeon 2015) introduces an 

additional term to address possible nonlinear effects. 

 

Figure 2-4: Nonlinear effect (Yokoya, Chanussot and Iwasaki 2014). 
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Furthermore, although the NMF-based methods simultaneously obtained the endmembers 

and abundance matrix, the current NMF studies focus more on the resulting endmembers 

than the resulting abundance matrices. 

2.2 Objective 

The main objective of Chapter 2 is to find the appropriate image processing methods for 

ISA mapping using the new hyperspectral satellite EnMAP image. Corresponding to the 

objective, the following research questions are the focus of Chapter 2: 

(1) Among the currently available SMA methods: geometry-, statistic-, and algebra-based 

methods, which one is suitable for EnMAP ISA mapping? 

(2) Compared to the airborne high spatial resolution hyperspectral image, how does the 

EnMAP perform? 

(3) Are the abundance maps directly obtained from the algebra-based methods usable? 

(4) What differences can be found between the variations of the algebra-based methods? 

(5) How can the research results help the current ISA mapping study? 

2.3 Methods 

2.3.1 Hyperspectral subspace identification 

For most of the endmember extraction methods, the number of wanted endmembers 

remains an important input. The decision on this number is part of the problem called 

hyperspectral subspace identification or virtual dimensionality (VD). This number closely 

relates to the intrinsic dimensionality of remote sensing imagery. If the set number is too 

small, the selected endmembers may still be mixtures of several materials, and if the set 

number is too large, the selected endmembers may be strongly affected by noise (Luo et 

al. 2013). One popular method that solves this problem is the Harsanyi–Farrand–Chang 

method (HFC) proposed by Chang and Du in 2004 (Chang and Du 2004). The HFC is 
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defined by the minimum number of spectrally distinct signal sources, which characterizes 

the hyperspectral image from the perspective view of target detection and classification 

(Chang and Du 2004). The difference between the eigenvalues of the correlation matrix 

𝑅𝐿×𝐿 and covariance matrix 𝐾𝐿×𝐿 of the image is used to detect whether a signal source is 

present in a specific dimension. The Neyman-pearson detection theory is applied in HFC 

to judge the hypotheses of zero difference (𝐻0) between the mentioned eigenvalues and 

positive difference (𝐻1) between them. If 𝐻1  is true, it means that an endmember is 

contributing to the correlation eigenvalue in addition to noise. It is because by assuming 

that signal sources are nonrandom unknown positive constants and noise is white with 

zero mean, the equations below can be expected (Chang and Du 2004): 

 𝜆̂𝑙 > 𝜆𝑙, for 𝑙 = 1, … , 𝑉𝐷 and 

 𝜆̂𝑙 = 𝜆𝑙, for 𝑙 =  𝑉𝐷 + 1, … , 𝐿, 

(2-1) 

where λ̂l  is the lth eigenvalue of 𝑅𝐿×𝐿 ; and 𝜆𝑙  is the lth eigenvalue of KL×L . The 

probability of the hypothesis is made using the false-alarm probability and detection 

power. The HFC algorithm used in this research is from the Endmember Induction 

Algorithms toolbox, created by the Computational Intelligence Group of University of 

the Basque Country (Computational Intelligence Group). 

2.3.2 Endmember extraction and spectral mixture analysis 

The remote sensing imagery with medium spatial resolution, like EnMAP imagery, faces 

the mixed pixel problem. To solve this problem, spectral unmixing was proposed in the 

early 1980s (Dozier 1981), and has since been widely adopted, especially in 

heterogeneous urban environment (Powell et al. 2007, Roberts et al. 1998a, Wu and 

Murray 2003, Liu et al. 2004). The spectral unmixing method models the reflectance 

value of the target pixel from more than one endmember. Before performing the spectral 

unmixing, one needs a group of endmembers as input. This research applied three 

traditional and four NMF-based endmember extraction methods: N-Findr, PPI (pixel 

purity index), ICA (independent component analysis), NMF (nonnegative matrix 
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factorization), sNMF, vNMF, and rNMF. The rest of this section explains each of the 

methods in detail. 

The N-Findr was originally proposed by Winter et al. in 1999. This method automatically 

finds the extreme points of an n-dimensional scatter plot by finding the simplex of the 

maximum volume that can be inscribed within the hyperspectral data set (Winter 1999). 

The initialization of N-Findr is to randomly select pixels as endmembers, which are put 

into a matrix E. A trial volume is calculated for E by the equation (Plaza et al. 2004, 

Winter 1999): 

 𝑉(𝐸) =
1

(𝐸−1)!
𝑎𝑏𝑠(|𝐸|). (2-2) 

The initial volume estimate will be refined through iteration. Every pixel in the image 

will be sequentially put into matrix E to replace an original endmember. Then, the 

volume of the new matrix will be calculated. The new pixel replaces the original 

endmember and stays in the matrix when the replacement results in a volume increase. 

This procedure is repeated until no replacements of endmembers are left (Winter 1999). 

The PPI was initially proposed by Boardman et al. in 1995 (Boardman, Kruse and Green 

1995), and this was when the concept of pixel purity was created. The pixel purity value 

is evaluated in a way that extreme pixels achieve higher scores. Thus, pure pixels have a 

high pixel purity value and mixed pixels have a low pixel purity value. The PPI is 

computed by repeatedly projecting n-Dimension scatter plots on a set of random unit 

vectors called skewers. During the computation, the PPI algorithm records the extreme 

pixels in each projection (the pixels that fall onto the ends of the unit vector) and notes 

the total number of times each pixel is marked as extreme. These counts have been 

associated with pixel purity using a convex geometry argument: a larger count means a 

purer pixel (Boardman 1993). A pixel purity image is created where each pixel value 

corresponds to the number of times that pixel was recorded as extreme. The result of PPI 

algorithm heavily depends on the randomly generated initial set of skewers. Since this 

initial skewer set is randomly generated, the final results of PPI fails to be consistent and 

reproducible (Chang, Wu and Chen 2010). 
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The N-Findr and PPI methods only search endmembers from the original data. When the 

pure pixel in the image is limited, these two methods may fail. The statistical method 

ICA provides a solution. The ICA was originally proposed by Hyvärinen and Oja in 1997 

(Hyvärinen and Oja 2000). It is a blind source separation method that aims to solve both 

the mixing matrix 𝐴 and the source matrix 𝑠 from the observed matrix 𝑥: 

 𝑥 = 𝐴𝑠. 

 

(2-3) 

In order to solve this problem, the ICA algorithm applies statistical independency as a 

criterion on the source matrix. The aim of ICA is to find a linear representation of 

nongaussian data so that the components are statistically independent, or as independent 

as possible. Mathematical proof has been given to justify that independency of a variable 

is equivalent to its nongaussianity (Hyvärinen and Oja 2000). Thus, the ICA algorithm: 

FastICA adopts a fixed-point iteration scheme to maximize the nongaussianity of the 

components in source matrix. The fundamental equation (Equation (2-3)) of ICA fits the 

hyperspectral spectral unmixing problem when taking the mixing matrix as endmember, 

source matrix as abundance, and observed matrix as original image. Wang and Chang 

(Wang and Chang 2006) have proposed a complete process of using ICA to 

simultaneously solve endmember and abundance and achieved great results. However, 

the sum-to-one and nonnegativity constraints on abundance matrix violate the mutually 

independent assumption in ICA. As a result, these constraints are added through 

normalization, which is not a fully constrained approach.  

On the contrary, the NMF-based SMA methods naturally embrace the nonnegativity 

constraint. They also simultaneously calculate the endmember and abundance matrices. 

Although the cost function of the NMF-based methods is nonconvex, various additional 

constraints improve the performance of NMF-based methods. The task of the NMF is to 

find an approximate factorization: 

 𝑉 ≈ 𝑊𝐻, (2-4) 

where V is the original image with a dimension of l×n; W is the endmember matrix with 

a dimension of  l×k ; H is the abundance matrix with a dimension of k×n ; and k is the 
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number of wanted endmembers given by HFC. The difference between V and WH is 

measured by an adjusted Kullback-Leibler divergence in this paper (Févotte and 

Dobigeon 2015): 

  D(A||B) = ∑ (Aijlog
Aij

Bij
-Aij + Bij)ij . (2-5) 

The Kullback-Leibler divergence is a non-symmetric difference measure between two 

matrices, measuring the divergence of matrix A from matrix B by assessing the 

information lost when A is used to approximate B. The NMF algorithm aims to minimize 

the difference between the original matrix and the reproduced matrix: 

  minimize f(W, H) = D(V ∥ WH). (2-6) 

To achieve this goal, the algorithm iteratively updates the endmember and abundance 

matrices using a multiplicative update rule (Févotte and Dobigeon 2015): 

 𝐻𝑎𝜇 ← 𝐻𝑎𝜇
∑ 𝑊𝑖𝑎𝑉𝑖𝜇/(𝑊𝐻)𝑖𝜇𝑖

∑ 𝑊𝑘𝛼𝑘
, 

𝑊𝑖𝑎 ← 𝑊𝑖𝑎
∑ 𝐻𝑎𝜇𝑉𝑖𝜇/(𝑊𝐻)𝑖𝜇𝜇

∑ 𝐻𝑎𝑣𝑣
. 

(2-7) 

This update is proven to keep the divergence non-increasing and converging during the 

iteration (Zhou, Peng and Chen 2015) and the derivation of the converging rule can be 

found in the Appendix B. The start W and H are randomly generated positive matrices 

and keep positive during the multiplicative update. In the case of SMA, an additional 

sum-to-one constraint is needed for the abundance matrix H. This study adopted the 

variable substitution approach, which guarantees that the constraint is fulfilled (Arngren, 

Schmidt and Larsen 2011). The standard NMF process for SMA is shown in the Figure 2-

5 below. 
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Figure 2-5: Nonnegative matrix factorization algorithm flowchart. 

In order to include other specific constraints in NMF process, the most common way is to 

add loss function to the original objective function. The loss functions are usually 

determined by the regularization of either W or H. In the case of sNMF, a regularization 

term of abundance matrix H is added to Equation (2-6) and the new objective function 

becomes: 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑊, 𝐻) = 𝐷(𝑉 ∥ 𝑊𝐻) + 𝛼 ∥ 𝐻 ∥1, (2-8) 

where ∥ H ∥ is the L1 regularizer of H; and 𝛼 is the sparseness parameter. The update rule 

correspondingly changes to: 

 Haμ ← Haμ
∑ WiaViμ/(WH)iμi

(1+a) ∑ Wkak
. (2-9) 

The sparseness parameter α  is a key value, as it controls the impact of the sparse 
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constraint, where a larger value means greater force on the sparse constraint. Besides the 

fact that this parameter is dependent on the sparseness of the abundance matrix, the value 

of the sparseness parameter works implicitly in the objective function. Some studies 

(Qian et al. 2011, Lu et al. 2013) estimate the sparseness parameter according to the 

sparseness criteria in (Hoyer 2004): 

 𝛼 =
1

√𝐿
∑

√𝑁−∥𝑥𝑙∥1/∥𝑥𝑙∥2

√𝑁−1𝑙 , 
(2-10) 

where 𝐿 is the number of bands; 𝑁 is the number of pixels; 𝑥𝑙 is the given hyperspectral 

data at band l;  ∥ xl ∥1 is the L1 regularizer; and ∥ xl ∥2 is the L2 regularizer. This study 

refers to Equation (2-10) to obtain the potential sparseness parameter 𝛼. In addition, this 

study tests eight other parameters (0.01, 0.1, 0.2, 0.5, 0.7, 1, 5, and 10) as the sparseness 

parameters in order to test the sensitivity of sNMF on the parameter. 

In the case of vNMF, methods that directly measure volume often use determinant as 

their regularization on the endmember matrix (W) (Miao and Qi 2007, Schachtner et al. 

2009). However, when the regularization is strong, the K-dimensional volume will 

collapse to a (K-1)-dimensional subspace and volume becomes zero, causing a 

regularization failure. To avoid this defect, a Euclidean distance measure constraint on 

the endmember matrix (W) is proposed (Arngren et al. 2011): 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑊, 𝐻) = 𝐷(𝑉 ∥ 𝑊𝐻) + 𝛽𝐽𝑤(𝑊), 

𝐽𝑤
𝑑𝑖𝑠𝑡(𝑊) = ∑ ∥ 𝑤:𝑘 −

1

𝐾
∑ 𝑤𝑘′

𝐾
𝑘′ ∥2.

2𝐾
𝑘=1 , 

(2-11) 

where 𝛽 is the distance parameter;  ∥ w:k-
1

K
∑ wk'

K
k' ∥2.

2  is the 𝐿^2 regularizer (Euclidean 

distance); and 
1

K
∑ wk'

K
k'  denotes the center of the current selected endmembers. The 

distance parameter controls the impact of the distance constraint. To the best of our 

knowledge, among current studies concerning the minimum-volume NMF, no 

illustrations on how to select this parameter can be found, except that the distance 

parameter is usually between 0 and 1 (Arngren et al. 2011, Miao and Qi 2007). Therefore, 
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we tried eight distance parameters: 0.01, 0.1, 0.2, 0.5, 0.7, 1, 5, and 10, in order to 

provide some insights. 

Lastly, the rNMF method adds a residual term to the standard NMF factorization 

Equation (2-4) accounting for the outlier caused by nonlinear spectral effects (Févotte 

and Dobigeon 2015): 

  V ≈ WH + R ,  (2-12) 

where R is the residual matrix. Then the objective function is changed to: 

 minimize f(W, H) = D(V ∥ WH + R) + γ ∥ R ∥2., (2-13) 

where  γ is the nonlinearity parameter;  ∥ R ∥2.  is the 𝐿^2 regularizer. The nonlinearity 

parameter controls the impact of the nonlinearity constraint. Févotte and Dobigeon 

(Févotte and Dobigeon 2015) proposed a method to estimate the potential nonlinearity 

parameter value based on results in (Lee et al. 2010): 

 γ =
C

μ̂
, 

𝐶 =
2

√𝜋
∙

Γ(
𝑘

2
+1)

Γ(
𝑘

2
+

1

2
)
, 

(2-14) 

where Γ is Gamma function; 𝑘 is the number of wanted endmembers given by HFC; 𝑙 

and 𝑛 are separately the spectral band number and pixel number of the image. This study 

refers to Equation (2-14) to obtain the potential nonlinearity parameter. However, in 

(Févotte and Dobigeon 2015), it is specifically pointed out that Equation (2-14) is only a 

convenient gross estimation without statistical guarantee. Therefore, we tried eight more 

nonlinearity parameters: 0.01, 0.1, 0.2, 0.5, 0.7, 1, 5, and 10. Using iteration, the 

endmember, abundance, and residual matrices are sequentially updated. The endmember 

and abundance matrices update rule are listed in Equation (2-7). The residual update rule 

is as below (Févotte and Dobigeon 2015): 

 𝑅𝛼𝜇 → 𝑅𝛼𝜇
∑ 𝑉𝑖𝜇/(𝑊𝐻)𝑖𝜇𝑖

𝑊𝐻𝑖𝜇
−1+𝜆

𝑅𝛼𝜇

∥𝑅𝛼𝜇∥2

,, (2-15) 
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2.3.3 Abundance quantification 

This study uses the multiple endmember SMA (MESMA) to calculate the abundance 

matrix for the endmembers derived from N-Findr, PPI, and ICA methods. The MESMA 

is an extension of the traditional SMA by allowing the number and types of endmembers 

to vary on a per-pixel basis (Roberts et al. 1998a). It overcomes the limitations of SMA 

by requiring a model to meet minimum fit and fraction and residual constraints while 

testing multiple models for each image pixel. MESMA is typically implemented by 

developing a spectral library, then unmixing an image using every possible combination 

of two, three and four endmembers applied to each pixel (Roberts et al. 1998a). The 

VIPER Tools, a plugin for ENVI, developed in Dr. Dar Robert’s lab at University of 

California, Santa Barbara (UCSB) Geography Department provides the MESMA method 

and is used in this study. 

2.3.4 Evaluations 

This research separately assessed the estimated endmembers and the predicted abundance 

matrices. We calculated the spectral angle distance (SAD) between each estimated 

endmember and reference spectra. The SAD is the cosine of the spectral angle formed by 

n-dimension vectors: 

  SAD = cos-1(
aTâ

∥a∥∥â∥
) ,  (2-16) 

where 𝑎  is a reference endmember vector; 𝑎̂  is an estimated endmember vector. This 

measurement is invariant before unknown multiplicative scaling that relates to 

differences in illumination and angular orientation. As the estimated endmember is 

assigned with the land cover whose reference spectrum has the smallest SAD from the 

estimated endmember, current literatures often used the minimum SAD to evaluate 

extracted endmembers: smaller the minimum SAD means better quality of the extracted 

endmembers. This research found that the estimated endmember with smaller minimum 

SAD value also has smaller median SAD values with other reference spectra, indicating a 

smaller SAD with other reference spectra. A good endmember of significant spectral 
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signature should be close to the target reference spectrum and be far from other reference 

spectra. Thus, we also considered the median SAD in our evaluation. 

To evaluate the abundance matrix, the research used two commonly used indexes: the 

Pearson correlation coefficient of the linear regression model between the reference and 

predicted ISA percentages, and the mean absolute difference (MAD) between the 

reference and predicted ISA percentages (Wang and Chang 2006, Hoyer 2004). In 

addition, the research proposed a new abundance matrix evaluation method: the overall 

accuracy of the dominant abundance classification. The NMF-derived abundance 

matrices were aggregated into ISA and pervious surface area abundance maps and 

compared with a reference ISA abundance map. For the simulated EnMAP image, the 

reference ISA abundance map was derived from the airborne CASI images. The airborne 

CASI images divided the studied area into 144 tiles, and each tile covers about 1.6𝑘𝑚 ×

1.6𝑘𝑚. We grouped the 144 tiles into 18 mosaic images corresponding to the 18 flight 

lines in order to lighten the workload of classifying individual tiles. In the same flight line, 

the condition during image capture is assumed to be consistent. The 18 mosaic images 

were first classified into 7 to 9 classes using the maximum likelihood, minimum distance, 

and spectral angle mapper per-pixel classification methods, among which the maximum 

likelihood method provides the best accuracy. The initial classification maps then 

aggregated into impervious/pervious surfaces. Five among the 18 mosaic reference 

classification maps were visually evaluated using 500 sample points for accuracy 

assessment. The classification overall accuracy range from 85.5% to 89.4%. The 

reference impervious and pervious surface abundance maps were calculated within 

squares of 30 × 30 CASI pixels, as each EnMAP pixel (30 m resolution) overlays with 

900 CASI pixels (1 m resolution) (Figure 2-6). For the Hydice image, the reference 

abundance matrix is available online (Zhu et al. 2014). For both of the reference 

impervious surface maps, the number of both pixels with larger than 99% and smaller 

than 1% imperviousness that can be considered as pure pixels are lower than 20%. Thus, 

the majority of the pixels are mixed pixels. 
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Figure 2-6: Generate reference map from the CASI image. 

A linear regression model is fitted to a sample set from the reference and predicted ISA 

abundance maps. The Pearson correlation coefficient R is used to evaluate the strength 

and direction of a linear relationship. It ranges from -1 to +1, where -1 suggests the 

strongest possible disagreement and +1 suggests the strongest possible agreement 

between the two variables. It is the abundance of the variation in dependent variable that 

is explained by the regression. For two variables X and Y, their correlation coefficient R 

can be derived from the equation below: 

 𝑅 =
𝑐𝑜𝑣(𝑋,𝑌)

𝜎𝑋𝜎𝑌
,  (2-17) 

where cov is the covariance; 𝜎𝑋 is the standard deviation of X; and 𝜎𝑌  is the standard 

deviation of Y. To test for reliability of the observed correlation, the P-value is calculated 
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for each Pearson correlation coefficients. The P-value is the probability that the observed 

correlation is in fact zero, also referred to as null hypothesis. It is done by the analysis of 

the frequency distribution of target value, in my case the correlation coefficient R. 

Normally, a P-value that equals to or is smaller than 0.05 is considered acceptable, as it 

indicates a less than 5% possibility of the null hypothesis.  

The correlation coefficient R reflects the correlation between two variables, while the 

MAD quantifying the predicting performance. It measures the mean absolute difference 

between two variables. For two variables X and Y each having n observations, their MAD 

can be derived using equation below: 

 𝑀𝐴𝐷 =
∑ 𝑥𝑖−𝑦𝑖

𝑛
𝑖=0

𝑛
.  (2-18) 

Many practical applications require ISA classification maps in addition to ISA abundance 

maps. Traditionally, classification problems often result in a predicted probability surface, 

which is then translated into a presence–absence classification map. Here, we replace the 

probability surface with ISA abundance maps. Then, this translation requires a choice of 

threshold above which the variable of interest is predicted to be present. The common 

threshold is 0.5. The results are 0/1 maps, where 0 means pervious surface and 1 means 

impervious surface. The overall accuracy was calculated as shown below: 

 OA =
𝑁𝑎

𝑁
, (2-19) 

where 𝑁𝑎 is the number of correctly classified pixel; and 𝑁 is the number of the total 

pixels in the image. 

2.4 Experiments and Results 

2.4.1 Study images 

The simulated EnMAP imagery used in this research was generated by Segl, using the 

EeteS (Segl et al. 2012). The original data that has been used to simulate EnMAP was 

obtained by the airborne sensor CASI-1500. The airborne CASI-1500 captured high 
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spatial resolution hyperspectral images in Surrey, BC, Canada, during April 2013. It 

contains 72 bands in VNIR portion (360nm to 1050nm) with a 9.6nm band interval. The 

spatial resolution of the imagery is 1m. The simulated EnMAP imagery has a 30m spatial 

resolution and 88 spectral bands covering from 420nm to 990nm. The waterbody in the 

study area was masked out using the waterbodies region map downloaded from the 

Scholars GeoPortal, a project of the Ontario Council of University Library. The final 

studied image is in a size of 806 by 585. After matricization and deletion of the no data 

pixel, there are 350555 pixels left for processing. The simulated EnMAP imagery is 

shown in Figure 2-7 with RGB combination. 

 

Figure 2-7: The simulated EnMAP image with RGB combination (Surrey, BC, 

Canada). 
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A real hyperspectral data is also included in this study: the Hydice urban test image. It 

was recorded by the Hydice sensor in October 1995, and is located in an urban area at 

Copperas Cove, TX, USA.  This image has been widely used in hyperspectral spectral 

unmixing studies (Zhu et al. 2014). It has a 2m spatial resolution. This image contains 

307 × 307  pixels and 210 wavelengths ranging from 400nm to 2500nm, resulting in a 

spectral resolution of 10nm. Due to dense water vapor and atmospheric effects, the 

channels 1-4, 76, 87, 101-111, 136-153 and 198-210 are often removed. The remaining 

162 channels are used in this research. The Hydice urban image is shown in Figure 2-8.  

 

Figure 2-8: Hydice urban image with RGB combination (Copperas Cove, TX, USA). 

2.4.2 Reference spectra 

The potential reference spectra for the simulated EnMAP image were carefully selected 

from the original CASI images through visual inspection and then further refined using 

three indices: endmember average RMSE (EAR), minimum average spectral angle 

(MASA), count based endmember selection (CoB). The basic idea of EAR is to model 

each pixel within one landcover class using every pixel in the same class and calculate 
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the endmember average RMSE (EAR) for each endmember. It can be expressed by the 

equation below (Dennison, Halligan and Roberts 2004): 

 𝐸𝐴𝑅𝐴𝑖,𝐴 =
∑ 𝑅𝑀𝑆𝐸𝐴𝑖,𝐴𝑗

𝑛
𝑗=1

𝑛 − 1
 (2-20)  

where A is one landcover class; n is the number of the endmembers in the potential 

endmember set from PPI; 𝐴𝑖 is ith endmember in this endmember set; 𝑅𝑀𝑆𝐸𝐴𝑖,𝐴𝑗
 is the 

RMSE when using endmember 𝐴𝑗 to model endmember 𝐴𝑖. Small EAR values mean the 

endmember is representative for that class, while large EAR value means that the pixel 

may be an outlier. The cut off threshold of EAR is an experienced value that can be 

derived from test. 

CoB is first proposed in 2003 and it is also based on the result of modelling endmembers 

using other potential endmembers (Roberts et al. 2003). With the result of modelling, the 

total number of spectra modeled within the class (in_CoB) and the total number of 

models outside of the class (out_CoB) when meet the set constraints are recorded for 

each model. The constraints include the fraction in equation (2) and RMSE. The optimum 

model is selected as the one that has the highest in_CoB value. 

MASA within a class is calculated as the average spectral angle between the reference 

spectrum and all other spectra within the same class. The best MASA candidate is 

selected as the one that produces the lowest average spectral angle. 

In total, 20 endmembers of 18 different land cover types were visually identified in the 

CASI images (Figure 2-9). They were resampled using the wavelength and FWHM (full 

width at half maximum) parameters of the EnMAP sensor. Since ISA is the main goal of 

this study, these land cover types were grouped according to the V-I-S and the extended 

V-I-S model (Table 2-2). The V-I-S model was proposed by Ridd (Ridd 1995) to address 

the challenge of the dramatic amount of heterogeneous materials in the urban 

environment. The extended V-I-S model was proposed by Okujeni, et al. (Okujeni et al. 

2015), especially for EnMAP data, as they found that the EnMAP data is able to map not 

only the basic V-I-S model but also the extended V-I-S model. The extended V-I-S 
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model differentiates vegetation into low vegetation and tree, and impervious surface into 

roof and pavement. In our research, the estimated endmembers from EnMAP were found 

to achieve best separability when representing more detailed land cover types, shown in 

the ‘Further extended V-I-S model’ of Table 2-2. 

 

Figure 2-9: Resampled reference endmembers manually selected from CASI images. 

 (upper: vegetation endmembers; bottom: soil and ISA endmembers) 
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Table 2-2: Reference spectra. 

V-I-S Extended V-I-S Further extended V-I-S Urban materials No. Spectra 

Vegetation High vegetation High vegetation Deciduous tree 1 

   Coniferous tree 1 

 Low vegetation Manicured grass Intensively manicured grass 1 

   Extensively manicured grass 1 

   Sparse/dry grass 1 

  Planted agricultural land Newly planted agriculture land 1 

   Medium grown agriculture land 1 

   Fully grown agriculture land 1 

Impervious Roof White roof Gloss paint 1 

   Unknown 1 

  Red roof Red bricks 2 

   Red shingle 1 

  Dark roof Black gloss 1 

   Galvanized steel  1 

   Steel metal 1 

 Pavement Asphalt Asphalt 2 

  Concrete Concrete 1 

Soil Soil Soil Soil 1 

The reference spectra for the Hydice image are available online (Zhu et al. 2014) and are 

shown in Figure 2-10. 

 

Figure 2-10: Reference endmembers for Hydice urban image. 
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2.4.3 Extracted endmember 

The subspace of the simulated EnMAP image was found to be 27 by the HFC method, 

which is used as the target dimension in the SMA. The reason we did not choose to use 

the number 18 (the number of visually interpreted land cover types) is because the visual 

interpretation is based on CASI images not the simulated EnMAP image. For the 

simulated EnMAP image, the sparseness parameter determined by Equation (2-11) was 

0.9 and the nonlinearity parameter determined by Equation (2-15) was 0.003. In total, the 

N-Findr, PPI, ICA, NMF, sNMF, vNMF, and rNMF SMA methods with different 

constraint parameters on the added constraints composed 30 experiments on the 

simulated EnMAP image: N-Findr, PPI, ICA, NMF, sNMF(0.9), sNMF (0.01), sNMF 

(0.2), sNMF (0.5), sNMF (0.7), sNMF (1), sNMF (5), sNMF (10), vNMF(0.01), vNMF 

(0.1), vNMF (0.2), vNMF (0.5), vNMF (0.7), vNMF (1), vNMF (5), vNMF (10), rNMF 

(0.003), rNMF (0.01), rNMF (0.1), rNMF (0.2), rNMF (0.5), rNMF (0.7), rNMF (1), 

rNMF (5), and rNMF (10), where the value in the parenthesis is the used constraint 

parameter. The derived 30 sets of estimated endmembers were separately compared with 

the 20 resampled reference spectra, resulting in 30 SAD (spectral angle distance) 

matrices. For the reference spectra that have similar spectral shapes (e.g. reference soil 

spectrum and several impervious reference spectra: red roof, asphalt and concrete), it was 

risky to assign the land cover types based on one SAD. Thus, this research grouped 

reference spectra based on their land cover types and used the average SAD within each 

group to assign a land cover group type to the estimated endmembers. We first tried to 

group the reference spectra according to the V-I-S and the extended V-I-S models (Table 

2-2). Both of these models failed to provide satisfactory results. Specifically, the V-I-S 

model and the extended V-I-S model grouped a wide range of impervious types together 

and averaged their SAD. Because different ISAs have very different spectral signatures, 

by averaging their SADs, their particular small SAD may be lost. In the results, the land 

cover type assignments tended to incorrectly assign soil to impervious endmembers. 

Therefore, we further partitioned the extended V-I-S model, by separating the roofs to 

bright, red, and dark roofs, and separating the pavement to asphalt and concrete (‘Further 

extended V-I-S model’ column in Table 2-2). In the results, we found that the soil and 
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ISA can be better separated. We averaged the 30 SAD matrices according to the 9 

categories. The land cover types of the EnMAP estimated endmembers were assigned to 

the category with the smallest average SAD value. 

In the case of the Hydice urban image, the HFC method calculated 5 as the subspace 

number, which was practicable as the reference data provided a 5-endmember (asphalt 

road, grass, tree, roof, and soil) ground truth set (Figure 2-6). For the Hydice urban image, 

the sparseness parameter determined by Equation (2-11) is 1.9 and the nonlinearity 

parameter determined by Equation (2-15) is 0.01. Therefore, the N-Findr, PPI, ICA, NMF, 

sNMF, vNMF, and rNMF SMA methods with different constraint parameters on the 

added constraints composed 29 experiments on the Hydice urban image: N-Findr, PPI, 

ICA, NMF, sNMF(1.9), sNMF (0.01), sNMF (0.2), sNMF (0.5), sNMF (0.7), sNMF (1), 

sNMF (5), sNMF (10), vNMF(0.01), vNMF (0.1), vNMF (0.2), vNMF (0.5), vNMF (0.7), 

vNMF (1), vNMF (5), vNMF (10), rNMF (0.01), rNMF (0.1), rNMF (0.2), rNMF (0.5), 

rNMF (0.7), rNMF (1), rNMF (5), and rNMF (10), where the value in the parenthesis is 

the used constraint parameter. The derived 29 sets of estimated endmembers were 

separately compared with the five reference spectra. In the resulting SAD matrices, we 

found that the single SAD value between each estimated endmember and each reference 

endmember can successfully identify the land cover types, without any regroup process. 

The ICA and rNMF (0.2) experiments did not find any impervious endmembers. Thus 

this experiment cannot further produce any ISA abundance maps or ISA classification 

maps. 

The endmember SAD results are in Table 2-3 for the simulated EnMAP image and in 

Table 2-4 for the Hydice image. The minimum and median SAD values and their 

difference within each SAD matrix are shown. As mentioned before, good endmembers 

with significant spectral signatures should be close to the target reference spectrum and 

far from other reference spectra, which means smaller minimum values, larger median 

values, and larger differences between the two. For the constrained NMF methods, only 

the SAD results with the maximum differences between the minimum and median SAD 

values are shown. It can be noticed that in both test images the NMF-based method 
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achieved better endmembers with larger differences SAD values and the constrained 

NMF performed better than the traditional NMF. 

Table 2-3: Average minimum/median/difference spectral angle distance values 

(EnMAP). 

Average 

SAD 

N-Findr PPI ICA NMF sNMF 

(0.01) 

vNMF 

(5) 

rNMF 

(5) 

Minimum 0.11 0.13 0.10 0.19 0.12 0.13 0.13 

Median 0.45 0.45 0.41 0.55 0.55 0.57 0.56 

Difference 0.34 0.33 0.31 0.36 0.43 0.44 0.43 

Table 2-4: Average minimum/median/difference spectral angle distance values 

(Hydice). 

Average 

SAD 

N-Findr PPI ICA NMF sNMF 

(0.1) 

vNMF 

(10) 

rNMF 

(10) 

Minimum 0.29 0.30 0.18 0.12 0.16 0.13 0.16 

Median 0.74 0.78 0.59 0.57 0.67 0.56 0.68 

Difference 0.45 0.48 0.41 0.45 0.51 0.43 0.52 

2.4.4 ISA abundance and classification maps 

With the estimated endmembers identified, we aggregated the corresponding abundance 

matrices to generate ISA abundance maps. For the simulated EnMAP image, the 

reference impervious abundance map was derived from the original CASI images. For 

the Hydice urban image, the reference abundance map was available online (Zhu et al. 

2014). Then, we randomly selected 500 pair-samples from the predicted and reference 

ISA abundance maps. In order to evaluate the predicted ISA abundance maps, linear 

regression models were fitted to the scatter plot of reference and predicted ISA 

abundance. The correlation coefficients of the fitted linear regression model are listed in 

Table 2-5 (EnMAP) and 2-6 (Hydice), where the value in the parenthesis after the SMA 

method is the used constraint parameter. In the original results derived from NMF-based 

methods, the predicted ISA abundance maps greatly underestimated the ISA abundance, 

when the linear regression slopes are around 0.5, much less than 1. Thus, normalizations 

have been performed. 
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The above linear regression results for the predicted ISA abundance maps show whether 

the predicted abundance maps closely correlate to the reference abundance map. 

However, for a lot of practical applications, ISA classification maps are more useful than 

ISA abundance maps. Thus, we converted the predicted ISA abundance maps to ISA 

binary classification maps. The task of translating ISA abundance maps to binary 

pervious/impervious classification maps was similar to the task of converting probability 

maps to binary classification maps that are commonly applied in probability based 

classification methods (e.g. maximum likelihood classification). The value 0.5 often 

serves as a universal threshold. Although there are many adaptive threshold-selecting 

methods, they were out of the scope of this study. Thus, we used 0.5 as the threshold in 

our study. The last columns in Table 2-5 and 2-6 show the overall accuracy for the 

classification results.  

For the simulated EnMAP image, the correlation coefficients were less than 0.20 when 

using the N-Findr, PPI, and ICA methods, which suggested a very bad correlation 

between the predicted and reference ISA percentages. On the contrary, when using the 

NMF-based methods, the correlation coefficients ranged from 0.66 to 0.73. Considering 

the 27 processed NMF-based experiments, the traditional NMF method achieved a 

moderate correlation coefficient of 0.71. The different selection of the constraint 

parameters (10, 1, and 10), which are respectively the sparseness, volume, and robust 

constraints, increased the correlation coefficient by at least 0.02. The sNMF, vNMF, and 

rNMF methods achieved limited improvement in ISA results than the traditional NMF 

method. We also found that the parameter values derived from Equations (2-11) and (2-

15) for sparseness and nonlinearity constraints, respectively, did not provide the highest 

linear regression correlation coefficient. The P-values for all the regression models 

passed the 5% null hypothesis. Regarding the MAD values, the N-Findr, PPI, and ICA 

methods resulted in more than 0.4 MAD values, suggesting more than 40% difference 

between the reference and the predicted ISA percentages. The traditional NMF method 

achieved a 0.1447 MAD value. The constrained NMF methods provided better MAD 

performances than the traditional NMF when using appropriate constraint parameters. 

The N-Findr, PPI, and ICA SMA methods resulted in very poor ISA classification 



 

  

 52 

accuracy (~50%). The NMF-based SMA methods easily achieved ~85% overall accuracy. 

The constrained NMF-based methods did not help to improve the ISA classification 

results compared to the traditional NMF method. 

Table 2-5: Reference and predicted ISA abundance linear regression parameters 

and classification overall accuracy (EnMAP). 

Method R P-value MAD Accuracy 

NFindr 0.20 0.85 0.4255 42.9% 

PPI 0.14 0.72 0.4882 57.0% 

ICA 0.00 0.89 0.4597 52.9% 

NMF 0.71 4.5e-9 0.1447 86.7% 

sNMF (0.9) 0.71 6.6e-8 0.0935 86.0% 

sNMF (0.01) 0.71 5.4e-8 0.1513 86.0% 

sNMF (0.1) 0.69 9.0e-8 0.1533 86.2% 

sNMF (0.2) 0.72 4.9e-9 0.1465 86.5% 

sNMF (0.5) 0.67 5.0e-8 0.1526 84.3% 

sNMF (0.7) 0.67 6.7e-8 0.1504 85.4% 

sNMF (1.0) 0.66 5.1e-7 0.1578 84.7% 

sNMF (5.0) 0.70 5.8e-8 0.1551 85.9% 

sNMF (10.0) 0.73 2.3e-8 0.1480 86.4% 

vNMF (0.01) 0.71 7.3e-7 0.1513 86.0% 

vNMF (0.1) 0.71 5.9e-8 0.1468 86.1% 

vNMF (0.2) 0.70 4.6e-8 0.1533 86.2% 

vNMF (0.5) 0.71 3.8e-7 0.1481 85.8% 

vNMF (0.7) 0.71 9.9e-8 0.1464 86.6% 

vNMF (1.0) 0.73 1.2e-9 0.1473 86.4% 

vNMF (5.0) 0.71 4.5e-7 0.1499 86.5% 

vNMF (10.0) 0.73 6.9e-8 0.1490 86.9% 

rNMF (0.003) 0.69 5.5e-8 0.1562 85.7% 

rNMF (0.01) 0.69 4.8e-7 0.1545 85.7% 

rNMF (0.1) 0.69 3.7e-7 0.1533 86.2% 

rNMF (0.2) 0.71 4.2e-7 0.1568 

 
79.1% 

rNMF (0.5) 0.68 6.3e-8 0.1569 85.6% 

rNMF (0.7) 0.70 7.8e-7 0.1530 86.4% 
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rNMF (1.0) 0.69 5.5e-8 0.1526 85.1% 

rNMF (5.0) 0.71 4.5e-7 0.1510 86.1% 

rNMF (10.0) 0.74 1.7e-9 0.1500 86.7% 

For the Hydice urban image, the results from the N-Findr and PPI methods are slightly 

higher, compared to the results for the simulated EnMAP image. This may be because the 

Hydice urban image has a much higher spatial resolution (2m) and contains less mixed 

pixels than the simulated EnMAP image. But their correlation coefficients were still low 

(<0.60). The correlation coefficients from NMF-based methods had a much larger range 

(0.32 to 0.83) than in the simulated EnMAP case. The traditional NMF methods achieved 

a moderate linear regression correlation coefficient of 0.70. With the sparseness, volume, 

and nonlinearity constraints, the highest achieved correlation coefficients were 0.83, 0.80, 

and 0.70, respectively. The constraint parameter values used for the highest linear 

regression accuracies are 1 for sparseness, 0.1 for volume, and 5/10 for nonlinearity, 

which were also not the values provided by the Equations (2-11) and (2-15). The MAD 

values achieved by the N-Findr and PPI methods were larger than 0.35. The traditional 

NMF method achieved a 0.1666 MAD value. Two of the constrained NMF methods can 

improved the MAD values correspondingly to 0.1174 (sparseness) and 0.1325 (minimum 

volume). The N-Findr, PPI, and ICA methods performed a little better in the Hydice 

urban image than in the simulated EnMAP image, with over 75% accuracy from the N-

Findr and PPI methods. The NMF-based SMA methods also achieved ~85% overall 

accuracy. The constrained NMF-based methods greatly helped to improve the ISA 

classification results compared to the traditional NMF method. 
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Table 2-6: Reference and predicted ISA abundance linear regression parameters 

and classification overall accuracy (Hydice). 

Method R P-value MAD Accuracy 

NFindr 0.57 0.56 0.4679 80.0% 

PPI 0.40 0.48 0.3511 75.7% 

ICA - - - - 

NMF 0.70 3.6e-9 0.1666 87.0% 

sNMF (1.9) 0.76 6.5e-8 0.1463 87.2% 

sNMF (0.01) 0.71 6.3e-8 0.1789 87.5% 

sNMF (0.1) 0.71 7.8e-6 0.1718 85.6% 

sNMF (0.2) 0.61 8.8e-7 0.2051 81.6% 

sNMF (0.5) 0.69 5.7e-9 0.1758 85.4% 

sNMF (0.7) 0.62 7.3e-8 0.1849 83.0% 

sNMF (1.0) 0.83 5.6e-12 0.1174 91.8% 

sNMF (5.0) 0.46 9.7e-9 0.2756 75.5% 

sNMF (10.0) 0.64 2.2e-7 0.2151 

 
79.7% 

vNMF (0.01) 0.42 3.2e-8 0.2542 75.9% 

vNMF (0.1) 0.80 5.6e-10 0.1325 87.9% 

vNMF (0.2) 0.60 7.6e-9 0.2083 81.0% 

vNMF (0.5) 0.32 3.4e-7 0.3139 72.8% 

vNMF (0.7) 0.71 2.7e-8 0.1659 82.0% 

vNMF (1.0) 0.72 3.9e-8 0.1337 85.5% 

vNMF (5.0) 0.69 1.5e-7 0.1778 85.8% 

vNMF (10.0) 0.71 4.6e-8 0.1704 85.5% 

rNMF (0.01) 0.62 5.4e-8 0.1849 83.0% 

rNMF (0.1) 0.42 7.4e-8 0.2394 77.6% 

rNMF (0.2) - - - - 

rNMF (0.5) 0.48 9.5e-8 0.2291 78.6% 

rNMF (0.7) 0.61 1.3e-7 0.2051 81.6% 

rNMF (1.0) 0.70 4.5e-9 0.1666 87.0% 

rNMF (5.0) 0.71 1.3e-8 0.1789 87.5% 

rNMF (10.0) 0.71 3.7e-8 0.1718 85.6% 
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2.5 Discussion 

Using N-Findr, PPI, ICA, and four NMF-based (NMF, sNMF, vNMF, and rNMF) SMA 

methods, 30 sets and 29 sets of ISA abundance and classification maps were generated 

separately for the simulated EnMAP and Hydice urban images. The results prove great 

potential for the future EnMAP satellite to handle heterogeneous urban environments. 

Specifically, what we learned from these results can be discussed in two parts: (1) the 

comparison of the ISA abundance maps among different SMA methods and between the 

two study images; (2) the comparison of the ISA classification maps among different 

SMA methods and between the two studied images. 

2.5.1 ISA abundance maps 

With the estimated endmember sets identified, the corresponding abundance maps were 

aggregated to obtain the ISA abundance maps. The resulting ISA abundance maps are 

shown in Figure 2-11 for the simulated EnMAP image and in Figure 2-12 for the Hydice 

urban image. Only three constrained NMF ISA abundance maps were shown for each 

image, corresponding to the sNMF, vNMF, and rNMF results with the best correlation 

coefficients. In the first two rows of Figure 2-11, the reference ISA abundance map is 

shown, followed by N-Findr, PPI, and ICA. The N-Findr, PPI, and ICA results are not 

picking up any correct ISA distribution patterns. As the geometry-based N-Findr and PPI 

methods heavily depend on the presence of pure pixels in the image, the poor 

performances with the highly mixed image are expected. In the case of ICA, because the 

independency assumption on the data is violated, the accuracy of ICA-derived abundance 

values varies greatly between different independent components (endmembers), leading 

to an inaccurate ISA abundance map. In the third and fourth rows of Figure 2-11, the 

traditional and the constrained NMF methods generate much better ISA abundance maps 

than the geometry- and statistic-based methods; they successfully capture the ISA 

abundance distribution. It can be noticed that the traditional NMF results in lower ISA 

abundance than the reference ISA abundance map over the entire study area. In circle A, 

the very high ISA abundance values in the urban built-up areas were overlooked by the 
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traditional NMF method. In circle B, the medium ISA abundance values in the suburban 

areas were also overlooked by the traditional NMF method. This underestimation 

problem was not found in constrained NMF methods. The constrained NMF methods 

recognized the very high ISA abundance values in circle A. In circle B, both the sNMF 

and vNMF overestimated the ISA abundance and the vNMF suffered more from an 

overestimation than the sNMF. Other evidence of this is found in circle C, where the 

sNMF and vNMF also have the overestimation problem. The rNMF provided smaller 

ISA abundance values in circle B and C than the sNMF and vNMF. 
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Figure 2-11: The best impervious surface area abundance maps from each spectral 

mixture analysis method (EnMAP). 

(the value in the parenthesis is the used constraint parameter) 
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Next we have the Hydice urban image ISA abundance results in Figure 2-12. In the first 

row of Figure 2-12, the reference ISA abundance map is shown, followed by N-Findr, 

PPI, and ICA.  With a higher spatial resolution than the simulated EnMAP image, the N-

Findr and PPI methods were able to produce better results for the Hydice urban image. 

The biggest inaccuracy in the N-Findr and PPI results is that they tend to underestimate 

the ISA abundance: the parking lot at the upper right corner (circle A) of the image and a 

lot of roofs were assigned with low ISA abundance. In the second row of Figure 2-12, the 

result of the traditional NMF method obtained high ISA abundance areas in the left side 

of the image more accurately than the geometry- and statistic-based methods. However, 

the NMF method underestimated the ISA abundance in the bright roof at the upper right 

corner (circle A) and overestimated the ISA abundance in the vegetation area in the lower 

part of the image (circle B). The sNMF method also has the two problems found in the 

NMF, but is less severe than the NMF. The vNMF method predicted the low ISA 

abundance in circle B, but failed to predict the high ISA abundance in the parking lot in 

circle A. The rNMF method encountered problems in recognizing the low ISA abundance 

in circle B and high ISA abundance in circle A. 

 

Figure 2-12: The best impervious surface area abundance maps from each spectral 

mixture analysis method (Hydice). 

(the value in the parenthesis is the used constraint parameter) 
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An interesting difference found in the ISA abundance results between the two study 

images is that the Hydice urban image is more sensitive to the changes of different 

constraint parameters than the simulated EnMAP image. In the experiments of Hydice 

urban image using the same constrained method, the different constraint parameter values 

can cause more than 0.4 difference in the correlation coefficient of the linear regression 

models between the predicted and reference ISA abundances. This difference is less than 

0.1 in the experiments of the simulated EnMAP image. 

2.5.2 ISA classification maps 

In the end, the classification results are shown in Figure 2-13 for the simulated EnMAP 

image and in Figure 2-14 for the Hydice urban image. Begin with the results from the 

simulated EnMAP image. Only three constrained NMF ISA classification maps were 

shown for each image, corresponding to the sNMF, vNMF, and rNMF results with the 

best classification overall accuracy. In the first two rows of Figure 2-13, the reference 

ISA classification map is shown. Naturally, based on the poor ISA abundance maps from 

the N-Findr, PPI, and ICA methods, their classification results were also poor. The result 

from the traditional NMF method appears to be reasonable, except for two inaccuracies: 

in the Middle Eastern part of the map, the dense ISA was classified as pervious (circle A); 

and in the Southeastern part of the map a large agricultural bare soil was classified as 

impervious (circle B). The sNMF, vNMF, and rNMF methods also have the two 

problems and they are very similar with the NMF results, with only minor differences. 
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Figure 2-13: The best impervious surface area classification maps from each 

spectral mixture analysis method (EnMAP). 

(the value in the parenthesis is the used constraint parameter) 

In the case of the Hydice urban image, Figure 2-14 shows the reference ISA classification 

map at the left, followed by N-Findr, PPI, and ICA. The N-Findr and PPI results 

misclassified the parking lot in the upper right part (circle A) of the image as pervious. 

The traditional NMF method correctly classified the parking lot. However, it 

misclassified some part of the vegetation in the lower right part (circle B) of the image as 
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impervious. The three constrained NMF methods showed better classification results than 

the traditional NMF method in circle A and B. 

 

Figure 2-14: The best impervious surface area abundance maps from each spectral 

mixture analysis method (Hydice). 

(the value in the parenthesis is the used constraint parameter) 

As mentioned in the above discussion about ISA abundance maps, the results of the 

Hydice urban image are more sensitive to the constraint parameter values than the results 

of the simulated EnMAP image. This fact continues in the ISA classification results. In 

the experiments of the Hydice urban image using the same constrained method, the 

different constraint parameter values can cause more than a 10% difference in the overall 

accuracy values (Table 2-4). This difference is usually smaller than 5% in the 

experiments of the simulated EnMAP image. 

2.5.3 Computation time 

Lastly, the processing times in seconds for the NMF-based hyperspectral SMA methods 

are shown in Table 2-5. There are separately 350555 and 94249 pixels in the simulated 

EnMAP image and the Hydice urban image that need to be processed. The traditional 

NMF method takes more time than most of the constraint NMF methods for both images. 

With more definitions on the objective matrix, the constrained NMF methods shrink 
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down the solution space and locate the final results sooner. The constraint NMF methods 

(e.g. sNMF (0.7) and some rNMF experiments) that need significantly more processing 

time usually have a slow convergence and this may affect their results in a 

disadvantageous way. 

Table 2-7: Processing times in seconds. 

Method Time (EnMAP) Time (Hydice) 

NMF 117 44 

sNMF (Equation (2-11)) 13 5 

sNMF (0.01) 50 5 

sNMF (0.1) 7 9 

sNMF (0.2) 24 3 

sNMF (0.5) 5 4 

sNMF (0.7) 102 107 

sNMF (1.0) 24 3 

sNMF (5.0) 7 3 

sNMF (10.0) 4 5 

vNMF (0.01) 13 4 

vNMF (0.1) 58 3 

vNMF (0.2) 68 5 

vNMF (0.5) 21 2 

vNMF (0.7) 3 4 

vNMF (1.0) 4 4 

vNMF (5.0) 14 4 

vNMF (10.0) 5 3 

rNMF (Equation (2-15)) 222 - 

rNMF (0.01) 280 80 

rNMF (0.1) 40 5 

rNMF (0.2) 98 7 

rNMF (0.5) 101 3 

rNMF (0.7) 4 4 

rNMF (1.0) 32 3 

rNMF (5.0) 118 3 

rNMF (10.0) 60 3 
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2.6 Conclusion 

The future EnMAP satellite will complement current airborne and spaceborne 

hyperspectral sensors by providing timely and global hyperspectral data. In order to 

assess the designed EnMAP sensor and offer possible application and processing 

methods for the future use of EnMAP images, Chapter 2 conducted series experiments on 

spectral unmixing for ISA mapping. Two geometry-based methods (N-Findr, PPI), one 

statistic-based method (ICA), and four algebra-based methods were applied to generate 

ISA abundance and classification maps from the simulated EnMAP image in Surrey, BC, 

Canada. In addition, the widely used Hydice urban image was processed using the same 

methods as comparison. We analyzed the ISA mapping results from the aspects of 

different images and different endmember extraction/hyperspectral SMA methods. The 

four research questions in 2.2 are correspondingly addressed below. 

(1) The EnMAP imagery has a medium spatial resolution of 30m and the pure pixel is 

limited. The traditional geometry- and statistic-based endmember extraction methods 

have difficulty locating the non-existing endmembers from the image. In this way, most 

of the current EnMAP studies have used the endmembers from existing references or 

other high spatial resolution images. Although the carefully selected endmembers from 

other sources worked well with the EnMAP image, it should be noted that the existing 

endmembers are not always available. Using the endmembers derived from the EnMAP 

image itself is still the most reproducible method. We found that the algebra-based NMF 

hyperspectral SMA methods can successfully work with the simulated EnMAP image for 

ISA mapping. The ISA abundance maps derived from the simulated EnMAP image were 

compared with the reference abundance map using correlation coefficients and MAD 

values. The resulting correlation coefficients reached 0.7 and the MAD values reached 

0.14.  These results are as good as the up-to-date ISA studies (Fan, Fan and Weng 2015, 

Guo, Lu and Kuang 2017), which often obtained help from the additional spectral indices 

and multi-date or multi-sensor data. From the abundance maps, the pervious/impervious 

classification maps were generated using thresholds derived from the linear regression 

models, which achieves more than 85% accuracy when compared with the reference map. 
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(2) The linear regression results from the airborne high spatial resolution hyperspectral 

Hydice urban image are better than the results from the simulated EnMAP image. The 

ISA classification results for the Hydice urban image also provided better results than the 

simulated EnMAP image. However, the advantages of the Hydice image are limited. 

Further, considering the different image sizes and land cover heterogeneities between the 

two images, the potential in the simulated EnMAP image should not be underestimated. 

(3) The abundance maps directly obtained from the algebra-based methods 

underestimated the ISA abundance greatly. It is necessary to perform a linear 

normalization on the obtained abundance maps to achieve reliable results. 

 (4) In the case of the simulated EnMAP image, among the four experimented NMF-

based methods (NMF, sNMF, vNMF, and rNMF), the constrained methods did not 

perform better than the traditional method. Further, the ISA mapping results are not very 

sensitive to the constraint parameter values for the three constrained NMF methods. 

When it comes to the Hydice urban image, the NMF-based methods still outperforms the 

geometry-based and statistical methods despite the fine spatial resolution. The 

constrained NMF methods provides better ISA results than the traditional NMF method. 

The Hydice urban image is very sensitive to the constraint parameter values for the three 

experimented constrained NMF methods. Since the decisions on the constraint parameter 

values are still not fully understood, images that are sensitive to these values may need 

extra attempts to obtain the reliable results. 

(5) This study shows the potential of using the medium spatial resolution spaceborne 

EnMAP image for large area ISA mapping in the future. This new hyperspectral 

instrument provides new economic perspectives toward ISA monitoring, in addition to 

the currently available multispectral Landsat and more expensive airborne data. Although 

with the proposed processing procedure, the ISA mapping results from the simulated 

EnMAP image had similar accuracy as the up-to-date ISA mapping literatures, the 

method in this study does not need additional data like the current literatures. 
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3 Constrained nonnegative tensor factorization for spectral mixture 

analysis of hyperspectral image 

The nonnegative matrix factorization (NMF) discussed in Chapter 2 adopts a linear 

algebra solution that decomposes the original data into one endmember and one 

abundance matrices. Although the linear algebra solution in the NMF-based spectral 

mixture analysis (SMA) methods loosens the requirement of the existing pure pixels in 

the original image, this method only considers the characteristics of one individual pixel, 

and the spatial information in the small neighborhood of the pixel is discarded. In detail, 

since NMF is based on linear algebra, a necessary preprocess of the NMF-based 

hyperspectral SMA methods is to convert the 3D hyperspectral data cubes into 2D 

matrices, where rows represent observations and columns represent spectral bands. By 

this conversion, the spatial information in the relative positons of the pixels is lost. This 

limitation can be found in many classical hyperspectral processes (e.g. PCA (principal 

component analysis)). With the emergence of multilinear algebra, the tensorial 

representation of hyperspectral imagery has become popular. A hyperspectral image 

starts to be treated as a third-order tensor with two spatial dimensions and one spectral 

dimension. Recently, the tensor-based hyperspectral methods have gradually gained 

attention in remote sensing community. Some attempts involving feature extraction (Ren 

et al. 2017, Liu et al. 2017), data compression (Fang, He and Lin 2017, Du et al. 2017), 

dimension reduction (DR) (Gao et al. 2015, Deng et al. 2018), and SMA (Veganzones et 

al. 2016, Qian et al. 2017) were made. As a new direction in remote sensing, the tensor-

based SMA methods need to be further studied. 

3.1 Background 

The idea of tensor-based hyperspectral SMA has been brought up as early as 2007 

(Zhang et al. 2007, Zhang et al. 2008). However, the implementation of this idea was 

impeded by the lack of physical interpretation in the traditional tensor factorization 

methods. Basically, the linear SMA must have two characteristics: (1) the number of 
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endmembers should be fixed during the calculation, and (2) the original image should be 

represented as a sum of component tensors. The CANDECOMP/PARAFAC (CP) 

decomposition decomposes a given tensor into the sum of the minimum rank-one tensors 

(Figure 1-8). The minimum number of the component rank-one tensors is called the 

tensor rank. The determination of the tensor rank is not straightforward (Kolda and Bader 

2009), and does not reflect the number of endmembers. Therefore, it is difficult to use the 

CP decomposition to deduce the endmember and corresponding abundance matrix. On 

the other hand, the Tucker decomposition defines a given tensor as a core tensor 

multiplied by one matrix along each mode (Figure 1-8). The decomposing manner fails to 

divide the tensor into a sum of components tensor, weakening its link to linear SMA. In 

addition, similar to the CP decomposition, no straightforward method is available to 

determine the size of the core tensor using the Tucker decomposition. Although the 

spectral mode rank in the core tensor can be set to the number of endmembers, the 

derived endmembers will be orthogonal to each other, which conflicts with the nature of 

endmembers. Thus, the CP decomposition and Tucker decomposition cannot be directly 

used as linear SMA (Equation 3-1). 

It can be observed that the CP decomposition and the Tucker decomposition each 

possesses one critical characteristic in the linear SMA analysis. A hybrid tensor 

decomposition that combines the CP and Tucker decompositions is a promising direction 

to conform the form of SMA. Research has been done in this direction (Kolda and Bader 

2009). One popular hybrid tensor decomposition method is block term decomposition 

(BTD) (De Lathauwer 2008). The BTD decomposes the given tensor as a sum of 

component tensors, where each component tensor is the k-mode product of the core 

tensor and factor matrices (Figure 3-1). The BTD has flexible rules for the component 

tensors, as the component tensors are not restricted to be rank-one tensors like they are in 

the CP decomposition. Then, the number of the component tensors can be easily set as 

the number of endmembers. At the same time, the BTD adopts a summation form of the 

component tensors. For a third-order tensor 𝒳 ∈ ℝ𝐼1×𝐼2×𝐼3, its BTD expression is as below: 

 𝒳 = ∑ 𝒢𝑟 ×1
3
𝑟=1 𝐴𝑟 ×2 𝐵𝑟 ×3 𝐶𝑟  , (3-1) 
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Figure 3-1: BTD (Qian et al. 2017). 

Inspired by the BTD, Qian, et al., first realized tensor-based SMA through a new form of 

tensor decomposition: matrix-vector nonnegative tensor decomposition (MVNTF) (Qian 

et al. 2017). By reforming the decomposition manner of the component tensors in BTD, 

the MVNTF achieves an analogous form to the linear SMA. Specifically, the MVNTF 

removes the core tensor in the component tensors and factorizes each third-order 

component tensors into the outer product of one matrix and one vector, among which the 

matrix represents the abundance, and the vector represents endmember (Figure 3-2). 

 

Figure 3-2: MVNTF (Qian et al. 2017).  



 

  

 78 

The experiments of MVNTF in SMA confirmed its potential in endmember extraction, 

but the derived abundance matrix is not fully analyzed (Qian et al. 2017). Another 

concern about the MVNTF is that it only has one nonnegative constraint, leading to a 

large solution space. Having too few constraints during decomposition may cause 

inefficient conversion. Two common disadvantages of the inefficient conversion are 

finding the unwanted local minimum and increasing the processing time. This problem 

also occurs in the traditional NMF method and additional constraints were proposed to 

mitigate the problem. Thus, this research works on integrating similar additional 

constraints from the NMF-based SMA in the MVNTF-based SMA. Under the 

construction of MVNTF-based SMA, this research integrated three additional constraints 

in the cost function, in order to improve the performance of SMA. The three constraints 

are a sparseness constraint on the abundance map, a minimum volume constraint on 

endmember, and a nonlinear term on the approximated tensor. These three constraints 

have been successfully installed into the NMF framework (Bioucas-Dias et al. 2012, 

Miao and Qi 2007, Arngren, Schmidt and Larsen 2011, Févotte and Dobigeon 2015). 

This research has found that they also contribute in MVNTF SMA. 

3.2 Objective 

The main objective of Chapter 3 is to upgrade one of the most robust spectral unmixing 

methods (NMF) to its tensor version and further improve the tensor-based method by 

incorporating additional constraints that have been previously added to the matrix-based 

method, to test improvement in the ISA mapping results. Corresponding to the objective, 

the following research questions are the focus of Chapter 3: 

(1) In the two cases of the simulated EnMAP and Hydice urban images, how will the 

tensor-based SMA methods benefit the ISA mapping, compared to the matrix-based 

SMA methods? 

(2) Can the additional constraints improve the tensor-based SMA methods, as they did for 

the matrix-based SMA methods? 
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(3) Are the abundance maps directly obtained from the tensor-based methods usable? 

(4) How can the research results help the current ISA mapping study? 

3.3  Methods 

3.3.1 Linear spectral mixture analysis 

In order to perform SMA with tensor factorization, the intrinsic mechanism of the tensor 

factorization needs to be analogous to the physical equations of linear spectral mixture: 

 𝜌𝜆
′ = ∑ 𝑓𝑖 ∗ 𝜌𝑖𝜆 + 𝜀𝜆

𝑁

𝑖=1

 (3-2) 

where 𝜌𝑖𝜆 is the ith endmember’s reflectivity in band 𝜆; 𝑓𝑖 is the area percentage that ith 

endmember occupies in the pixel; N is the number of endmembers used in the model; 𝜀𝜆 

is residual. In order to come up with accurate and reliable estimation, two limits are 

needed: (1) the sum of 𝑓𝑖 is one; and (2) 𝑓𝑖 is positive for every endmember. 

3.3.2 Notations and tensor products 

In Chapter 1, the basic notations and operations in tensor studies were introduced. Here, I 

will remind you some of the operations and explain some more notations and one 

additional tensor operation exclusively used in this Chapter. Matrices are denoted as 

capital letters, e.g. 𝐴. Matrices can have subscripts of two multiplied capital letters, e.g. 

𝐴𝑀×𝑁, representing the sizes of matrices or one capital letter, e.g. 𝐴𝑅, representing the 

locations of matrices if they belong to partitioned matrices 4. 

                                                 

4 In mathematics, a block matrix or a partitioned matrix is a matrix that is interpreted as 

having been broken into sections called blocks or submatrices.  
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The outer product is the tensor product of two coordinate vectors. Given the two tensors 

𝒜 ∈ ℝ𝑀1×𝑀2…×𝑀𝑝 and ℬ ∈ ℝ𝑁1×𝑁2…×𝑁𝑄, the outer product of them is written as 𝒜 ∘ ℬ ∈

ℝ𝑀1×𝑀2…×𝑀𝑝×𝑁1×𝑁2…×𝑁𝑄. The element is obtained as below: 

 (𝒜 ∘ ℬ)𝑚1𝑚2…𝑚𝑃𝑛1𝑛2…𝑛𝑄
= 𝑎𝑚1𝑚2…𝑚𝑃

𝑏𝑛1𝑛2…𝑛𝑄
, (3-3) 

The Kronecker product of the two matrices A𝑀×𝑁 and B𝐾×𝐿 is A𝑀×𝑁⨂B𝐾×𝐿 ∈ ℝ𝑀𝐾×𝑁𝐿: 

 A⨂B = (
𝑎11𝐵 ⋯ 𝑎1𝑁𝐵

⋮ ⋱ ⋮
𝑎𝑀1𝐵 ⋯ 𝑎𝑀𝑁𝐵

), (3-4) 

The Khatri-Rao product of the two matrices A𝑀×𝑁 and B𝐾×𝑁 is A𝑀×𝑁⨀B𝐾×𝑁 ∈ ℝ𝑀𝐾×𝑁: 

 𝐴⨀𝐵 = [𝑎1⨂𝑏1  𝑎2⨂𝑏2   ∙∙∙   𝑎𝑁⨂𝑏𝑁], (3-5) 

where 𝑎𝑁is the Nth column of matrix A𝑀×𝑁 and 𝑏𝑁is the Nth column of matrix B𝑀×𝑁. 

The generalized Khatri-Rao product for the two partitioned matrices 𝐴 = [𝐴1, 𝐴2, ⋯ A𝑅] 

and B = [𝐵1, 𝐵2, ⋯ B𝑅] results is: 

 𝐴⨀̅𝐵 = [𝐴1⨂𝐵1  𝐴2⨂𝐵2   ∙∙∙   𝐴𝑅⨂𝐵𝑅], (3-6) 

3.3.3 Matrix-vector nonnegative tensor factorization 

Earlier studies have stated the potential of using the CP and Tucker decompositions for 

SMA. However, they have different components from Equation (3-2) and cannot be 

applied to SMA. The MVNTF method addresses this difficulty by combining the CP and 

Tucker decompositions, which allows it to work with more complicated data. Figure 3-2 

shows the decomposition manner of MVNTF in the case of the third-order tensor. 

According to Figure 3-2, the corresponding decomposition equation is as below: 

 𝒳 = ∑ 𝐴𝑟 ∙ 𝐵𝑟
𝑇𝑅

𝑟=1 °𝑐𝑟 = ∑ 𝐸𝑟°𝑐𝑟
𝑅
𝑟=1 , (3-7) 

where 𝒳 ∈ ℝ𝑀×𝑁×𝐾 is the original hyperspectral data tensor with M rows, N columns, 

and K bands; 𝑅 is the rank of the tensor, defined by the smallest number of component 
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tensors that generate 𝑋 as their sum; 𝐴𝑟 ∈ ℝ𝑀×𝐿 is the decomposed matrix on the row 

dimension; 𝐵𝑟 ∈ ℝ𝑁×𝐿  is the decomposed matrix on the column dimension; 𝐿  is a 

manually determined column number for 𝐴𝑟 and 𝐵𝑟; 𝑐𝑟 is the decomposed vector on the 

spectral dimension; 𝐸𝑟 is the product of 𝐴𝑟 and 𝐵𝑟. The resemblance between Equation 

(3-2) and (3-7) is the foundation of applying MVNTF as SMA. In this way, the 𝐸𝑟 

represents the abundance matrix and the 𝑐𝑟 represents the endmember vector. Despite the 

nonnegative constraint, another unavoidable constraint for SMA is the sum-to-one 

constraint on the abundance matrix. It can be attended by a penalty term in the cost 

function. Thus, the final cost function to solve Equation (3-7) is as below: 

𝑚𝑖𝑛𝐸,𝑐 ∥ 𝒳 − ∑ 𝐹𝑟
𝑅
𝑟=1 ∘ 𝑐𝑟 ∥𝐹

2 + 𝛿 ∥ ∑ 𝐹𝑟
𝑅
𝑟=1 − 𝐽𝑀×𝑁 ∥𝐹

2 , 

𝑠. 𝑡. 𝐴𝑟 , 𝐵𝑟 , 𝑐𝑟 ≽ 0, 

(3-8) 

where ∥∥𝐹 is the third-order tensor Frobenius norm defined as ∥ 𝒳 ∥𝐹= √∑ ∑ ∑ 𝑥𝑚𝑛𝑘
2

𝑘𝑛𝑚 ; 

the first Frobenius norm is the reconstruction error and the second Frobenius norm 

reflects the sum-to-one constraint on the abundance matrix; 𝛿 is the weight of the sum-to-

one constraint; and  𝐽
𝑀×𝑁

 is the all-one matrix of size 𝑀 × 𝑁 . The Equation (3-8) is 

usually solved by an alternative least square (ALS) minimization algorithm. The ALS 

algorithm iteratively updates the three vectors ( 𝐴𝑟 , 𝐵𝑟 , 𝑎𝑛𝑑 𝑐𝑟 ) in sequence using a 

multiplicative update rule. Figure 3-3 shows the flowchart of the MVNTF. The 

multiplicative update rules adopted in MVNTF are listed below: 

A ← A.∗
(𝑋𝑁𝐾×𝑀

𝑇 (B⨀̅C)+𝛿𝑱𝑀×𝑁B)

(A(B⨀̅C)𝑇(B⨀̅C)+𝛿𝐴𝐵𝑇B)
, (3-9) 

A ← A.∗
(𝑋𝑁𝐾×𝑀

𝑇 (B⨀̅C)+𝛿𝑱𝑀×𝑁B)

(A(B⨀̅C)𝑇(B⨀̅C)+𝛿𝐴𝐵𝑇B)
 , (3-10) 

C ← C.∗ (𝑋𝑀𝑁×𝐾
𝑇 S)./(C𝑆𝑇S), 

S = [(𝐴1⨀𝐵1)𝐽𝐿 ∙∙∙ (𝐴𝑅⨀𝐵𝑅)𝐽𝐿], 

(3-11) 

(3-12) 
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where (𝑋𝑁𝐾×𝑀)(𝑛−1)𝐾+𝑘,𝑚 = 𝑥𝑚𝑛𝑘 , (𝑋𝐾𝑀×𝑁)(𝑘−1)𝑀+𝑚,𝑛 = 𝑥𝑚𝑛𝑘 , and 

(𝑋𝑀𝑁×𝐾)
(𝑚−1)𝑁+𝑛,𝑘

= 𝑥𝑚𝑛𝑘 are the unfolded tensor 𝒳; and 𝐽𝐿is an all-one column vector with 

length 𝐿. 

 

Figure 3-3: Matrix vector nonnegative tensor factorization algorithm flowchart. 

3.3.4 Additional constraints 

Due to the limited constraints, the MVNTF method may suffer from inefficient 

convergence. This problem also happens in NMF methods and various constraints have 

been added to the classical NMF to further confine the solution space. Three widely used 

constraints are sparseness, minimum volume, and outliner term. It is also promising to 

adopt them into the MVNTF framework. The MVNTF with the sparseness constraint is 
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referred to as sMVNTF from now on. One of the commonly agreed properties of the 

abundance matrix is the sparseness. It is often found that most of the pixels are mixtures 

of only a few of the endmembers. To implement this feature of the abundance matrix, this 

research added the norm of abundance matrix to the original cost function (Equation (3-

8)):  

𝑚𝑖𝑛𝐸,𝑐 ∥ 𝒳 − ∑ 𝐸𝑟
𝑅
𝑟=1 °𝑐𝑟 ∥𝐹

2 + 𝛿 ∥ ∑ 𝐸𝑟
𝑅
𝑟=1 − 𝐽𝑀×𝑁 ∥𝐹

2 + 𝛼 ∥ ∑ 𝐸𝑟∥ ∥𝑅
𝑟=1 𝐹

2
, 

𝑠. 𝑡. 𝐴𝑟 , 𝐵𝑟 , 𝑐𝑟 ≽ 0, 
(3-12) 

where 𝛼 is the sparseness parameter. This study tested eight sparseness parameters (0.01, 

0.1, 0.2, 0.5, 0.7, 1, 5, and 10) in order to test the sensitivity of the constrained MVNTF 

on sparseness. 

As mentioned in Chapter 2, the NMF-based SMA method can search outside the original 

image for endmembers. The MVNTF-based SMA methods share this advantage. 

However, even if the original image does not have any pure pixels, the endmembers 

should not locate too far away from the data cloud. The minimum volume constraint for 

endmembers addresses this problem by pulling the endmembers towards the data center. 

The basic idea is to minimize the simplex volume determined by the endmembers among 

all possible simplexes that circumscribe the data scatter space. This study adopts an 

approach of minimizing the sum of squared distances from the vertices to the centroid. 

The MVNTF with the minimum volume constraint is referred to as vMVNTF from now 

on. The cost function has correspondingly changed to: 

𝑚𝑖𝑛𝐸,𝑐 ∥ 𝒳 − ∑ 𝐸𝑟
𝑅
𝑟=1 °𝑐𝑟 ∥𝐹

2 + 𝛿 ∥ ∑ 𝐸𝑟
𝑅
𝑟=1 − 𝐽𝑀×𝑁  ∥𝐹

2+ 𝛽 ∥ 𝑉 ∥𝐹
2 , 

V = ∑ ∥ 𝑐𝑟 −
1

𝑅
∑ 𝑐𝑟′

𝑅
𝑟′=1 ∥𝐹

2𝑅
𝑟=1 , 

 𝑠. 𝑡. 𝐴𝑟 , 𝐵𝑟 , 𝑐𝑟 ≽ 0, 

(3-13) 

where 𝛽 is the distance parameter; 
1

𝑅
∑ 𝑐𝑟′

𝑅
𝑟′=1  denotes the center of the current selected 

endmembers. We tried eight distance parameters: 0.01, 0.1, 0.2, 0.5, 0.7, 1, 5, and 10, in 

order to provide some insights. 
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In the end, due to the complex scattering effects that are often found in hyperspectral 

images, the spectral mixture may not be linear sometimes. A nonlinear term can be added 

in to the MVNTF model to account for such situation. The MVNTF with the nonlinear 

constraint is referred to as rMVNTF from now on. The reconstruction Equation (3-7) can 

be rewritten as below 

 𝒳 = ∑ 𝐸𝑟°𝑐𝑟
𝑅
𝑟=1 + 𝑁, (3-14) 

where 𝑁 represents the nonlinear term. Then the cost function is changed to: 

𝑚𝑖𝑛𝐸,𝑐 ∥ 𝒳 − ∑ 𝐸𝑟
𝑅
𝑟=1 °𝑐𝑟 ∥𝐹

2 + 𝛿 ∥ ∑ 𝐸𝑟
𝑅
𝑟=1 − 𝐽𝑀×𝑁  ∥𝐹

2+ 𝛾 ∥ 𝑁 ∥𝐹
2 , 

𝑠. 𝑡. 𝐴𝑟 , 𝐵𝑟 , 𝑐𝑟 ≽ 0, 
(3-15) 

where 𝛾 is the nonlinearity parameter. We tried eight more nonlinearity parameters: 0.01, 

0.1, 0.2, 0.5, 0.7, 1, 5, and 10. The update rule for 𝑁 is derived based on the nonlinear 

term in NMF: 

𝑁𝑟 → 𝑁𝑟
∑ 𝒳/(𝐸𝑟

𝑅
𝑟=1 °𝑐𝑟)

𝑐𝑟𝐸𝑟
−1+𝛾

𝑁𝑟
∥𝑁𝑟∥2

. (3-16) 

3.4 Experiments and results 

3.4.1 Study areas, reference spectra, and research design  

Chapter 3 closely relates to the previous Chapter 2, as they share the same types of results 

of endmember matrices, impervious surface area (ISA) abundance maps, and ISA 

classification maps. Chapter 3 can be seen as an improvement from the method in 

Chapter 2, when the 2D matrix is replaced to the 3D tensor. To ensure the consistency 

and comparison between the two chapters, their studied images, reference spectra, and 

the overall research design are intentionally kept similar. This paper also used the two 

hyperspectral images (EnMAP and Hydice) introduced in 2.5.1. The simulated EnMAP 

image covers the whole Surrey, BC area and has patterns of urban and urban-suburban 

gradient environments (Figure 2-4). The Hydice image covers an urban area located in 
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Copperas Cove, TX (Figure 2-5). This paper used the same Hydice urban image as 

Chapter 2. The original simulated EnMAP image is not in a rectangle shape and has areas 

of no-data at corners. This irregular shape does not affect the NMF-based methods, as 

they perform on matricized hyperspectral images. But the MVNTF-based methods treat 

the hyperspectral image as a third-order tensor and cannot take data with no-data area. 

Thus, in this paper, the original simulated EnMAP image is cropped into a 300 × 300 

pixels square shape, shown in Figure 3-4. This part of the EnMAP image also contains 

the urban and urban-suburban gradient areas. When comparing with the results from 

Chapter 2, the results from Chapter 2 were cropped into the same 300 × 300 square area. 

 

Figure 3-4: The cropped simulated EnMAP image in RGB. 

The reference spectra that are used for identifying the extracted endmembers in this paper 

are the same sets produced in Chapter 2. In the case of the EnMAP image, the 20 

endmembers of 18 different landuse/land cover (LULC) types were visually identified in 

the CASI images, the high-spatial-resolution airborne hyperspectral images that are used 

for simulating the EnMAP images (Figure 2-5). They are resampled to the spectral 
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instrument response functions for the EnMAP imager. The 18 LULC types consist of 

eight vegetation, nine impervious surface, and one soil. The Hydice urban image has the 

reference spectra of five: asphalt road, grass, tree, roof, and soil (Figure 2-6), available 

online. Another important component of the a priori knowledge for any SMA is the 

number of wanted endmembers. The wanted endmember numbers for the EnMAP and 

Hydice images are separately 27 and 5, which are decided by the Harsanyi–Farrand–

Chang method (HFC). Detailed explanations concerning the determination of the number 

of wanted endmembers are stated in 2.4.1 Hyperspectral subspace identification. 

This paper separately performed the MVNTF, sMVNTF, vMVNTF, and rMVNTF on the 

two studied images. Different column numbers L for matrices 𝐴𝑟 and 𝐵𝑟 were tested and 

I found that using 90 as the column number provides the best results. Multiple sum-to-

one constraint parameters 𝛿 were tested. I found that using 0.55 and 0.4 as the sum-to-

one constraint parameter provides the best results correspondingly for the simulated 

EnMAP image and the Hydice urban image. The three constrained MVNTF were 

performed multiple times using eight different coefficients (0.01, 0.1, 0.2, 0.5, 0.7, 1, 5, 

and 10) for their constraints. In total, the MVNTF, sMVNTF, vMVNTF, and rMVNTF 

SMA methods with different constraint parameters on the added constraints composed 25 

experiments on each of the studied image. Combining the method and the used constraint 

coefficient, the 25 experiments are referred to as MVNTF, sMVNTF (0.01), sMVNTF 

(0.2), sMVNTF (0.5), sMVNTF (0.7), sMVNTF (1), sMVNTF (5), sMVNTF (10), 

vMVNTF(0.01), vMVNTF (0.1), vMVNTF (0.2), vMVNTF (0.5), vMVNTF (0.7), 

vMVNTF (1), vMVNTF (5), vMVNTF (10), rMVNTF (0.01), rMVNTF (0.1), rMVNTF 

(0.2), rMVNTF (0.5), rMVNTF (0.7), rMVNTF (1), rMVNTF (5), and rMVNTF (10), 

where the value in the parenthesis is the used constraint coefficients. The reasons why the 

constraint coefficients determined by Equation (2-11) for the sparseness constraint and by 

Equation (2-15) for the nonlinearity are not included are: (1) the intrinsic mechanisms 

between the NMF- and MVNTF-based methods are different; and (2) the results from 

Equations (2-15) and Equation (2-15) in Chapter 2 show no advantages over the other 

constraints coefficients. The resulting endmember and abundance matrices were 

separately evaluated. The endmembers were first compared to the reference spectra and 
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identified using the spectral angle distance (SAD). To evaluate the abundance matrices, 

the same three indexes: the Pearson correlation coefficient of the linear regression model 

between the reference and predicted ISA percentages, mean absolute difference (MAD) 

between the reference and predicted ISA percentages, and the overall accuracy of the 

dominant abundance classification that were used in Chapter 2 were used in this paper. 

Detailed explanations concerning how the SMA results are evaluated can be found in 

2.4.3 Evaluations. The following sections provide the resulting endmember matrices, ISA 

abundance maps, and ISA classification maps. 

3.4.2 Extracted endmember 

For the cropped simulated EnMAP image, the derived 25 sets of estimated endmembers 

were separately compared with the 20 resampled reference spectra, resulting in 25 SAD 

matrices. Some reference spectra that have similar spectral shapes (e.g. reference soil 

spectrum and several impervious reference spectra: red roof, asphalt and concrete), which 

makes it risky to assign the land cover type based on one SAD. The solution is explained 

in detailed in 2.5.3. Briefly, the reference spectra were first grouped into nine groups 

using the extended V-I-S models (Table 2-2). Then, the average SAD within each group 

was used to assign group type to the estimated endmembers from the SMA. In the results, 

the majority of the tested MVNTF, sMVNTF, vMVNTF, and rMVNTF methods can 

successfully extract both pervious and impervious endmembers, where pervious 

endmembers often occupy more than half of the positions among the total obtained 

endmember sets. Some constrained MVNTF with certain coefficients failed to extract any 

of the impervious surface and they are sMVNTF (5), sMVNTF (10), vMVNTF (5), 

vMVNTF (10), and rMVNTF (10). For the Hydice urban image, the derived 25 sets of 

estimated endmembers were separately compared with the five reference spectra. In the 

resulting SAD matrices, we found that, in Chapter 2 the single SAD value between each 

estimated endmember and each reference endmember can successfully identify the land 

cover types, without any grouping process. As with the EnMAP image, the majority of 

the tested MVNTF, sMVNTF, vMVNTF, and rMVNTF methods can successfully extract 

both pervious and impervious endmembers from the Hydice urban image. The pervious 
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endmembers also often occupy more than half of the positions among the total obtained 

endmember sets. The rMVNTF (10) is the only experiment that did not find any 

impervious endmembers. 

The endmember SAD results are in Table 3-2 for the simulated EnMAP image and in 

Table 3-3 for the Hydice image. The minimum and median SAD values and their 

differences within each SAD matrix are shown. As mentioned before, good endmembers 

with significant spectral signature should be close to the target reference spectrum and be 

far from other reference spectra, which means smaller minimum value, larger median 

value, and larger differences between the two. For the constrained NMF methods, only 

the SAD results with the maximum differences between the minimum and median SAD 

values are shown.  

Table 3-1: Average minimum/median/difference spectral angle distance values 

(EnMAP). 

Average 

SAD 

MVNTF sMVNTF 

(0.01) 

vMVNTF 

(0.01) 

rMVNTF 

(0.01) 

Minimum 0.34 0.34 0.34 0.34 

Median 0.71 0.71 0.71 0.71 

Difference 0.37 0.37 0.37 0.37 

Table 3-2: Average minimum/median/difference spectral angle distance values 

(Hydice). 

Average 

SAD 

MVNTF sMVNTF 

(0.7) 

vMVNTF 

(1) 

rMVNTF 

(1) 

Minimum 0.37 0.30 0.30 0.31 

Median 0.77 0.79 0.79 0.79 

Difference 0.40 0.49 0.49 0.48 

3.4.3 ISA abundances and classification maps 

As in Chapter 2, we grouped the abundance matrices according to the identified 

endmembers. There are 25 resulting ISA abundance maps for each of the studied images. 

For the simulated EnMAP image, the reference impervious abundance map was derived 

from the original CASI images. For the Hydice urban image, the reference abundance 
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map is available online (Zhu et al. 2014). A set of 500 pair-samples were randomly 

selected from each predicted map and the reference ISA abundance maps. The sets of 

samples are used to produce linear regression models between the predicted and reference 

ISA abundances. The better the fitted linear regression model the closer the predicted ISA 

abundance values to the reference ones. The model parameters are listed in Table 3-3 

(EnMAP) and 3-4 (Hydice), where the value in the parenthesis after the SMA method is 

the used constraint parameter. The abundance maps obtained from the MVNTF-based 

method also suffer from an underestimation of ISA abundance. Thus, normalizations 

have been performed. Although great consistency can be found between the predicted 

and reference ISA abundance maps from the linear regression results in Table 3-3 and 3-4, 

the predicted ISA abundance maps severely underestimate the ISA area. The same 

reasoning in 2.3.4 applies here. The same procedure in Chapter 2 has been adopted here 

to convert the predicted ISA abundance maps to ISA binary classification maps. The last 

columns in Table 3-3 and 3-4 show the overall accuracy for the classification results. 

In the case of the EnMAP image, the correlation coefficients range from 0.75 to 0.79. 

Considering the 25 processed MVNTF-based experiments, the traditional MVNTF 

method achieves the lowest correlation coefficients of 0.75. Except for certain constraint 

coefficients (sMVNTF (5), sMVNTF (10), vMVNTF (5), vMVNTF (10), and rMVNTF 

(10)), the three added constraints at different level increased the linear regression 

accuracy. The sMVNTF (0.2) and vMVNTF (0.1) simultaneously achieved the highest 

linear regression correlation coefficients of 0.79. The results from rMVNTF show very 

small variations among different nonlinear coefficients with a universal correlation 

coefficient of 0.75. Regarding the MAD values, the sMVNTF (0.2) and vMVNTF (0.1) 

method also out performs the traditional MVNTF method and achieves the lowest values. 

The classification accuracies derived for the simulated EnMAP image reached 85%. The 

three constrained MVNTF methods all achieved better classification accuracies than the 

traditional MVNTF. 
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Table 3-3: Reference and predicted ISA abundance linear regression parameters 

and classification overall accuracy (EnMAP). 

Method R P-value MAD Accuracy 

MVNTF 0.75 9.0e-6 0.1738 83.4% 

sMVNTF (0.01) 0.75 3.2e-5 0.2100 83.6% 

sMVNTF (0.1) 0.77 5.3e-5 0.2039 83.7% 

sMVNTF (0.2) 0.79 1.3e-7 0.1802 85.1% 

sMVNTF (0.5) 0.75 5.6e-5 0.2671 84.6% 

sMVNTF (0.7) 0.75 7.8e-5 0.2683 84.8% 

sMVNTF (1.0) 0.76 1.9e-6 0.2714 84.8% 

sMVNTF (5.0) - - - - 

sMVNTF (10.0) - - - - 

vMVNTF (0.01) 0.75 5.8e-5 0.1996 83.7% 

vMVNTF (0.1) 0.79 9.1e-7 0.1856 84.8% 

vMVNTF (0.2) 0.75 8.2e-5 0.2671 84.5% 

vMVNTF (0.5) 0.75 9.6e-4 0.2689 84.8% 

vMVNTF (0.7) 0.76 6.5e-5 0.2713 84.8% 

vMVNTF (1.0) 0.76 6.3e-5 0.2739 84.7% 

vMVNTF (5.0) - - - - 

vMVNTF (10.0) - - - - 

rMVNTF (0.01) 0.75 2.3e-5 0.1988 83.5% 

rMVNTF (0.1) 0.75 3.6e-5 0.1988 83.4% 

rMVNTF (0.2) 0.75 9.8e-6 0.1988 83.4% 

rMVNTF (0.5) 0.75 5.1e-5 0.1989 83.4% 

rMVNTF (0.7) 0.75 3.5e-7 0.1990 83.5% 

rMVNTF (1.0) 0.75 5.3e-6 0.1990 83.5% 

rMVNTF (5.0) 0.75 4.6e-5 0.1989 83.4% 

rMVNTF (10.0) - - - - 

The linear regression results of Hydice urban image also show an underestimation in the 

ISA abundance, where the slopes are around 0.19-0.24 and the y-intercepts are between 

0.11-0.23. The correlation coefficients from MVNTF-based methods have a larger range 
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(0.58 to 0.75) than in the simulated EnMAP case. The traditional MVNTF methods 

achieve a moderate linear regression correlation coefficient of 0.72. With the sparseness, 

volume, and nonlinearity constraints, the highest achieved linear regression correlation 

coefficients are separately 0.75, 0.75, and 0.74. The constraint parameter values used for 

the highest linear regression accuracy are 0.2 for sparseness, 0.5 for volume, and 

0.2/0.5/0.7/5 for nonlinearity. The three constrained MVNTF methods also achieve 

smaller MAD values than the traditional MVNTF method when using the appropriate 

constraint parameters. The classification accuracies derived for the Hydice urban image 

reached 85%. The three constrained MVNTF methods all achieved better classification 

accuracies than the traditional MVNTF.   
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Table 3-4: Reference and predicted ISA abundance linear regression parameters 

and classification overall accuracy (Hydice). 

Method R P-value MAD Accuracy 

MVNTF 0.72 2.8e-6 0.2297 85.1% 

sMVNTF (0.01) 0.72 1.8e-5 0.2297 85.2% 

sMVNTF (0.1) 0.73 2.5e-5 0.2292 86.1% 

sMVNTF (0.2) 0.75 

 
4.3e-6 0.2185 87.0% 

sMVNTF (0.5) 0.74 

 
6.3e-6 0.2339 86.8% 

sMVNTF (0.7) 0.73 

 
8.1e-6 0.2357 86.5% 

sMVNTF (1.0) 0.73 

 
5.6e-5 0.2378 84.9% 

sMVNTF (5.0) 0.58 

 
1.2e-3 0.2592 79.2% 

sMVNTF (10.0) 0.62 

 
3.5e-5 0.2540 81.6% 

vMVNTF (0.01) 0.72 

 
7.5e-5 0.2297 85.4% 

vMVNTF (0.1) 0.73 

 
1.3e-6 0.2294 85.8% 

vMVNTF (0.2) 0.74 

 
5.4e-5 0.2292 86.5% 

vMVNTF (0.5) 0.75 

 

6.9e-6 0.2315 87.0% 

vMVNTF (0.7) 0.74 

 
2.8e-5 0.2330 86.9% 

vMVNTF (1.0) 0.73 

 
9.2e-5 0.2348 85.0% 

vMVNTF (5.0) 0.66 

 
4.1e-5 0.2493 84.0% 

vMVNTF (10.0) - - - - 

rMVNTF (0.01) 0.72 

 
5.2e-5 0.2297 85.1% 

rMVNTF (0.1) 0.73 

 
5.4e-5 0.2291 85.5% 

rMVNTF (0.2) 0.74 

 
6.1e-5 0.2292 86.4% 

rMVNTF (0.5) 0.74 

 
1.6e-5 0.2320 86.3% 

rMVNTF (0.7) 0.74 

 
2.5e-5 0.2338 85.7% 

rMVNTF (1.0) 0.73 

 
3.3e-5 0.2361 85.2% 

rMVNTF (5.0) 0.74 

 
3.6e-5 0.2325 85.5% 

rMVNTF (10.0) - - - - 

3.5 Discussion 

Using four MVNTF (matrix vector nonnegative tensor factorization) -based (MVNTF, 

sMVNTF, vMVNTF, and rMVNTF) SMA methods, 25 sets of endmembers, ISA 

abundance and classification maps were generated for each of the studied images (the 

simulated EnMAP and Hydice urban images). The results proved to have great potential 
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for the future use of MVNTF-based SMA methods. Specifically, what we learned from 

these results can be discussed in two parts: (1) the comparison of the ISA abundance 

maps among different SMA methods and between the two study images; (2) the 

comparison of the ISA classification maps among different SMA methods and between 

the two studied images. 

3.5.1 ISA abundance maps 

The resulting ISA abundance maps are shown in Figure 3-5 for the simulated EnMAP 

image and in Figure 3-6 for the Hydice urban image. In the first row of Figure 3-5, the 

reference ISA abundance map is shown at left, and the MVNTF-derived ISA abundance 

map is shown at right. In the second row of Figure 3-5, only three constrained MVNTF 

ISA abundance maps were shown for each image, corresponding to the sMVNTF, 

vMVNTF, and rMVNTF results with the best correlation coefficients. The traditional 

MVNTF and the three constrained MVNTF methods shared two common problems: 

overestimate the medium ISA abundance values (circle A) and underestimate the low 

ISA abundance values (circle B). The constrained MVNTF methods suffer less from 

these two problems. 
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Figure 3-5: The best impervious surface area abundance maps from each spectral 

mixture analysis method (EnMAP). 

(the value in the parenthesis is the used constraint parameter) 

The Hydice urban image ISA abundance results are shown in Figure 3-6. In the first row 

of Figure 3-6, the reference ISA abundance map is shown at left, and the MVNTF-

derived ISA abundance map is shown at right, which shows consistency with the 

reference ISA abundance map. In the second row of Figure 3-6, only three constrained 

MVNTF ISA abundance maps were shown for each image, corresponding to the 

sMVNTF, vMVNTF, and rMVNTF results with the best correlation coefficients. In the 

medium and high ISA abundance areas, the traditional MVNTF and the three constrained 

MVNTF methods show similar detection ability. In low ISA abundance areas, the 

traditional MVNTF method greatly overestimate the ISA abundance, while the three 

constrained MVNTF methods better depicted these areas (circle A and B). 
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Figure 3-6: The best impervious surface area abundance maps from each spectral 

mixture analysis method (Hydice). 

(the value in the parenthesis is the used constraint parameter) 

3.5.2 ISA classification maps 

The classification results are shown in Figure 3-7 for the simulated EnMAP image and in 

Figure 3-8 for the Hydice urban image. Begin with the results from the simulated 

EnMAP image. In the first row of Figure 3-7, the reference ISA classification map is 

shown at left.  On the right side of Figure 3-7, the result from the MVNTF appears to be 

not sensitive to small ISA, as narrow roads and small roofs are often misclassified as 

pervious area. In the second row of Figure 3-7, only three constrained MVNTF ISA 

abundance maps were shown for each image, corresponding to the sMVNTF, vMVNTF, 

and rMVNTF results with the best classification overall accuracy. The three constrained 

MVNTF methods shared the same insensitivity towards the small ISA area (circle A).  
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Figure 3-7: The best impervious surface area classification maps from each spectral 

mixture analysis method (EnMAP). 

(the value in the parenthesis is the used constraint parameter) 

In the case of the Hydice urban image, Figure 3-8 shows the reference ISA classification 

map at the left, and the MVNTF-derived ISA abundance map is shown at right. The 

MVNTF method misclassified parts of the parking lot and bright roof in the upper-right 

corner as pervious area (circle A). In addition, some parts of the soil in the middle right 

part of the image is misclassified as impervious (circle B). In the second row of Figure 3-

8, only three constrained MVNTF ISA abundance maps were shown for each image, 

corresponding to the sMVNTF, vMVNTF, and rMVNTF results with the best 

classification overall accuracy. At less significant levels than the traditional MVNTF 

method, the three constrained MVNTF results also misclassified the upper right parking 

lot or the bright roof next to it as pervious; and misclassified the lower right vegetation as 

impervious.  
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Figure 3-8: The best impervious surface area abundance maps from each spectral 

mixture analysis method (Hydice). 

(the value in the parenthesis is the used constraint parameter) 

3.5.3 Comparison between the matrix-based and tensor-based methods 

By using the same data sources as Chapter 2, the tensor-based spectral unmixing results 

from this Chapter can be compared to the matrix-based spectral unmixing results. In the 

case of the simulated EnMAP image, because of the limitation of the tensor-based 

methods on the shape of the input data, the original data was cropped. Thus, in order to 

make accurate comparison, I cropped the EnMAP results from Chapter 2 to be in the 

same location. The conclusion between Chapter 2 and Chapter 3 results can be found in 

Table 3-5 for the EnMAP image and in Table 3-6 for the Hydice image. Table 3-4 shows 

that the tensor-based methods outperform the matrix-based methods for the simulated 

EnMAP image. Yet, for the Hydice image, no clear advantages can be found in the 

tensor-based methods over the matrix-based methods. The reason for the different 

comparison results may probably lie in the differences in the two datasets. The simulated 

EnMAP image (30m) has a much coarser spatial resolution than the Hydice image (2m). 

Thus, it is possible that the tensor-based subpixel methods work better with the medium 

spatial resolution images than with the high spatial resolutions images. The possible 
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reason may be that the medium-spatial-resolution image has a smoother spatial texture, 

which can be easily learned by the tensor-representation, while the high-spatial-resolution 

image has a heterogeneous spatial texture, which causes confusion between intra- and 

inter-class items. 

Table 3-5: Comparison between NMF-based and MVNTF-based methods (EnMAP). 

Method 

R 

Matrix-

based 

R 

Tensor-

based 

MAD 

Matrix-

based 

MAD 

Tensor-

based 

Accuracy 

Matrix-

based 

Accuracy 

Tensor-

based 

Traditional 0.71 0.75 0.2128 0.1989 82.6% 83.4% 

Sparseness (average) 0.68 0.76 0.2511 0.2317 81.0% 84.4% 

Sparseness (lowest) 0.64 0.75 0.2125 0.1802 77.6% 83.6% 

Sparseness (highest) 0.72 0.79 0.2848 0.2714 83.6% 84.8% 

Volume (average) 0.70 0.76 0.2760 0.2444 82.5% 84.5% 

Volume (lowest) 0.69 0.75 0.2122 0.1856 80.3% 83.7% 

Volume (highest) 0.73 0.79 0.2900 0.2739 84.6% 84.8% 

Nonlinear (average) 0.70 0.75 0.2791 0.1989 82.1% 83.4% 

Nonlinear (lowest) 0.68 0.75 0.2449 0.1988 79.75% 83.4% 

Nonlinear (highest) 0.72 0.75 0.2996 0.1990 82.5% 83.5% 

Table 3-6: Comparison between NMF-based and MVNTF-based methods (Hydice). 

Method R 

Matrix-

based 

R 

Tensor-

based 

MAD 

Matrix-

based 

MAD 

Tensor-

based 

Accuracy 

Matrix-

based 

Accuracy 

Tensor-

based 

Traditional 0.70 0.72 0.2004 0.2297 87.0% 85.10% 

Sparseness (average) 0.68 0.71 0.2294 0.2373 84.1% 84.7% 

Sparseness (lowest) 0.46 0.58 0.1590 0.2185 75.5% 79.2% 

Sparseness (highest) 0.83 0.75 0.3306 0.2592 91.8% 87.0% 

Volume (average) 0.64 0.73 0.2112 0.2338 82.2% 85.8% 

Volume (lowest) 0.32 0.66 0.1693 0.2292 72.8% 84.0% 

Volume (highest) 0.80 0.75 0.3189 0.2493 87.9% 87.0% 

Nonlinear (average) 0.62 0.73 0.2142 0.2318 83.0% 85.7% 

Nonlinear (lowest) 0.42 0.72 0.2004 0.2291 77.6% 85.1% 

Nonlinear (highest) 0.71 0.74 0.2338 0.2361 87.5% 86.4% 
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3.5.4 Computation time 

Lastly, the processing times in seconds for the MVNTF-based hyperspectral SMA 

methods are shown in Table 3-7. There are separately 90000 and 94249 pixels in the 

simulated EnMAP image and the Hydice urban image that need to be processed. It can be 

observed that for both the studied images the three added constraints helped to reduce the 

processing time. This reduction in time is probably due to the narrowed solution space by 

the constraints. In the cases of the two-studied images, one common trend occurs in all 

the three constraints that larger coefficients lead to better time efficiency, as larger 

constraints exert more force on the solution. Despite that the sizes of the two studied 

images are very similar when the Hydice urban image is slightly larger than the EnMAP 

image, the processing times of the EnMAP image are much longer than those of the 

Hydice urban image. Thus, it can be deduced that the size of an image plays a small role 

in determining the processing time of the MVNTF-based unmixing, while the internal 

features of an image determine the time to find the solution. 

  



 

  

 100 

Table 3-7: Processing times in seconds. 

Method  Time (EnMAP) Time (Hydice) 

MVNTF  4810.3 834.8 

sMVNTF (0.01)  5731.2 842.1 

sMVNTF (0.1)  3934.5 874.6 

sMVNTF (0.2)  3741.1 734.1 

sMVNTF (0.5)  2458.2 634.6 

sMVNTF (0.7)  2417.1 581.2 

sMVNTF (1.0)  2003.6 525.4 

sMVNTF (5.0)  - 219.3 

sMVNTF (10.0)  - 265.7 

vMVNTF (0.01)  2458.2 848.0 

vMVNTF (0.1)  3170.8 882.1 

vMVNTF (0.2)  3222.1 795.7 

vMVNTF (0.5)  2425.9 697.5 

vMVNTF (0.7)  2160.9 643.6 

vMVNTF (1.0)  1801.2 582.9 

vMVNTF (5.0)  - 307.9 

vMVNTF (10.0)  - 262.7 

rMVNTF (0.01)  5616.0 1061.8 

rMVNTF (0.1)  5394.8 991.6 

rMVNTF (0.2)  5298.3 891.9 

rMVNTF (0.5)  5142.6 710.4 

rMVNTF (0.7)  5312.2 611.3 

rMVNTF (1.0)  4851.9 566.3 

rMVNTF (5.0)  4788.4 641.1 

rMVNTF (10.0)  - - 

3.6 Conclusion 

This research adopts the newly proposed MVNTF unmixing method for the hyperspectral 

SMA problem. Three additional constraints (sparseness, volume, and nonlinearity) were 

added to the plain MVNTF method, in order to improve the accuracy of impervious 

mapping. Two hyperspectral images with different spectral/spatial resolution and in 
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different scenes were studied: the simulated EnMAP image of Surrey, BC, Canada and 

the Hydice urban image of Copperas Cove, TX, USA. Four MVNTF-based SMA 

methods were tested: MVNTF, sMVNTF, vMVNTF, and rMVNTF. We analyzed the 

ISA mapping results from the aspects of different images and different SMA methods. 

The three research questions in 3.2 were correspondingly addressed below. 

(1) We found that the MVNTF-based hyperspectral SMA methods can successfully 

derive ISA abundance and classification maps. The comparison between the tensor-based 

spectral unmixing from Chapter 3 and the matrix-based spectral unmixing from Chapter 2 

shows that the tensor-based methods obtained a higher accuracy with the simulated 

EnMAP image than the Hydice urban image. 

(2) By equipping three different constraints for SMA purposes, the constrained MVNTF-

based methods provide better accuracies in ISA abundance and classification maps for 

both of the studied images. Using the constrained MVNTF methods, the simulated 

EnMAP image achieves correlation coefficients of 0.79, compared to the correlation 

coefficient of 0.75 from the traditional MVNTF method. The Hydice urban image 

achieves correlation coefficients of 0.75, compared to the correlation coefficient of 0.72 

from the traditional MVNTF. From the abundance maps, the pervious/impervious 

classification maps were generated using thresholds. For both images, the constrained 

MVNTF methods improved the overall accuracy by 2% from the traditional MVNTF and 

reached ~85%, which are as good as the up-to-date ISA studies (Zhang, Weng and Shao 

2017, Zhang and Weng 2016), which often obtained help from the additional spectral 

indices and multi-date or multi-sensor data. 

(3) The abundance maps directly obtained from the MVNTF-based methods 

underestimated the ISA abundance greatly. It is necessary to perform a linear 

normalization on the obtained abundance maps to achieve reliable results. 

(4) The tensor-based image processing methods have gradually gained attention in the 

remote sensing community. The ISA mapping is among the major topics of remote 

sensing studies. No attempt has been made to apply the tensor-based SMA in the ISA 
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mapping before. This study proved that the tensor-based SMA methods have some 

potential in future ISA mapping. 
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4 The application of spectral-spatial representation of hyperspectral 

image in dimension reduction 

Progress in hyperspectral imagery collection and storage during the past decade provides 

new opportunities and challenges. Although hyperspectral imagery with high spectral 

resolution provides a wealth of information, the problem known as the curse of 

dimensionality is an obstacle in myriad hyperspectral imagery applications (Khodr and 

Younes 2011). The necessity of dimension reduction (DR) originates in the redundant 

and noise-abundant nature of hyperspectral data. An appropriate dimension reduction 

(DR) method prepares data for more effective information retrieval by revealing low-

dimensional structures hidden in high-dimensional spaces. Currently, the majority of DR 

methods are spectral-based methods. They focus on preserving the useful information 

from the spectral-domain in the DR process, when the information regarding the spatial 

interpixel correlation is discarded. Recently, a genre of spectral-spatial DR methods were 

proposed to address this problem. Two different spectral-spatial strategies have been 

successively developed: patch-based (Zhou, Peng and Chen 2015, Pu et al. 2014), and 

tensor-patch-based methods (Velasco-Forero and Angulo 2013, Zhang et al. 2013, Deng 

et al. 2018). In detail, the patch-based DR methods learn the spatial context about a pixel, 

as they measure the similarity between two pixels using the two corresponding 

neighborhoods. The tensor-patch-based DR methods benefit from the recently rising 

multilinear algebra solution and can directly process the 3D hyperspectral data to 

preserve the spatial context about a pixel. Both as new spectral-spatial solutions in 

hyperspectral DR, the patch-based and tensor-patch-based methods have the potential to 

play important roles in future remote sensing studies. 

4.1 Background 

4.1.1 Traditional dimension reduction methods 

The dimension reduction (DR) methods can be roughly divided into two categories: 
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unsupervised and supervised. This research focuses on the unsupervised DR methods. 

The traditional unsupervised DR methods, including principle component analysis (PCA) 

(Pearson 1901) and multidimensional scaling (MDS) (Torgerson 1952), are based on 

linear transformations. Specifically, the objective of the PCA algorithm is to maximize 

data variance in the new projection. Mathematically, this objective can be stated as 

finding a linear projection 𝑀  that maximizes the cost function 𝑡𝑟𝑎𝑐𝑒(𝑀𝑇𝑐𝑜𝑣(𝑋)𝑀) , 

where 𝑐𝑜𝑣(𝑋)is the sample covariance matrix of the data 𝑋. This mathematical problem 

can be solved by the eigenproblem: (Hotelling 1933). On the other hand, the MDS aims 

to preserve the pairwise distances between data points during the projection. 

Mathematically, this objective can be stated as finding a linear projection 𝑀  that 

minimizes the cost function ∑ (∥ 𝑥𝑖 − 𝑥𝑗 ∥2−∥ 𝑦𝑖 − 𝑦𝑗 ∥2)𝑖𝑗 , where ∥ 𝑥𝑖 − 𝑥𝑗 ∥2  is the 

Euclidean distance between high-dimensional data points 𝑥𝑖  and 𝑥𝑗  and ∥ 𝑦𝑖 − 𝑦𝑗 ∥2  is 

the Euclidean distance between low-dimensional data points 𝑦𝑖 and 𝑦𝑗. This mathematical 

problem can be solved by the eigenproblem of the Gram matrix (𝐾 = 𝑋𝑋𝑇) of the data 𝑋. 

The PCA and MDS methods have been successfully applied in many DR problems. 

However, with linear transformations, the PCA and MDS methods may not be adequate 

for complex nonlinear datasets. To address this issue, nonlinear variations of the PCA 

and MDS have been proposed (Lee and Verleysen 2007). The kernel PCA is a 

straightforward nonlinear version of PCA. The kernel method has been widely used to 

convert the linear techniques into nonlinear (Shawe-Taylor and Cristianini 2004). The 

kernel PCA reformulates the linear PCA in a high-dimensional space using a chosen 

kernel function. The kernel PCA solves the eigenproblem of the kernel matrix instead of 

the covariance matrix, which generates nonlinear projections (Schölkopf, Smola and 

Müller 1998). Several MDS nonlinear variations were proposed, including Isomap.  The 

Isomap method substitutes the Euclidean distance in the MDS with geodesic distance 

(Tenenbaum, De Silva and Langford 2000), which can also be considered as a kernel 

function. 

The cost functions of the PCA, MDS, and their nonlinear variations are solved based on a 

full matrix. Thus, they naturally weigh large data variance/pairwise distances over small 

ones (Van Der Maaten, Postma and Van den Herik 2009), which leads to better 
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preservation of global information than local structure. In hyperspectral feature extraction 

and classification, the local structure contributes to the differentiation between large 

intra-class variation and small inter-class variation, probably caused by high spatial 

resolution and the large scale of the image. Thus, the above global-information-

preserving DR methods may not be optimal solutions for hyperspectral data (Cheriyadat 

and Bruce 2003). Fortunately, a group of graph-based DR methods have been proposed 

in the beginning of 2000 (Lee and Verleysen 2012). These methods learned the data local 

structure from adjacency graphs/weight matrices, which represents the topology 

information in the data. Based on geometrical theory, the local information can be 

embedded into the original data through an adjacency graph, resulting in flexible 

projections (Lee and Verleysen 2007). By incorporating the adjacency graph in the 

process, the solution lies in a relaxed eigenproblem for a sparse matrix, while the PCA, 

MDS, and their variations solve a rigid eigenproblem for a full matrix. The adjacency 

graph may be generated using either the k nearest neighbors (kNN) or the ϵ -

neighborhoods methods. The initial idea of using the adjacency graph to preserve local 

information was proposed by Roweis and Saul in a DR method called locally linear 

embedding (LLE) (Roweis and Saul 2000). The LLE is based on the fact that each data 

point and its neighbors should lie close after DR. To quantify this fact, the LLE 

constructs a weight matrix with a cost function minimizing the locally linear 

reconstruction error that occurs when one data point is approximated by its neighbors 

according to the adjacency graph. Thus, the objective of the projection from the high-

dimensional to low-dimensional space is to preserve the reconstruction ability among 

each data point’s neighborhood, which makes the projection locally linear but globally 

nonlinear. A linear approximation of the LLE method has been later proposed and named 

neighborhood preserving embedding (NPE) (He et al. 2005). The linear NPE provides a 

faster and more reliable manner for practical use. With the same intuition to preserve 

local structures, another graph-based DR called the Laplacian eigenmaps (LE) was 

proposed by Belkin and Niyogi in 2003 (Belkin and Niyogi 2003). The main advantage 

of the LE method is the use of the Laplacian matrix on the adjacency graph, which helps 

to preserve the location information on distance between data points. Also, different from 
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LLE, the weight matrix in the LE is derived from either a heat kernel or a simple minded 

0-1 assignment. In 2003, He and Niyogi proposed the locality preserving projections 

(LPP) (He and Niyogi 2004). The LPP is a linear approximation of the nonlinear LE. The 

four mentioned graph-based DR methods (LLE, NPE, LE, and LPP) were initially 

designed for and mainly used in computer vision context (Teng et al. 2005, Daniel et al. 

2011, Wang and Wu 2010, Lewandowski et al. 2010, Hu, Feng and Zhou 2007). In the 

study of hyperspectral unsupervised DR, the previous graph-based DR researches are 

limited (Chen and Qian 2007, Ma, Crawford and Tian 2010, Wang and He 2011), as the 

objective and data-representation are very different between computer vision and 

hyperspectral images (Han and Goodenough 2005). Some studies combined the graph-

based methods with supervised DR methods in hyperspectral applications (Li et al. 2012, 

Li et al. 2011, Cui et al. 2013), which is beyond the scope of this study. 

4.1.2 Spectral-spatial dimension reduction methods 

Although the local structure in data can be preserved by the graph-based DR methods, the 

spatial information still is not considered. It is because that these methods are based on 

linear algebra, which considers a hyperspectral image as a 2D matrix with rows of 

observations and columns of variables. However, the actual hyperspectral image is a 3D 

cube with two spatial dimensions along rows and columns indicating the location of the 

pixel and one spectral dimension indicating spectral bands. By vectorizing the original 

image along the spectral dimension, the spatial information is lost. Methods based on two 

different frameworks were proposed to incorporate the spatial information in DR: patch-

based and tensor-patch-based analyses. The patch-based methods continue to use the 

framework from the graph-based methods, but they modified the calculation of adjacency 

graphs and weight matrices. Instead of only comparing two specific pixels, two patches 

covering the spatial neighborhood of the two pixels were considered. In this way, the 

resulting adjacency graphs and weight matrices naturally embrace the spatial information 

in the process. This patch-based framework was adopted in supervised DR (Zhou et al. 

2015, Zhao and Du 2016). However, the patch-based unsupervised DR study has been 

limited in remote sensing community (Mohan, Sapiro and Bosch 2007). 
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On the other hand, recently the multilinear algebra is widely being studied. The trend of 

Datum-as-Is representation sheds light on improved DR methods that preserve the spatial 

information. The term of tensor means a multidimensional array and the number of 

dimensions in a tensor can be called as mode or order. A hyperspectral image is a third-

order tensor with two spatial modes and one spectral mode. Tensor-based analyses often 

cover topics of data compression and denoise (Karami, Yazdi and Mercier 2012, Li et al. 

2015), but they are seldom of DR. The idea of tensor-based DR appeared around 2010. 

Several tensor-based DR methods for various computer vision problems have been 

proposed, including multilinear PCA (Lu, Plataniotis and Venetsanopoulos 2008) and 

tensor LPP (TLPP) and tensor NPE (TNPE) (He, Cai and Niyogi 2006, Dai and Yeung 

2006), concurrent subspaces analysis (Xu et al. 2008), and tensor canonical correlation 

analysis (Luo et al. 2015). These methods usually work with a group of tensors (e.g. face 

dataset), while in the case of hyperspectral image DR we only have one tensor. Later, 

inspired by the patch alignment framework (Zhang et al. 2009), a new tensor-

representation has been proposed for hyperspectral images: tensor patch (Zhang et al. 

2013, Velasco-Forero and Angulo 2013, Du et al. 2017). Under this tensor-patch-based 

framework, the input hyperspectral image needs to be first divided into local patches. In 

this way, the hyperspectral image becomes a 4D dataset, composed by a group of 3D 

tensors. In (Zhang et al. 2013, Velasco-Forero and Angulo 2013), the tensor patch has 

been first applied to supervised DR solutions (discriminant locality alignment and linear 

discriminant analysis). However, the tensor-patch-based unsupervised DR study was 

limited in remote sensing community. Deng, et al. have adopted the patch alignment 

framework in the TLPP, which is the first successful unsupervised tensor-patch-based DR 

method in the field of hyperspectral DR. However, in the paper (Deng et al. 2018), Deng, 

et al., only provided the experiments on the TLPP, while the solution can be further 

extended to TNPE. 

Regarding the adjacency graph and weight matrix, three methods have been compared 

(Deng et al. 2018). They are the Euclidean distance, the image patch distance (IPD) (Pu 

et al. 2014), and the log-Euclidean distance based on the region covariance matrix (RCM) 

(Tuzel, Porikli and Meer 2006). It was stated that hyperspectral imagery is often 
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contaminated by noise and the adjacency graph derived directly from the Euclidean 

distance between original variables may not be accurate. The RCM has been originally 

proposed in computer vision area to characterize a region of interest as the covariance 

matrix along the feature dimensions (Tuzel et al. 2006). In the case of the patches from 

the hyperspectral image, the RCM replaced the original 3D patches with a 𝑑 × 𝑑 2D 

matrix, where 𝑑 is the band number. In the results, the use of RCM outperforms IPD and 

benefits the preserved information in the DR process. However, the RCM does not 

consider the fact that in a patch different parts are different effectual in characterizing and 

recognizing the central pixel. An improved method (weighted RCM (WRCM)) has been 

proposed and it incorporates a weight matrix in the RCM calculation (Qin et al. 2012). 

This research adopted the WRCM in constructing the adjacency map/weight matrix, in 

the hope to improve the DR results. 

From the perspective of preserving spatial information, the patch-based framework 

considers spatial information in the step of constructing an adjacency graph/weight 

matrix, and the tensor-patch-based framework considers spatial information in both steps 

of constructing an adjacency graph/weight matrix and solving eigenproblems. Thus, the 

tensor-patch-based method is a more advanced solution. In regard to space and time 

complexity, the patch-based and tensor-patch-based methods have the same process of 

generating adjacency graphs and weight matrices through a group of 3D patches. 

However, in the next step to create new projections from adjacency graphs and weight 

matrices, the two frameworks have different space and time complexities. Briefly 

speaking, the space and time complexities of patch-based methods are separately second-

power or third-power correlated with the number of dimensions, and the space and time 

complexities of tensor-patch-based methods are separately first-power and second-power 

correlated with the number of samples. For computer vision applications, the dimensions 

of data are usually much larger than the number of data samples. The tensor-patch-based 

method may have less intense computation complexity. On the contrary, for 

hyperspectral images, the dimension of data is only three, when the number of data 

samples can easily be over tens of thousands. Thus, the tensor-patch-based method faces 

much larger computation complexity pressure. The question remains about which patch-
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based or tensor-patch-based DR solutions for hyperspectral image are better for 

preserving information and computation complexity.  

4.2 Objective 

The main objective of Chapter 4 is to upgrade the graph-based DR method to its tensor 

version and further improve the tensor-based method by the use of a new method for the 

intermediate results of adjacency graph/weight matrix, in the hope to improve the land 

cover mapping results. Corresponding to the objective, the following research questions 

are the focus of Chapter 4: 

(1) In the two cases of the simulated EnMAP and Hydice urban images, how will the 

tensor-based DR methods benefit the land cover mapping, compared to the matrix-based 

DR methods? 

(2) What are the differences between the patch-based or tensor-patch-based DR methods? 

Which one is better? 

(3) How does the window size affect the results of the patch-based and tensor-patch-

based DR methods? 

(4) Does the WRCM derived adjacency map/weight matrix improve the final DR results 

in land cover mapping? 

(5) How can the research results help the current land cover mapping study? 

4.3 Method 

This research tested 16 unsupervised DR methods: LPP, LPP with IPD, LPP with RCM, 

LPP with WRCM, NPE, NPE with IPD, NPE with RCM, NPE with WRCM, TLPP, 

TLPP with IPD, TLPP with RCM, TLPP with WRCM, TNPE, TNPE with IPD, TNPE 

with RCM, and TNPE with WRCM. They root in a same origin and can be considered as 

evolved variations to the classical methods. This section will provide a detailed 

explanation of each of the methods and their relations. 
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4.3.1 Dimension reduction methods 

Two groups of DR methods will be studied in this research: patch-based (LPP and NPE 

related) and tensor-patch-based (TLPP and TNPE related) methods. They both account 

for the spectral and spatial information in the data using different strategies.  

4.3.1.1 LPP and NPE 

The LPP (locality preserving projections) and NPE (neighborhood preserving embedding) 

methods are two of the early attempts in adjacency-graph-based methods. They 

separately simplified the nonlinear LE and LLE methods and embrace great simplicity 

and flexibility. They have the same processing manner of three steps, but with different 

objective functions. The three steps are as follows: 

(1) Constructing the adjacency graph G. For a 1D dataset X with n data points, each data 

point becomes a node in the adjacency graph. An edge will be built between two nodes if 

they are “neighbors”. The most common way to decide the neighborhood of one node is 

the k nearest neighbors (KNN) method. The KNN method connects two nodes if they are 

among the k nearest neighbors of each other using Euclidean (Zhong et al. 2015, Gao et 

al. 2015) distance. 

(2) Generating the weight matrix W. The weight matrix is a sparse matrix with a size of 

n × n. In LPP, the values in the weight matrix are commonly calculated by a heat kernel 

and are 0 if two nodes are not connected (He and Niyogi 2004): 

 𝑤𝑖𝑗 = 𝑒−
∥𝑥𝑖−𝑥𝑗∥2

𝑡 . (4-1) 

where ∥∥ is the Euclidean norm. In NPE, the values in the weight matrix are calculated by 

minimizing the function below (He et al. 2005): 

 min ∑ ∥ 𝑥𝑖 − ∑ 𝑤𝑖𝑗𝑥𝑗𝑗 ∥2
𝑖 , (4-2) 

with constraints ∑ 𝑤𝑖𝑗𝑗 = 1, 𝑗 = 1,2, … , 𝑛. 
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(3) Solving the eigenfunction. The objective of the LPP is to ensure that if two data 

points are close to each other in the original space, they should stay close in the projected 

feature space. It can be realized through the minimization problem below: 

 min ∑ (𝑦𝑖 − 𝑦𝑗)2𝑤𝑖𝑗𝑖𝑗 , (4-3) 

where  𝑦𝑖 and 𝑦𝑗 are data points in the projected feature space. He and Niyogi justified 

that the above minimization problem is equivalent to solve the eigenfunction below, 

whose derivation can be found in Appendix C (He and Niyogi 2004): 

 𝑋𝐿𝑋𝑇𝒂 = 𝜆𝑋𝐷𝑋𝑇𝒂, (4-4) 

where the Laplacian matrix L = D − W ; and D𝑖𝑖 = ∑ 𝑊𝑗𝑖𝑗  is a diagonal matrix with 

column sums of W. 

In the case of NPE, the objective function is to keep the reconstruction error among each 

neighborhood small: 

 min ∑ (𝑦𝑖 − ∑ 𝑤𝑖𝑗𝑗 𝑦𝑗)2
𝑖𝑗 . (4-5) 

This minimization problem is also simplified as an eigenfunction: 

 𝑋𝑀𝑋𝑇𝒂 = 𝜆𝑋𝑋𝑇𝒂, (4-6) 

where 𝑀 = (𝐼 − 𝑊)𝑇(𝐼 − 𝑊) and 𝐼 = 𝑑𝑖𝑎𝑔(1, … , 1). 

The derived eigenvector 𝒂 is the resulting projection. In the case of hyperspectral images, 

the original image is reordered into a 1D data along the spectral dimension with n pixels. 

The flowchart of the LPP and NPE methods is shown in Figure 4-1, where the letters in 

red show the calculation method of the adjacency map and weight matrix. 
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Figure 4-1: Flowchart of the LPP and NPE methods. 

4.3.1.2 Tensor LPP and Tensor NPE 

The LPP and NPE methods are able to explore the spectral features of the image in both 

global and local ranges. But, they failed to consider any of the spatial information, as the 

two spatial modes in the hyperspectral image are integrated as one observation mode. 

Due to the increasingly popular multilinear algebra, the tensor representation of data 

provides a natural way to preserve the spatial information. With proper modification, the 

NPE and LPP methods have been upgraded into their tensor versions, separately called 

tensor NPE (TNPE) and tensor LPP (TLPP) (Dai and Yeung 2006, He et al. 2006). The 

TNPE and TLPP methods keep the original dimensions of the data and apply individual 

NPE and LPP on each dimension sequentially.  The TLPP and TNPE have fulfilled this 

goal. One basic tensor terminology and one tensor operations that will be used in the 

TLPP and TNPE are explained below. 
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Definition1 Given a n-mode tensor 𝒜 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑛, the f-mode unfolding of tensor 𝒜 is 

denoted as 𝒜(𝑓) . It flattens the tensor 𝒜  into a matrix 𝒜(𝑓) ∈ ℝ𝐼𝑓×𝐼1…𝐼𝑓−1𝐼𝑓+1…𝐼𝑛 . The 

columns of  𝒜(𝑓) is obtained by fixing all but one mode.  

Definition 2 A f-mode product between a n-mode tensor 𝒜 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑛 and a matrix 

U ∈ ℝ𝐽×𝐼𝑓  gives a tensor 𝒜 ×𝑓 𝑈 ∈ ℛ𝐼1×…𝐼𝑓−1×𝐽×𝐼𝑓+1…×𝐼𝑛 . The element presentation of 

the f-mode product is 

 𝒜 ×𝑓 𝑈𝑖1…𝐼𝑓−1𝑗𝑖𝑓+1…𝑖𝑛
= ∑ 𝒜𝑖1𝑖2…𝑖𝑛

𝑈𝑗𝑖𝑓

𝐼𝑓

𝑖𝑓=1
. (4-7) 

Using the Definition 1, the f-mode unfolding of the f-mode product results can be 

expressed as below: 

 (𝒜 ×𝑓 𝑈)(𝑓) = U𝒜(𝑓). (4-8) 

The TLPP and TNPE methods are also realized through three similar steps like the LPP 

and NPE methods, but with some modifications to account for the tensor representation 

of the data. The application of the TLPP and TNPE in hyperspectral DR is limited. It is 

probably because of the inexplicit tensor representation of hyperspectral data. Here, we 

will explain the TLPP and TNPE with a case of a third-order tensor representing a 

hyperspectral image. The given 3D hyperspectral image 𝒳 ∈ ℝ𝐼×𝐽×𝐾  is spatially 

segmented into multiple 3D patches with the same window size m 𝒳𝑞 ∈ ℝ𝑚×𝑚×𝐾, where 

I and J are the row and column numbers representing the spatial location and K is the 

spectral band number. This process creates a new 4D dataset from the original data. Then 

a certain number n of training patches are selected as input to the TLPP/TNPE algorithms 

with the following three steps: 

(1) Constructing the adjacency graph G. Each of the n training cubes from the 

hyperspectral image becomes a node in the adjacency graph. An edge will be built 

between two nodes if they are “neighbors”. The most common way to decide the 

neighborhood of one node is the k nearest neighbors (KNN) method.  
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(2) Generating the weight matrix W. The TLPP and TNPE uses the same methods 

correspondingly as the above LPP and NPE methods.  

(3) Solving the eigenfunction. Like the LPP, the objective function of the TLPP method 

also aims to ensure that if two data points are close to each other in the original space, 

they should stay close in the projected feature space. It can be realized through the 

minimization problem below (Dai and Yeung 2006): 

 min ∑ (𝒴𝑖 − 𝒴𝑗)2𝑊𝑖𝑗𝑖𝑗 , (4-9) 

where 𝒴𝑖  and 𝒴𝑗  are hyperspectral training cubes in the projected feature space. This 

minimization problem can be solved by the eigenfunction below: 

 

(∑ 𝑊𝑖𝑗(𝒴𝑖
(𝑓)

− 𝒴𝑗
(𝑓)

)(𝒴𝑖
(𝑓)

− 𝒴𝑗
(𝑓)

)𝑇
𝑖𝑗 )𝐔𝒇 =

λ(∑ 𝒴𝑖
(𝑓)

𝒴𝑖
(𝑓)𝑇

𝐷𝑖𝑖𝑖 )𝐔𝒇, f = 1, 2, 3,  

(4-10) 

where  D𝑖𝑖 = ∑ 𝑊𝑗𝑖𝑗 .  

The TNPE method has the same objective as to keep the reconstruction error among each 

neighborhood small: 

 min ∑ ∥ 𝒴𝑖 − ∑ 𝑊𝑖𝑗𝒴𝑗𝑗 ∥𝑖 , (4-11) 

The above minimization problem can be solved by the eigenfunction below: 

 

(∑ (𝒴𝑖
(𝑓)

− ∑ 𝑊𝑖𝑗𝑗 𝒴𝑗
(𝑓)

)(𝒴𝑖
(𝑓)

− ∑ 𝑊𝑖𝑗𝑗 𝒴𝑗
(𝑓)

)𝑇
𝑖 )𝐔𝒇 =

λ(∑ 𝒴𝑖
(𝑓)

𝒴𝑖
(𝑓)𝑇

𝑖 )𝐔𝒇, f = 1, 2, 3,  

(4-12) 

For both TLPP and TNPE, the eigenfunction is solved along each of the three dimensions 

to achieve the projections 𝐔𝟏 , 𝐔𝟐 , and 𝐔𝟑 . The flowchart of the TLPP and TNPE 

methods is shown in Figure 4-2, where the letters in red show the calculation method of 

the adjacency map and weight matrix. 
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Figure 4-2: Flowchart of the TLPP and TNPE methods. 

4.3.2 Patch-based adjacency graphs and weight matrices 

From the above explanations on LPP, NPE, TLPP, and TNPE methods, one can easily 

understand the important role played by the adjacency graph and weight matrix. The 

effectiveness of the DR heavily depends on the information captured in the adjacency 

graph and weight matrix. In the traditional graph-based methods, the original data are 

used to calculate the adjacency graph and weight matrix. Three different methods 



 

  

 117 

considering both spectral and spatial information in the data were used in this research to 

produce adjacency graphs and weight matrices: IPD, RCM, and WRCM. The IPD has 

been exclusively proposed for hyperspectral similarity measure. The RCM was newly 

introduced to hyperspectral DR from computer vision. The WRCM is a newer method 

developed from RCM. 

4.3.2.1 Moving window 

Before introducing the three spatial-spectral methods, we first consider the moving 

window cases for three different pixel locations: at the corner, on the edge and in the 

image. For a given pixel, a group of 𝑤 × 𝑤  pixels should be decided as the spatial 

neighbors, where 𝑤 is the window size. If the pixel is located in the image, the moving 

window can naturally cover its spatial neighbors. If the pixel lies on the edges or at the 

corner of the image, we used a reflection transformation to fill the non-existing spatial 

neighbors. Examples of the three pixel locations are shown in Figure 4-3. 

 

Figure 4-3: Spatial neighbors of three cases 

(a) At the corner, (b) On the edge, and (c) In the image. 

4.3.2.2 Image patch distance 

The IPD is specially proposed to be used in adjacency-graph based methods like LPP and 

NPE. This method takes advantage of both spatial and spectral information in the data. 

For any two pixels in the hyperspectral image, the IPD calculate their similarity based on 

the small neighborhood (spatial window) of the two pixels. Given two pixels 𝑥𝑖 and 𝑥𝑗 
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from a hyperspectral image, a spatial window of size 𝑤 is used to find the neighborhoods 

for the two pixels 𝑥𝑖 and 𝑥𝑗. The neighborhoods are correspondingly denoted as Ω(𝑥𝑖) =

{𝑎1, 𝑎2, … , 𝑎𝑤2} and Ω(𝑥𝑗) = {𝑏1, 𝑏2, … , 𝑏𝑤2}. The IPD is defined as 

 

d𝐼𝑃𝐷(𝑥𝑖, 𝑥𝑗) = ∑ 𝑑𝑢(𝑎𝑙, 𝑏𝑙)
𝑤2

𝑙=1 , 

𝑑𝑢(𝑎𝑙 , 𝑏𝑙) = max ( min
𝑏∈Ω(𝑥𝑗)

𝑑(𝑎𝑙, 𝑏), min
𝑏∈Ω(𝑥𝑖)

𝑑(𝑏𝑙, 𝑎)), 
(4-13) 

where 𝑑(𝑎, 𝑏) is a spectral similarity function comparing a to b. Using this equation, the 

similarity between two pixels is measured with their surrounding neighbors. Thus, the 

IPD incorporates both the spatial and spectral information. Figure 4-4 shows the 

calculation of IPD with a 3 × 3 spatial window size. 

 

Figure 4-4: Flowchart to calculate the IPD with a 𝟑 × 𝟑 spatial window (Pu et al. 

2014). 

4.3.2.3 Region covariance matrix 

The RCM is an advantageous region descriptor proposed by Tuzel, et al. This method 

describes a given region of interest with the covariance matrix of the feature points. 
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Given a region of interest R ∈ ℝ𝑚×𝑚×𝐾 , where 𝑚  is the window size, from the 

hyperspectral image 𝒳 ∈ ℝ𝐼×𝐽×𝐾, it can be represented by a 𝐾 × 𝐾 covariance matrix: 

 𝐶𝑅 =
1

𝑛
∑ (𝑟𝑖 − 𝜇)(𝑟𝑖 − 𝜇)𝑇𝑛

𝑖=1 , (4-14) 

where  𝑛 = 𝑚 × 𝑚  is the number of pixels in the regions of interest; 𝑟𝑖  is the 𝐾 -

dimensional feature point in R; and 𝜇 =
1

𝑛
∑ 𝑟𝑖

𝑛
𝑖=1 . The resulting RCM is a symmetric 

matrix along the diagonal. The RCM calculates the correlation among features in a region 

of interest and has no information regarding the location and number of pixels. It has a 

few properties: if two features (a and b) tend to increase together, then 𝐶𝑅(𝑎, 𝑏) > 0; if 

feature a tends to decrease when feature b increases, then 𝐶𝑅(𝑎, 𝑏) < 0; and if two 

features (a and b) are independent, then 𝐶𝑅(𝑎, 𝑏) = 0. In computer vision, the commonly 

used image features include pixel locations (x, y), color (RGB) values, intensity, and the 

norm of the first and second order derivatives of the intensities with respect to x and y. 

An example of two orthophotos separately covering one grass area and one residential 

area is shown in Figure 4-5. 
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Figure 4-5: Example results from RCM. 

Since covariance features lie on a Rimannian manifold, a log-Euclidean distance is 

chosen to compute the distance between two RCM: 

 𝐷𝐿𝐸(𝐶𝑖, 𝐶𝑗) =∥ log(𝐶𝑖) − log (𝐶𝑗) ∥, (4-15) 

where 𝑙𝑜𝑔 represents the matrix logarithm. 

4.3.2.4 Weighted region covariance matrix 

The WRCM was proposed as an improved version of RCM. Reformulates Equation (4-14) 

from RCM as (Qin et al. 2012): 
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 𝐶𝑊 =
1

2

1

𝑛×𝑛
∑ ∑ (𝑟𝑖 − 𝑟𝑗)(𝑟𝑖 − 𝑟𝑗)𝑇𝑛

𝑗=1
𝑛
𝑖=1 , (4-16) 

by replacing 𝜇 as: 

  𝜇 =
1

𝑛
∑ 𝑟𝑖

𝑛
𝑖=1  , (4-17) 

From Equation (4-16), we can see that each pair of pixels in the current patch contributes 

equally to the final results, which fails to reflect the spatial distribution in the patch. The 

WRCM method introduces a weight term in the calculation: 

𝐶𝑊 =
1

2

1

𝑛×𝑛
∑ ∑ (𝑟𝑖 − 𝑟𝑗)(𝑟𝑖 − 𝑟𝑗)𝑇𝑛

𝑗=1 𝑤𝑖𝑗
𝑛
𝑖=1 , (4-18) 

where 𝑤𝑖𝑗 is calculated as Equation (4-1). Equation (4-18) can be further deduced as 

below: 

  𝐶𝑊 = 𝑋𝐿𝑋𝑇 , (4-19) 

where the Laplacian matrix L = D − W; D𝑖𝑖 = ∑ 𝑊𝑗𝑖𝑗  is a diagonal matrix with column 

sums of W; and 𝑋  is the original patch. The measure of distances between weighted 

covariance matrices are adopted from the original RCM method (Tuzel et al. 2006) and is 

based on an eigenproblem: 

 𝐷(𝐶𝑖, 𝐶𝑗) = √∑ 𝑙𝑛2𝜆𝑖(𝐶1，𝐶2)𝑛
𝑖=1 , (4-20) 

where 𝜆𝑖(𝐶1，𝐶2) is the generalized eigenvalues of 𝐶1 and 𝐶2, computed from 

 𝜆𝑖𝐶1𝑥𝑖 − 𝐶2𝑥𝑖 = 0, i = 1, … , d (4-21) 

where 𝑥𝑖 are the generalized eigenvectors. The resulting WRCM is a symmetric matric 

along the diagonal. Similar to the RCM, the WRCM calculates the correlation among 

features in a region of interest and has no information regarding the location and number 

of pixels. Based on the RCM, the WRCM reflects the weighted feature correlation, when 
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those feature correlations of pixels similar to the center pixel exert more effect on the 

results than those non-similar pixels. An example of two orthophotos separately covering 

one grass area and one residential area is shown in Figure 4-6. 

 

Figure 4-6: Example results from WRCM. 

4.3.3 Computation complexity 

The construction of adjacency graphs and weight matrices is one major part in the DR 

methods used in this research. From the above descriptions, the computational 

complexity and memory consumption of this part is very considerable, especially for 

hyperspectral image DR. Specifically, for calculating the adjacency graphs and weight 
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matrices using the original image without patch-based modifications, the computation 

complexities are separately O(d𝑛2) and O(d𝑛𝑘3) (Chen and Qian 2007), where d is the 

input dimensionality, k the number of nearest neighbours, 𝑛 is the number of data points. 

For hyperspectral images, the value of d can easily reach 100 to 200, and the value of 𝑛 

in testing data is usually 512 × 512 or 1024 × 1024. While in real-life cases, it can be 

even larger. Furthermore, in order to consider the spatial information for each pixel, 

patch-based adjacency graphs and weight matrices are calculated with much higher 

complexity. The distance calculation between each pair of data points is a big burden in 

this process. The heavy computation may be another reason of the limited applications of 

the graph-based methods in hyperspectral studies. In TLPP and TNPE, this problem is 

solved by selecting a group of training samples to derive the resulting projections, instead 

of using the entire dataset. This research adopts this solution for both LPP/ NPE- and 

TLPP/TNPE- based methods as 20% of data was randomly selected as training sample 

for DR. In order to further accelerate the process, this research adopted a parallel 

computation manner provided by the parallel computing toolbox from Matlab. The 

parallel computation allows multiple sessions to simultaneously calculate blocks of 

distances. In the case of the RCM and WRCM methods, the covariance matrices 

calculation for hundreds of bands consumes a large amount of time. The traditional RCM 

method used in computer vision often processes intensity, gradient, and Laplacian 

magnitude of the original image (Tuzel et al. 2006). Later, improved RCM methods tend 

to use Gabor features of the image to calculate covariance, which further enhance the 

discrimination ability (Pang, Yuan and Li 2008, Qin et al. 2012). In order to efficiently 

obtain the covariance matrix in RCM and WRCM methods, this study used the first three 

principal components of the original image to create RCM and WRCM. 

4.3.4 Evaluation of the dimension reduction method  

In order to evaluate the DR (dimension reduction) results, classification was performed 

on the series of dimension-reduced images. The support vector machine (SVM) classifier 

was used in this study. As benchmark, we also applied the SVM classifier on the original 

image and the PCA dimension-reduced result. We used two testing hyperspectral images 
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with different spatial resolution. The two images are separately located in urban and 

suburban environments, focusing on targets of different scales. The differences between 

the two images allow us to compare the impact of different images on the choice of 

window size in the calculation of the adjacency graphs and weight matrix. In the results, 

we generated the classification confusion matrices, providing the overall accuracy, 

producer’s accuracy, and user’s accuracy. 

4.4 Experiments and results 

In this section, we will first illustrate the overall design of our experiments and the 

hyperspectral images used in the analysis. The results of the DR and classification are 

shown. 

4.4.1 Studied hyperspectral images and setup 

This study used two hyperspectral images. The first hyperspectral image depicts the 

urban area in City of Surrey, BC, Canada (Figure 4-7). It was obtained by the airborne 

CASI-1500 sensor during April 2013. The image contains 72 spectral bands from visible 

to near-infrared portion (0.36 µm to 1.05 µm) with a 9.6 nm band interval. The spatial 

resolution of the image is 1m. We selected a small part from the CASI hyperspectral data 

of size 150 × 150. The image is located in a mixed commercial and residential area, 

containing large impervious surface area as well as green spaces. The data was pre-

processed prior to use in this study. The three major pre-processing steps include the 

following: 1) radiometric and spectral calibration converting raw brightness values into 

spectral radiance values; 2) georeference by an inertial measurement unit (IMU)5 and a 

GPS system; and 3) atmospheric adjustment to remove effects of atmospheric absorption 

and convert radiance to reflectance data. The second image is the widely used test data: 

Indian Pines (Figure 4-8). The Indian Pines dataset is collected by the AVIRIS sensor in 

1992 over an agricultural area in Northern Indiana, IN, USA. The spectral bands of the 

Indian Pines data span from 400-2500 nm. After deleting the 20 bands that are affected 

by water absorption, 200 bands were used in this study. The spatial resolution is 20m. 

                                                 
5 The IMU is a device that records aircraft motion and attitude. 
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The Indian Pines image has a size of 145 × 145  and contains 10249 samples in 16 

different classes. 

 

Figure 4-7: Surrey, BC, CASI hyperspectral image in RGB. 

 

Figure 4-8: Indian Pines, AVIRIS hyperspectral image in RGB. 
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To fulfill the objectives of this research, we designed our experiment as follows. Among 

the 16 tested DR methods, half of them are patch-based methods (LPP, LPP with IPD, 

LPP with RCM, LPP with WRCM, NPE, NPE with IPD, NPE with RCM, NPE with 

WRCM), and half of them are tensor-patch-based methods (TLPP, TLPP with IPD, TLPP 

with RCM, TLPP with WRCM, TNPE, TNPE with IPD, TNPE with RCM, and TNPE 

with WRCM). In order to obtain an appropriate local window size and preserved 

dimensions, several cross-validation experiments were performed respectively. For the 14 

methods that apply the original data, IPD, RCM, or WRCM, the window sizes are 

correspondingly set as 3 × 3, 5× 5, 7 × 7, 9× 9, 11× 11, and 13 × 13. From now on, the 

three adjacency map/weight matrix methods may be represented by its name followed by 

a parenthesis with a number, e.g. IPD (3), where the number in a parenthesis indicates the 

window size. A set of preserved dimensions (2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 

28, and 30) was chosen. The dimension-reduced images were then classified using SVM 

classifier. For the first studied image, we manually selected training samples, covering 

six land cover types: trees, grasses, concrete, asphalt, and dark shingles. Then, we used 

the orthophoto data taken one month earlier than the CASI hyperspectral data in the same 

location as reference data. The orthophoto data has a 10 cm spatial resolution and 

contains three bands of RGB. In the case of the second studied image, reference data are 

available on GIC’s website 6  (Computational Intelligence Group). In the suburban scene, 

16 land cover types were identified: alfalfa, corn (no till), corn (minimal till), corn, grass-

pasture, grass-tree, grass-pasture-mowed, hay-windrowed, oats, soybean (no till), 

soybean (minimal till), soybean-clean, wheat, woods, building-grass-tree-drive, and 

stone-steel-tower. We randomly selected training samples from the original Indian Pines, 

AVIRIS image, and the remaining pixels act as testing samples. 

                                                 
6http://www.ehu.eus/ccwintco/index.php?title=P%C3%A1gina_principal  

http://www.ehu.eus/ccwintco/index.php?title=P%C3%A1gina_principal
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4.4.2 Dimension reduction results 

4.4.2.1 Patch-based dimension reduction results 

In the case of patch-based DR, eight methods were processed (LPP, LPP with IPD, LPP 

with RCM, LPP with WRCM, NPE, NPE with IPD, NPE with RCM, NPE with WRCM). 

Except LPP and NPE, the other six methods were repeatedly applied using six different 

window sizes to calculate the patch-based adjacency graphs and weight matrices. Thus, in 

total there are 38 dimension-reduced images for each studied hyperspectral image. Based 

on the following classification results, for each patch-based method, the first band of the 

DR result with the window size that has the best overall accuracy, shown below 

separately for the Surrey, CASI (Figure 4-9) and Indian Pines, AVIRIS (Figure 4-10) 

images. The first band of the DR result should preserve the most amount of useful 

information from the original image. One noticeable difference between the LPP-based 

and NPE-based methods is that the patch-based LPP methods have a fuzzy effect over the 

image. This fuzzy effect happens mainly among unified areas of the same land cover 

types, while the boundaries between different land cover types are well kept with less of a 

fuzzy effect. Compared to RCM- and WRCM-based LPP DR method, the IPD-based LPP 

method delivers the fuzziest results. 
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Figure 4-9: First band of the dimension-reduced images with the window size (in 

parentheses) that has the best overall accuracy (CASI image). 

 

Figure 4-10: First band of the dimension-reduced images with the window size (in 

parenthesis) that has the best overall accuracy (AVIRIS image). 

4.4.2.2 Tensor-patch-based dimension reduction results 

In the case of tensor-patch-based DR, there are also eight methods (TLPP, TLPP with 

IPD, TLPP with RCM, TLPP with WRCM, TNPE, TNPE with IPD, TNPE with RCM, 

and TNPE with WRCM). The eight tensor-patch-based DR methods were repeatedly 

applied using six different window sizes to calculate the patch-based adjacency graphs 

and weight matrices. Thus, in total there are 48 dimension-reduced images for each 

studied hyperspectral image. Based on the following classification results, for each 

tensor-patch-based method, the first band of the DR result with the window size that has 

the best overall accuracy was shown below separately for the Surrey, CASI (Figure 4-11) 

and Indian Pines, AVIRIS (Figure 4-12) images. Compared to the patch-based results, the 

tensor-patch-based DR results are fuzzier. In both of the studied images, the modified 

TLPP and TNPE methods that use the IPD-, RCM-, and WRCM-produced adjacency 
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graph/weight matrix generate fuzzier images than the traditional TLPP and TNPE 

methods. Different from the patch-based methods, the IPD-based TLPP and TNPE 

resulted in the least fuzzy image compared to the RCM- and WRCM-based TLPP and 

NPE methods. 

 

Figure 4-11: First band of the dimension-reduced images with the window size (in 

parentheses) that has the best overall accuracy (CASI image). 
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Figure 4-12: First band of the dimension-reduced images with the window size (in 

parentheses) that has the best overall accuracy (AVIRIS image). 

4.4.3 Classification results 

In order to determine the effectiveness of the DR methods, we used the SVM classifier to 

generate a series of classification maps. A group of 471 training samples and a group of 

2610 training samples were separately generated for the Surrey, BC, CASI and Indian 

Pines, AVIRIS images respectively (Figure 4-11 and 4-12). For comparison, the SVM 

classification results of the original image and the PCA dimension-reduced results were 

also generated. In the case of PCA DR, classification was performed with 15 sets of 

preserved bands (2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, and 30). To evaluate the 

classification results, one set of 13740 and one set of 7288 testing points were generated 

separately for the Surrey, BC, CASI and Indian Pines, AVIRIS images (Figure 4-13 and 

4-14).  



 

  

 131 

 

Figure 4-13: Training and testing samples (CASI image). 

 

 

Figure 4-14: Training and testing samples (AVIRIS image). 
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Figure 4-15 shows the classification results of the original image and the best 

classification results from the 15 PCA classification maps for the Surrey, BC, CASI 

image. Figure 4-16 shows the classification results of the original image and the best 

classification results from the 15 PCA classification maps for the Indian Pines, AVIRIS 

image. The overall accuracies of the original images are 79.1% for the Surrey, CASI 

image and 80.1% for the Indian Pines, AVIRIS image. The best overall accuracies for the 

PCA images are 79.0% for the Surrey, BC, CASI image and 83.4% for the Indian Pines, 

AVIRIS image. In the classification results of the Surrey, BC, CASI image, the most 

noticeable error happens in shadow areas in Circle A and B, where trees are misclassified 

as dark shingle. The other noticeable error is that the painted asphalt areas are 

misclassified as concrete, with case in Circle C. In the classification results of the Indian 

Pines, AVIRIS image, both the original- and PCA-derived classification maps have small 

misclassified areas within most croplands. Yet, the PCA works better in several crop 

lands in Circle A, B, and C. 

 

Figure 4-15: Original image and PCA (preserved dimensions) image classification 

(CASI image). 
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Figure 4-16: Ground truth, original image classification, and PCA (preserved 

dimensions) image classification (AVIRIS image). 

4.4.3.1 Patch-based dimension reduction methods 

For the 38 dimension-reduced images derived for each studied image using the patch-

based methods, each will be classified 15 times by the SVM classifier using different 

amounts of preserved bands: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, and 30. In 

total, we have classification results for 38 × 15 situations for each of the studied images. 

The overall accuracy is the most common standard for comparing classification 

performances. It is calculated by dividing the number of pixels that are correctly 

classified by the total number of pixels. Regarding the eight different LPP- and NPE-

based DR methods, the highest overall accuracies among different window sizes are 

shown in Table 4-1. It can be observed that the LPP and NPE versions of DR methods, 

separately targeting at preserving distance between pixels and preserving reconstructing 

weights between pixels and their neighbors, have similar overall accuracies. For both of 

the studied hyperspectral images, the LPP and NPE methods are able to pack the useful 

information within fewer bands and provide a higher overall accuracy than the traditional 

PCA method. With proper window size, the tested three patch-based methods (IPD, RCM, 
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and WRCM) boost the overall accuracy from the traditional LPP and NPE methods. The 

IPD-based LPP and NPE methods tend to achieve better classification accuracy with 

smaller window sizes, and contrarily, the RCM- and WRCM-based LPP and NPE 

methods tend to achieve better classification accuracy with larger window sizes. In most 

cases, the WRCM-based LPP and NPE methods outperform the other patch-based 

methods. 

Table 4-1: Highest overall accuracy among patch-based dimension reduction 

methods. 

Surrey, BC, CASI 

Method 
OA 

Indian Pines, AVIRIS 

Method 
OA 

LPP 79.56% LPP 79.7% 

LPP+IPD (3) 80.15% LPP+IPD (3) 77.8% 

LPP+RCM (7) 87.27% LPP+RCM (13) 85.6% 

LPP+WRCM (7) 87.32% LPP+WRCM (13) 85.7% 

NPE 86.32% NPE 73.6% 

NPE+IPD (9) 85.34% NPE+IPD (3) 80.0% 

NPE+RCM (11) 86.84% NPE+RCM (11) 86.7% 

NPE+WRCM (13) 87.11% NPE+WRCM (11) 86.6% 

*OA: overall accuracy. 

*Number in bold font indicates the highest accuracies separately among LPP-, NPE-, 

TLPP-, and TNPE-based methods. 

*The number in each parenthesis after the method is the corresponding window size for 

the highest overall accuracy. 

 

The best classification results from each LPP- and NPE-based method are shown in 

Figure 4-17 for Surrey, BC, CASI image and in Figure 4-18 for Indian Pines, AVIRIS 

image. Compared to the classification results from the original and PCA-derived images 

in Figure 4-15, the tree area in shadow (circle A) in Figure 4-15 is better correctly 

classified and the painted asphalt areas are less misclassified as concrete (circle C). Yet, 

the tree areas in shadow (circle B) still suffer from misclassification. In the Surrey, BC, 

CASI image classification maps (Figure 4-17), the LPP-based methods appear to be more 

accurate in determining concrete roof (circle D). Contrarily, the NPE-based methods 

appear to be more accurate in determining dark shingle roof (circle E). Further, LPP-

based methods tend to misclassify tree areas as grass areas (circle F). Considering the 

three different patch-based adjacency graph/weight matrix calculation methods, the IPD-

based method provides the worst results in both LPP- and NPE-based DR. In the Indian 
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Pines, AVIRIS image classification maps (Figure 4-18), the small portion of 

misclassified areas were eliminated, compared to the classification maps in Figure 4-16.  

 

Figure 4-17: Land cover classification maps derived from patch-based dimension-

reduced images (CASI image). 

(The number in each parenthesis after the method is the corresponding window size 

for the highest overall accuracy.) 
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Figure 4-18: Classification maps for patch-based DR results (AVIRIS image) 

(The number in each parenthesis after the method is the corresponding window size 

for the highest overall accuracy.) 

4.4.3.2 Tensor-patch-based dimension reduction methods 

For the 48 dimension-reduced images derived for each studied image using the tensor-

patch-based methods, each will be classified 15 times by the SVM classifier using 

different amounts of preserved bands: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, and 

30. In total, we have classification results for 48 × 15 situations for each of the studied 

images. Regarding the eight different TLPP- and TNPE-based DR methods, the highest 

overall accuracies among different window sizes are shown in Table 4-2. It can be 

observed that the TLPP and TNPE versions of DR methods, separately targeted at 

preserving distance between pixels and preserving reconstructing weights between pixels 

and their neighbors, have similar overall accuracies. For both of the studied hyperspectral 

images, the TLPP and TNPE methods are able to achieve higher overall accuracies than 

the above LPP and NPE methods.  With proper window sizes, the tested three patch-
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based methods (IPD, RCM, and WRCM) boost the overall accuracy from the traditional 

TLPP and TNPE methods. The IPD-based TLPP methods tend to achieve better 

classification accuracy with larger window sizes, and contrarily, IPD-based TNPE 

methods tend to achieve better classification accuracy with smaller window size. The 

RCM- and WRCM-based TLPP and TNPE methods tend to achieve great classification 

accuracy between window sizes of 7 × 7 to 11× 11. In most cases, the WRCM-based 

TLPP and TNPE methods outperform the other patch-based methods. 

Table 4-2 Highest overall accuracy among tensor-patch-based DR methods. 

Surrey, BC，CASI 

Method 
OA 

Indian Pines, 

AVIRIS 

Method 

OA 

TLPP (5) 86.80% TLPP (5) 93.3% 

TLPP+IPD(3) 89.78% TLPP+IPD(13) 94.7% 

TLPP+RCM(12) 91.06% TLPP+RCM(7) 98.4% 

TLPP+WRCM(12) 91.27% TLPP+WRCM(9) 99.5% 

TNPE (3) 84.00% TNPE (5) 95.1% 

TNPE+IPD(5) 89.23% TNPE+IPD(3) 95.0% 

TNPE+RCM (7) 90.67% TNPE+RCM (11) 98.3% 

TNPE+WRCM(9) 90.58% TNPE+WRCM(11) 98.4% 

*OA: overall accuracy. 

*Number in bold font indicates the highest accuracies separately among LPP-, NPE-, 

TLPP-, and TNPE-based methods. 

*The number in each parenthesis after the method is the corresponding window size for 

the highest overall accuracy. 
 

The best classification results from each method are shown in Figure 4-19 for Surrey, BC, 

CASI image and in Figure 4-20 for Indian Pines, AVIRIS image. Compared to the above 

classification results from patch-based methods, the classification results from tensor-

patch-based methods suffer much less from small misclassified areas for both of the 

studied images. In Figure 4-19, the problem of misclassified tree under shadow that 

appears at different levels in the results of PCA, LPP, and NPE methods is greatly 

alleviated (circle A and B). The misclassification of painted asphalt is alleviated in TLPP, 

TNPE, and their IPD versions, and is completely avoided in RCM- and WRCM-based 

TLPP and TNPE methods (circle C). The misclassifications of concrete and dark shingle 

roofs (circle D and E) and grass (circle F) are also eliminated in the tensor-patch-based 
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methods, compared to patch-based methods. In Figure 4-20, the small misclassified areas 

within most of the croplands are avoided. In circle A and D, TNPE-based results show 

better accuracy than the TLPP-based method. 

 

Figure 4-19: Classification maps for tensor-patch-based DR results (CASI image). 

(The number in each parenthesis after the method is the corresponding window size 

for the highest overall accuracy.) 
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Figure 4-20: Classification maps for tensor-patch-based DR (AVIRIS image). 

(The number in each parenthesis after the method is the corresponding window size 

for the highest overall accuracy.) 

4.5 Discussion 

In this section, we will separately discuss the three contributions of this research listed in 

4.1. 

4.5.1 Comparison between patch-based and tensor-patch based 

dimension reduction methods 

From the classification results, we can deduce that both patch-based and tensor-patch-

based DR methods increase the overall accuracy from the traditional methods by 

including spatial information in process. In the case of the Surrey, BC, CASI image, the 

tensor-patch-based methods achieve ~5% higher overall accuracy than the patch-based 
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methods. In the case of the Indian Pines, AVIRIS image, the tensor-patch-based methods 

achieve ~10% higher overall accuracy than the patch-based methods. This is because the 

tensor-patch-based methods incorporate more spatial information in DR than the patch-

based method. The Surrey, BC, CASI image of urban scene has more irregular shapes 

and more abrupt changes in land cover types than the Indian Pines, AVIRIS image of the 

agricultural scene. In other words, the Indian Pines, AVIRIS image has more different 

local spatial patterns between different land cover types than the Surrey, BC, CASI image. 

Thus, the Indian Pines, AVIRIS image benefited more from the preserved spatial 

information than the Surrey, BC, CASI image. Furthermore, the Surrey, BC, CASI image 

has a much higher spatial resolution of 1 m than the 20 m spatial resolution of the Indian 

Pines, AVIRIS image. The coarse spatial resolution of the Indian Pines, AVIRIS image 

may also contribute to the better performance of the tensor-patch-based methods. The 

coarse spatial resolution leads to smoother land cover change, which decreases the local 

spatial distinction between the same land cover and increase the local spatial distinction 

between different land cover. Another finding relates to the different objectives of the 

LPP/TLPP and NPE/TNPE, which separately target at preserving distance between pixels 

and preserving reconstructing weights between pixels and their neighbors. The 

LPP/TLPP methods provides better results in the Surrey, BC, CASI image, while the 

NPE/TNPE methods provides better results in the Indian Pines, AVIRIS image. In 

addition, The IPD-derived adjacency graph/weight matrix works better with the tensor-

patch-based methods than with the patch-based methods for both of the studied images. 

4.5.2 WRCM 

From the Table 4-2 and 4-3 above, it can be observed that WRCM-based patch/tensor-

patch methods often achieve the best overall accuracy among the three different patch-

based adjacency graph/weight matrix calculation methods. In addition, the individual 

producer’s and user’s accuracy of each class were calculated for the classification results 

of the highest overall accuracies within the LPP-, NPE-, TLPP-, and TNPE-group of 

methods. The producer’s accuracy reflects the omission error when a class A pixel fails to 

be classified as class A, and the user’s accuracy reflects the commission error when a 

class B pixel is accidentally classified as class A. Table 4-3, 4-4, 4-5, and 4-6 separately 
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show the producer’s and user’s accuracies for the Surrey, BC, CASI image. Table 4-7, 4-

8, 4-9, and 4-10 separately show the producer’s and user’s accuracies for the Indian Pines, 

AVIRIS image. In the case of the Surrey, BC, CASI image (Table 4-3, 4-4, 4-5, and 4-6), 

the WRCM-based method does not have obvious advantages over the IPD- and RCM-

based methods. Some common errors for most of the methods include: (1) both omission 

and commission errors in the class of grass; (2) omission errors in the class of concrete; 

and (3) commission error in the class of dark shingle. On the other hand, in the case of 

the Indian Pines, AVIRIS image (Table 4-7, 4-8, 4-9, and 4-10), the WRCM-based 

method shows overwhelming superiority over the IPD- and RCM-based methods. This 

may be due to the different spatial pattern found in the urban and agricultural 

environments. Also, agreeing with the overall accuracy, the NPE/TNPE methods have a 

higher producer’s and user’s accuracy in the Indian Pines, AVIRIS image. 

Table 4-3: Producer’s accuracies for patch-based DR methods (CASI image). 

Producer’s 

accuracy (%) 

PCA LPP LPP 

IPD 

LPP 

RCM 

LPP 

WRCM 

NPE NPE 

IPD 

NPE 

RCM 

NPE 

WRCM 

Tree 84.72 91.39 87.22 85.36 85.59 89.06 87.54 92.77 92.98 

Grass 65.35 65.46 67.83 89.29 89.14 76.61 88.86 89.71 90.00 

Asphalt 81.25 77.14 87.43 88.36 87.50 90.02 84.4 84.53 84.11 

Concrete 65.03 66.80 62.43 90.95 90.23 66.89 68.36 73.96 77.11 

Dark shingle 83.12 81.31 70.88 84.08 87.53 95.48 95.68 89.42 89.86 

*Number in bold font indicates the highest accuracies separately among patch-based and tensor-patch-

based methods.  

Table 4-4: User’s accuracies for patch-based DR methods (CASI image). 

User’s 

accuracy (%) 

PCA LPP LPP 

IPD 

LPP 

RCM 

LPP 

WRCM 

NPE NPE 

IPD 

NPE 

RCM 

NPE 

WRCM 

Tree 82.87 78.56 76.06 92.18 92.34 87.91 93.39 92.26 91.61 

Grass 77.82 82.75 75.23 65.65 66.67 78.52 83.49 79.70 78.95 

Asphalt 85.47 85.54 86.57 94.46 94.74 89.94 91.23 92.19 93.77 

Concrete 88.88 91.20 90.88 88.34 91.63 92.40 87.5 84.24 85.65 

Dark shingle 61.57 66.6 66.87 71.85 69.54 76.06 60.61 68.10 67.44 

*Number in bold font indicates the highest accuracies separately among patch-based and tensor-patch-

based methods.  
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Table 4-5: Producer’s accuracies for tensor-patch-based DR methods (CASI image). 

Producer’s 

accuracy (%) 

TLPP TLPP 

IPD 

TLPP 

RCM 

TLPP 

WRCM 

TNPE TNPE 

IPD 

TNPE 

RCM 

TNPE 

WRCM 

Tree 82.41 93.66 93.39 93.46 94.97 95.43 94.50 94.46 

Grass 76.61 73.02 93.86 93.71 68.78 72.49 90.57 92.86 

Asphalt 92.79 93.00 91.86 92.55 88.20 90.23 91.76 90.98 

Concrete 74.76 89.18 95.52 94.81 61.86 91.65 86.88 92.47 

Dark shingle 99.17 85.53 76.63 76.54 79.26 83.41 79.72 76.19 

*Number in bold font indicates the highest accuracies separately among patch-based and tensor-patch-

based methods.  

Table 4-6: User’s accuracies for tensor-patch-based DR methods (CASI image). 

User’s 

accuracy (%) 

TLPP TLPP 

IPD 

TLPP 

RCM 

TLPP 

WRCM 

TNPE TNPE 

IPD 

TNPE 

RCM 

TNPE 

WRCM 

Tree 87.99 84.89 91.90 91.56 79.42 83.08 91.55 86.42 

Grass 75.5 89.49 82.64 83.14 83.76 88.50 93.79 83.33 

Asphalt 93.06 93.99 93.02 93.07 87.45 96.69 93.25 93.52 

Concrete 95.98 96.21 93.90 94.91 97.90 91.48 89.89 95.68 

Dark shingle 72.75 84.13 84.70 86.03 77.97 82.72 77.73 93.00 

*Number in bold font indicates the highest accuracies separately among patch-based and tensor-patch-

based methods.  

Table 4-7: Producer’s accuracies for patch-based DR methods (AVIRIS image). 

Producer’s 

accuracy (%) 

PCA LPP LPP 

IPD 

LPP 

RCM 

LPP 

WRCM 

NPE NPE 

IPD 

NPE 

RCM 

NPE 

WRCM 

Alfalfa 98.22 98.56 98.60 93.33 99.52 98.36 98.95 99.14 99.85 

Corn-notill 80.91 75.74 80.41 77.97 85.99 66.9 82.34 85.48 86.29 

Corn-mintill 76.37 75.9 66.2 69.64 79.34 52.74 69.33 83.57 81.06 

Corn 66.05 64.2 57.41 62.35 70.37 65.43 70.37 78.4 82.72 

Grass-pasture 92.89 91.05 90.53 94.47 95 92.63 93.95 97.11 96.58 

Grass-trees 97.05 95.09 94.89 98.04 97.64 93.91 97.84 99.41 99.80 

Grass-pasture 97.23 98.52 98.60 94.44 98.95 97.85 98.96 98.56 99.28 

Hay-windrowe 90.13 89.62 90.63 97.72 94.94 89.11 85.32 95.70 93.42 

Oats 97.19 98.52 98.66 88.89 99.62 98.56 98.62 98.93 99.18 

Soybean-notill 77.35 74.4 55.76 67.29 78.82 68.23 77.08 84.05 85.66 

Soybean-mintill 72.33 67.99 65.32 66.27 71.97 58.14 61.58 73.34 73.52 

Soybean-clean 99.31 94.48 97.19 97.59 99.39 83.45 99.66 99.16 99.82 

Wheat 98.16 98.22 98.49 99.33 99.80 98.65 98.45 98.39 99.68 

Woods 90.51 81.92 86.87 89.39 90.71 87.07 87.37 91.21 89.9 

Buildings-g 98.04 99.22 99.60 94.51 99.61 90.98 98.04 98.43 99.89 

Stone-steel 98.56 98.93 99.08 98.18 98.59 98.44 98.93 99.10 99.89 

*Number in bold font indicates the highest accuracies separately among patch-based and tensor-patch-

based methods.  
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Table 4-8: User’s accuracies for patch-based DR methods (AVIRIS image). 

User’s accuracy 

(%) 

PCA LPP LPP 

IPD 

LPP 

RCM 

LPP 

WRCM 

NPE NPE 

IPD 

NPE 

RCM 

NPE 

WRCM 

Alfalfa 53.57 58.82 49.18 77.78 60.00 61.22 35.71 63.83 54.55 

Corn-notill 75.05 69.85 71.29 78.69 83.2 58.22 73.46 83.04 84.83 

Corn-mintill 77.96 73.04 68.01 65.35 74.67 61.38 67.63 79.94 77.2 

Corn 89.92 87.39 77.5 72.14 83.21 78.52 84.44 89.44 83.23 

Grass-pasture 96.45 91.29 88.89 93.25 93.77 95.91 90.84 91.34 90.17 

Grass-trees 96.86 98.57 93.97 97.27 98.61 94.09 98.03 98.83 98.64 

Grass-pasture 58.06 48.65 85.71 94.44 99.86 42.86 81.82 99.25 94.74 

Hay-windrowe 99.11 98.88 98.62 99.23 99.47 98.78 97.40 98.95 99.28 

Oats 98.62 98.56 98.71 66.67 99.62 98.63 98.69 99.50 99.37 

Soybean-notill 76.42 71.25 69.1 65.36 75.19 65.85 75.16 78.18 79.18 

Soybean-mintill 85.00 81.61 72.18 76.02 83.13 73.5 79.71 85.53 86.76 

Soybean-clean 58.06 59.44 59.55 61.52 67.44 42.01 54.22 68.08 67.92 

Wheat 98.21 98.60 92.16 97.24 99.30 98.60 98.60 98.34 99.63 

Woods 99.33 99.14 99.19 98.99 99.78 98.63 99.54 99.56 99.92 

Buildings-g 68.49 56.47 66.06 69.25 73.84 59.49 68.31 78.19 77.04 

Stone-steel 90.16 91.67 90.16 98.18 99.65 96.49 98.56 99.16 96.49 

*Number in bold font indicates the highest accuracies separately among patch-based and tensor-patch-

based methods.  

 

Table 4-9: Producer’s accuracies for tensor-patch-based DR methods (AVIRIS 

image). 

Producer’s 

accuracy (%) 

TLPP TLPP 

IPD 

TLPP 

RCM 

TLPP 

WRCM 

TNPE TNPE 

IPD 

TNPE 

RCM 

TNPE 

WRCM 

Alfalfa 98.56 98.79 99.23 99.68 98.20 98.72 99.31 99.84 

Corn-notill 91.47 94.92 99.70 98.27 97.16 93.60 98.17 99.95 

Corn-mintill 89.83 94.21 99.53 99.06 94.68 88.42 99.06 99.84 

Corn 99.38 99.29 99.35 99.86 91.36 97.53 98.41 99.66 

Grass-pasture 97.37 98.79 98.82 99.83 98.95 98.95 98.79 99.76 

Grass-trees 98.56 99.61 98.56 99.46 98.34 98.73 99.18 99.95 

Grass-pasture 98.27 98.83 99.10 99.26 98.16 98.63 99.11 99.46 

Hay-windrowe 95.19 98.48 99.24 99.75 99.24 98.69 99.24 99.78 

Oats 98.52 98.86 99.14 99.92 98.36 98.49 99.21 99.69 

Soybean-notill 93.16 86.6 98.26 99.06 94.37 98.26 98.79 99.65 

Soybean-mintill 87.23 89.96 95.55 95.72 88.84 90.08 95.31 99.82 

Soybean-clean 98.54 98.93 98.96 99.43 98.54 98.72 99.10 99.96 

Wheat 98.05 98.41 98.72 99.38 98.17 98.50 99.24 99.66 

Woods 95.25 97.58 97.78 98.59 95.56 96.06 98.79 99.78 

Buildings-g 99.26 99.42 99.68 99.80 99.08 99.61 99.71 99.86 

Stone-steel 98.63 98.46 99.70 99.54 98.52 98.97 99.73 99.93 

*Number in bold font indicates the highest accuracies separately among patch-based and tensor-patch-

based methods.  
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Table 4-10: User’s accuracies for tensor-patch-based DR methods (AVIRIS image). 

User’s accuracy 

(%) 

TLPP TLPP 

IPD 

TLPP 

RCM 

TLPP 

WRCM 

TNPE TNPE 

IPD 

TNPE 

RCM 

TNPE 

WRCM 

Alfalfa 61.22 83.33 98.38 99.49 90.91 98.64 98.73 99.64 

Corn-notill 89.12 95.8 98.79 99.69 93.73 93.51 99.38 99.89 

Corn-mintill 89.55 89.45 95.78 91.74 94.09 95.76 92.01 99.76 

Corn 98.17 99.39 98.78 99.86 97.37 91.33 99.26 99.48 

Grass-pasture 92.96 94.06 99.48 97.69 99.47 99.73 97.19 99.88 

Grass-trees 99.22 98.64 99.29 99.80 98.81 99.07 99.80 99.96 

Grass-pasture 98.55 98.39 98.07 99.46 98.36 99.13 98.76 99.78 

Hay-windrowe 98.43 98.95 99.28 99.08 98.97 98.41 99.45 99.76 

Oats 98.59 64.29 99.03 69.23 98.33 99.19 69.23 99.61 

Soybean-notill 90.49 92.95 96.45 98.14 93.74 89.94 98.14 99.84 

Soybean-mintill 93.51 95.10 99.26 99.44 96.27 97.49 99.44 99.96 

Soybean-clean 82.86 86.05 96.03 98.98 75.92 74.55 96.67 99.73 

Wheat 98.60 83.93 98.27 98.60 98.04 98.06 98.60 99.54 

Woods 99.79 99.90 98.07 99.58 99.19 99.06 98.74 99.92 

Buildings-g 91.40 89.16 92.39 94.44 84.16 86.69 94.44 99.82 

Stone-steel 98.64 98.43 99.06 99.94 98.36 98.53 99.78 99.46 

*Number in bold font indicates the highest accuracies separately among patch-based and tensor-patch-

based methods.  

4.5.3 Computation complexity 

In regards to the computation complexity of the applied DR methods, for a k-order tensor 

𝒜 ∈ ℝ𝐼1×𝐼2×…×𝐼𝑘  the patch-based method has a space complexity of O(𝑑2)  and time 

complexity of O(𝑑3), where d is the total dimension of data: d = ∏ 𝐼𝑖
𝑘
𝑖=1 . The tensor-

patch-based method has a space complexity of O(nd)  and time complexity of 

O(k(𝑛2d𝐼𝑚𝑎𝑥 + 𝐼𝑚𝑎𝑥
3 )) , where d  is the total dimension of data, n  is number of data 

points, and 𝐼𝑚𝑎𝑥 = max (𝐼1, 𝐼2, ⋯ , 𝐼𝑘) . In the computer vision studies, the total 

dimensions of a dataset (d) are usually much larger than the number of data points (n), 

when the tensor-patch-based method requires less computation complexity than the 

patch-based method. However, in the case of a hyperspectral image, the number of data 

points (n) is usually much larger than the total dimensions of a dataset (d), which results 

in heavy computation complexity of the tensor-patch-based method. Table 4-11 shows 

the real processing time in this research. The processing times of the TLPP and TNPE 

methods is much longer than the LPP and NPE methods. 
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Table 4-11: Time consumption. 

Surrey, BC 

Method 
Time (s) 

Indian Pines 

Method 
Time (s) 

LPP 2.4 ± 0.3 LPP 1.6 ± 0.2 

NPE 0.2 ± 0.1 NPE 0.4 ± 0.1 
TLPP 160.7 ± 144.6 TLPP 144.4 ± 100.3 
TNPE 170.1 ± 156.3 TNPE 142.5 ± 101.3 

4.5.4 Other observations 

Two other issues concerning the Surrey, BC, CASI image are listed here. Firstly, one 

source of error is the shadows caused by tall objects, especially tall buildings. The two 

causes are as follows: (1) areas in shadow normally have low reflection and the limited 

information may lead to errors in classification in the hyperspectral imagery; (2) areas in 

shadow in the orthophoto (ground truth) may cause wrong judgement in the accuracy 

report. It is found that the tensor-patch-based methods best handled the shadow areas. 

Another unavoidable complication is tree cover over impervious surfaces, which often 

occurs along roads or beside residential buildings. As the Surrey airborne data only 

captures imageries from top-down, the impervious surface area that is covered by tree 

canopy is difficult to correctly classify. 

4.6 Conclusion 

This research performed two genres of spectral-spatial DR methods: patch-based and 

tensor-patch-based methods for two hyperspectral images with different spatial 

resolutions separately in urban and agricultural scenes. The patch-based methods employ 

the spatial information in the process of generating adjacency graph/weight matrix. The 

tensor-patch-based methods employ the spatial information in the processes of generating 

adjacency graph/weight matrix and solving the target eigenproblem. The three research 

questions in 4.2 were correspondingly addressed below. 

(1) Both the patch-based and tensor-patch-based DR methods are able to pack the useful 

information within fewer bands and provide a higher overall accuracy than the traditional 

PCA method. 
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(2) The tensor-patch-based DR methods by preserving more spatial information 

outperform the patch-based DR methods in the resulting land cover classification. This 

advantage of the tensor-patch-based method is more noticeable for images with distinct 

local spatial patterns, meaning low local spatial differences between same land cover and 

high local spatial differences between different land cover. Images with block land cover 

patterns and coarse spatial resolutions are more likely to have distinct local spatial 

patterns. However this advantage of tensor-patch-based methods comes with intense 

computation complexity. 

(3) The appropriate window sizes for the patch-based and tensor-patch-based methods 

vary regarding the specific method (LPP, NPE, TLPP, or TNPE) and the target image. 

We found that in general the IPD-based methods usually achieve better overall accuracy 

with smaller window sizes, and the RCM- and WRCM-based methods usually require 

larger window sizes to achieve better overall accuracy. The appropriate window sizes for 

the patch-based methods are usually larger than the appropriate window sizes for the 

tensor-patch-based methods. 

(4) The proposed WRCM adjacency graph/weight matrix calculation method slightly 

outperforms the IPD and RCM methods, as it comprehensively depicts the local spatial 

distribution. 

(5) The land cover classification results derived from this study are as good as or better 

than the results from up-to-date land cover mapping literatures (Deng et al. 2018, Ren et 

al. 2017, Pelletier et al. 2016). The tensor-based DR methods have been proved to be 

promising and valuable. 
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5 General discussion and conclusions 

5.1 Summary 

The distribution of urban impervious surface area (ISA) and land cover are important 

inputs in a wide range of urban physical and social studies. Chapters 2-4 of this thesis 

investigated methods to improve current methods for urban ISA/land cover mapping. 

Chapter 2 addresses the application of the future EnMAP image in ISA mapping. The 

future launch of the German hyperspectral satellite EnMAP (Environmental mapping and 

Analysis Program) in 2019 will provide new opportunities for timely and global ISA 

mapping. The previously proposed EnMAP applications heavily relied on existing 

reference endmembers, which may be impractical on a global scale. To overcome this 

defect, the use of the nonnegative matrix factorization (NMF) method was suggested to 

extract the endmember directly from the EnMAP imagery. The recent NMF-based 

hyperspectral spectral unmixing no longer depends on pure pixels in the original image, 

like the traditional methods. The NMF simultaneously calculates the endmember and 

abundance maps, by applying linear algebra to decompose the original hyperspectral 

image into an endmember matrix and an abundance matrix. However, despite the 10-year 

application of NMF in the hyperspectral spectral unmixing, researchers focused more on 

the extracted endmembers than the abundance maps. Very limited researches have been 

done to evaluate the abundance maps derived from the NMF methods, which was 

investigated in my thesis. Three traditional spectral unmixing methods (e.g. N-Findr, PPI, 

and ICA) and four NMF-based methods with three different constraints (e.g. sparseness, 

convex volume, and nonlinearity) were used to obtain the series of endmember sets, ISA 

abundance and classification maps. In the results, the traditional spectral unmixing 

methods encountered great difficulty when working with the EnMAP image, with 

correlation coefficients less than 0.2 in the linear regression models between predicted 

and reference ISA percentages, and less than 50% overall accuracy in ISA classification 

maps. The NMF-based methods outperformed the traditional spectral unmixing methods, 
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by achieving correlation coefficients ~0.7 in the linear regression models between 

predicted and reference ISA percentage, and over 85% overall accuracy in ISA 

classification maps. However, the NMF-derived abundance maps had great 

underestimations in the ISA. I found that it is necessary to apply linear transformations 

for the obtained ISA abundance maps. I also found that the constrained NMF provides no 

improvements in ISA mapping results compared to the traditional NMF in the case of the 

simulated EnMAP image. However, the constrained NMF greatly improved the ISA 

mapping results from the Hydice urban image of high spatial resolution. 

Chapter 3 is a continuation of work from the Chapter 2. In Chapter 2, the newly available 

genre of hyperspectral spectral unmixing methods based on NMF was thoroughly studied. 

However, the NMF is based on linear algebra, which needs to first convert the 

hyperspectral data cube into a 2D matrix for further processing. Due to this conversion, 

the spatial information in the relative positions of the pixels is lost. With the wide interest 

in multilinear algebra, tensor-based hyperspectral image processing becomes possible. 

The tensor-based spectral unmixing was firstly realized using the matrix-vector 

nonnegative tensor factorization (MVNTF) in 2017 (Qian et al. 2017). However, in the 

2017 paper, limited experiments were provided for the evaluation of the obtained 

abundance maps. By comparing the ISA mapping results from the NMF- and the 

MVNTF-based methods, this thesis found that the MVNTF has greater advantages when 

working with medium-spatial-resolution than with the high-spatial-resolution 

hyperspectral images. Similar to the NMF methods, the MVNTF-derived abundance 

maps had great underestimations in the ISA and proper linear transformations were 

performed. Under the construction of MVNTF spectral unmixing, this research proposed 

to integrate three additional constraints (sparseness, volume, and nonlinearity) to the 

MVNTF cost function. I found that the three constraints improved the ISA abundance 

results. The accuracies of the ISA classification map experienced an average 2% growth 

due to the added constraints. The constraints also shortened the processing time. 

Chapter 4 deals with the problem known as the curse of dimensionality. The majority of 

current dimension reduction methods are restricted to the use of only the spectral 
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information, and the spatial information is not considered. In order to overcome this 

defect, two spectral-spatial representations: patch-based and tensor-patch-based, were 

studied in this paper. The two groups of methods at different processing steps incorporate 

both the spectral and spatial information. To date, the popularity of the two solutions is 

confined to computer vision studies and their applications in hyperspectral dimension 

reduction are limited. This thesis focused on both of the patch-based and tensor-patch-

based variations of a group of dimension reduction methods called graph-based that 

learns the data structure from adjacency graphs/weight matrices. In total, the traditional 

PCA method, two traditional graph-based methods, six patch-based and eight tensor-

patch-based methods were used to perform dimension reduction. The resulting 

dimension-reduced images were then classified. It was found that the patch-based and 

tensor-patch-based variations greatly boost the final classification results by 5%-15% 

from the traditional PCA method. The tensor-patch-based variations delivered better land 

cover classification results than the patch-based variations, but accompanied by much 

longer processing times. As graph-based methods heavily rely on the calculation of 

adjacency graphs/weight matrices, this paper proposed the use of a new method: 

weighted region covariance matrix, to produce the adjacency graphs/weight matrices. In 

the results, the newly proposed method can further improve the dimension reduction 

results in both the patch-based and tensor-patch-based methods. 

5.2 Conclusions 

This thesis presented methodologies, experiments, and discussions to answer the research 

questions raised in the Introduction to the thesis: 

(1) As the EnMAP image has a medium spatial resolution of 30m, the pure pixels are 

very rare. Among the tested spectral unmixing matrix-based methods, the most suitable 

method is found to be a genre called nonnegative matrix factorization (NMF). This 

method searches for the endmembers outside the existed pixels in the image and 

simultaneously generates the abundance map. In addition, three variations of NMF were 
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tested and further improved the resulting ISA abundance and classification maps derived 

from the simulated EnMAP image. 

(2) The recently proposed MVNTF was successful in implementing the use of the 

multilinear algebra in the NMF-based spectral unmixing method. Although the tensor-

based spectral unmixing is able to consider the local spatial information from the image, 

it does not guarantee better ISA mapping results. It has been found that the tensor-based 

spectral unmixing methods may obtain more advantages when working with images of 

medium spatial resolutions. 

(3) The three variations for the NMF methods were successfully adopted in the MVNTF 

methods with adjustments. Improvements in the resulting ISA abundance and 

classification were found. 

(4) Through the patch-based strategy, the matrix-based dimension reduction method can 

learn local spatial information. Through the tensor-patch-based strategy, the matrix-based 

dimension reduction method can be converted to a tensor-based method. Both of the 

strategies were able to improve the resulting land cover classification. 

(5) The above patch-based and tensor-patch-based dimension reduction methods both 

stem from a group of dimension reduction methods called the graph-based. As the graph-

based rely on the intermediate results: adjacency graph and weight matrix. A new method 

called the weighted region covariance matrix (WRCM) was proposed to obtain the 

intermediate results to use with the patch-based and tensor-patch-based dimension 

reduction methods. The WRCM method improved the resulting land cover classification. 

5.3 Contributions 

ISA and land cover are fundamental data for a wide range of subjects in the physical and 

social sciences, as well as in municipalities for urban planning purposes (Weng and 

Quattrochi 2006). An up-to-date understanding of the urban ISA and land cover provides 

insight into concerns such as natural hazards, uncontrolled development, deteriorating 

environmental quality, loss of primary agricultural lands, destruction of important 
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wetlands, and loss of wildlife habitat (Anderson 1976). The growing needs for accurate 

ISA and land cover data from a wide range of fields on a global, national, and local level 

continues to this day. After the development of the camera technology, remote sensing 

has become a popular data source for ISA and land cover mapping (Avery, Berlin and 

Berlin 1977). This thesis provided research on both the applications of the new 

hyperspectral data and the new hyperspectral methods for improving the ISA and land 

cover mapping. The resulting ISA/land cover maps are as good as or better than the up-

to-date studies. The improved accuracy will assist future urban studies. The growing 

academic literatures of ISA and land cover mapping should benefit from the methods and 

analyses presented. 

 

References 

Anderson, J. R. 1976. A land use and land cover classification system for use with remote 

sensor data. US Government Printing Office. 

Avery, T. E., G. L. Berlin & G. L. Berlin. 1977. Interpretation of aerial photographs. 

Burgess. 

Qian, Y., F. Xiong, S. Zeng, J. Zhou & Y. Y. Tang (2017) Matrix-vector nonnegative 

tensor factorization for blind unmixing of hyperspectral imagery. IEEE 

Transactions on Geoscience and Remote Sensing, 55, 1776-1792. 

Weng, Q. & D. A. Quattrochi. 2006. Urban remote sensing. CRC Press. 



 

  

 156 

Appendix A: Details of the CASI and simulated EnMAP 

spectral bands. 

Table A-1: Details of the CASI spectral bands. 

Band 

number 

Band center 

(nm) 

Bandwidth 

(nm) 

Band 

number 

Band center 

(nm) 

Bandwidth 

(nm) 

1 367.6 9.6 37 712.1 9.5 

2 377.2 9.6 38 721.6 9.5 

3 386.8 9.7 39 731.1 9.6 

4 396.5 9.6 40 740.7 9.5 

5 406.1 9.6 41 750.2 9.5 

6 415.7 9.6 42 759.7 9.6 

7 425.3 9.6 43 769.3 9.5 

8 434.9 9.6 44 778.8 9.5 

9 444.5 9.6 45 788.3 9.6 

10 454.1 9.6 46 797.9 9.5 

11 463.7 9.6 47 807.4 9.5 

12 473.3 9.6 48 816.9 9.6 

13 482.9 9.5 49 826.5 9.5 

14 492.4 9.6 50 836 9.5 

15 502 9.6 51 845.5 9.6 

16 511.6 9.6 52 855.1 9.5 

17 521.2 9.5 53 864.6 9.6 

18 530.7 9.6 54 874.2 9.5 

19 540.3 9.6 55 883.7 9.6 

20 549.9 9.5 56 893.3 9.5 

21 559.4 9.6 57 902.8 9.6 

22 569 9.5 58 912.4 9.5 

23 578.5 9.6 59 921.9 9.6 

24 588.1 9.5 60 931.5 9.6 

25 597.6 9.6 61 941.1 9.5 

26 607.2 9.5 62 950.6 9.6 

27 616.7 9.5 63 960.2 9.6 

28 626.2 9.6 64 969.8 9.6 

29 635.8 9.5 65 979.4 9.5 

30 645.3 9.6 66 988.9 9.6 

31 654.9 9.5 67 998.5 9.6 

32 664.4 9.5 68 1008.1 9.6 

33 673.9 9.6 69 1017.7 9.6 

34 683.5 9.5 70 1027.3 9.6 

35 693 9.5 71 1036.9 9.6 

36 702.5 9.6 72 1046.5 9.6 
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Table A-2: Details of the simulated EnMAP spectral bands. 

Band 

number 

Band center 

(nm) 
Bandwidth 

(nm) 

Band 

number 

Band center 

(nm) 
Bandwidth 

(nm) 

1 423 6.9 45 658 7.8 

2 429 6.6 46 665 7.9 

3 434 6.3 47 671 7.9 

4 440 6.2 48 678 8 

5 445 6 49 685 8.1 

6 450 5.9 50 691 8.2 

7 455 5.9 51 698 8.3 

8 460 5.8 52 705 8.3 

9 464 5.8 53 712 8.4 

10 469 5.8 54 719 8.5 

11 474 5.7 55 726 8.6 

12 479 5.7 56 733 8.7 

13 484 5.8 57 740 8.7 

14 488 5.8 58 748 8.8 

15 493 5.8 59 755 8.9 

16 498 5.8 60 762 8.9 

17 503 5.8 61 770 9 

18 508 5.9 62 777 9.1 

19 513 5.9 63 785 9.1 

20 518 6 64 793 9.2 

21 523 6 65 800 9.3 

22 528 6.1 66 808 9.3 

23 533 6.1 67 816 9.4 

24 538 6.2 68 823 9.4 

25 543 6.2 69 831 9.5 

26 548 6.3 70 839 9.5 

27 553 6.4 71 847 9.5 

28 559 6.4 72 855 9.6 

29 564 6.5 73 863 9.6 

30 569 6.6 74 871 9.6 

31 575 6.6 75 879 9.7 

32 580 6.7 76 887 9.7 

33 586 6.8 77 895 9.7 

34 592 6.9 78 903 9.8 

35 597 6.9 79 911 9.8 

36 603 7 80 920 9.8 

37 609 7.1 81 928 9.8 

38 615 7.2 82 936 9.8 

39 621 7.3 83 944 9.8 

40 627 7.3 84 952 9.8 
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41 633 7.4 85 961 9.9 

42 639 7.5 86 969 9.9 

43 645 7.6 87 977 9.9 

44 652 7.7 88 985 9.9 
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Appendix B: NMF update rules convergence proof 

The multiplication update rule in the NMF algorithm has been proved to be 

nonincreasing in (Lee and Seung 2001). The mathematical reasoning is provided here. 

Define 𝐺(ℎ, ℎ′) as an auxiliary function for 𝐹(ℎ), if the conditions: 

 𝐺(ℎ, ℎ′) ≥ 𝐹(ℎ), 𝐺(ℎ, ℎ) = 𝐹(ℎ) (B-1) 

are satisfied. If G is such an auxiliary function, then F is nonincreasing under the update 

below: 

 ℎ𝑡+1 = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐺(ℎ, ℎ′). (B-2) 

Because: 

 𝐹(ℎ𝑡+1) ≤ 𝐺(ℎ𝑡+1, ℎ𝑡) ≤ 𝐺(ℎ𝑡, ℎ𝑡) = 𝐹(ℎ𝑡). (B-3) 

Only if ℎ𝑡  is a local minimum of 𝐺(ℎ𝑡, ℎ𝑡), 𝐹(ℎ𝑡+1) = 𝐹(ℎ𝑡). If the derivatives of F 

exist and are continuous in a small neighborhood of ℎ𝑡 , the derivatives ∇F(ℎ𝑡) = 0. 

Iterating the update in Equation (B-2) derives a sequence of estimates that converge to a 

local minimum ℎ𝑚𝑖𝑛 = arg min 𝐹(ℎ) of the objective function. Figure B-1 provides an 

illustration of the converging. 

 

Figure B-1: Converging illustration. 
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Then, finding an appropriate auxiliary function 𝐺(ℎ, ℎ′)  for Equation (2-6), the 

multiplicative update rule in Equation (2-7) can be justified. 

If 𝐾(ℎ𝑡) is a diagonal matrix: 

 𝐾𝑎𝑏(ℎ𝑡) = 𝛿𝑎𝑏(𝑊𝑇𝑊ℎ𝑡)𝑎/ℎ𝑎
𝑡 . (B-4) 

then, we have 

 𝐺(ℎ, ℎ𝑡) = 𝐹(ℎ𝑡) + (ℎ − ℎ𝑡)𝑇∇F(ℎ𝑡) +
1

2
(ℎ − ℎ𝑡)𝑇𝐾(ℎ𝑡)(ℎ − ℎ𝑡). (B-5) 

which is an auxiliary function of the objective function below: 

 𝐹(ℎ) =
1

2
∑ (𝑣𝑖 − ∑ 𝑊𝑖𝑎ℎ𝑎𝑎 )2

𝑖 . (B-6) 

It is obvious that 𝐺(ℎ, ℎ) = 𝐹(ℎ). To prove 𝐺(ℎ, ℎ′) ≥ 𝐹(ℎ), we first use Equation (B-5) 

to minus the formula below:  

 𝐹(ℎ) = 𝐹(ℎ𝑡) + (ℎ − ℎ𝑡)𝑇∇F(ℎ𝑡) +
1

2
(ℎ − ℎ𝑡)𝑇(𝑊𝑇𝑊)(ℎ − ℎ𝑡). (B-7) 

Then we have the formula below: 

 (ℎ − ℎ𝑡)𝑇(𝐾(ℎ𝑡) − 𝑊𝑇𝑊)(ℎ − ℎ𝑡) (B-8) 

Consider the matrix: 𝑀𝑎𝑏(ℎ𝑡) = ℎ𝑎
𝑡 (𝐾(ℎ𝑡) − 𝑊𝑇𝑊)𝑎𝑏ℎ𝑏

𝑡 , which is a rescaling of 

Equation (B-8). The 𝐾 − 𝑊𝑇𝑊 is positive semidefinite if and only if M satisfies: 

 𝑣𝑇𝑀𝑣 = ∑ 𝑣𝑎𝑀𝑎𝑏𝑣𝑏

𝑎𝑏

 (B-9) 

 = ∑ ℎ𝑎
𝑡

𝑎𝑏

(𝑊𝑇𝑊)𝑎𝑏ℎ𝑏
𝑡 𝑣𝑎

2−𝑣𝑎ℎ𝑎
𝑡 (𝑊𝑇𝑊)𝑎𝑏ℎ𝑏

𝑡 𝑣𝑏 (B-10) 
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 = ∑(𝑊𝑇𝑊)𝑎𝑏ℎ𝑎
𝑡 [

𝑎𝑏

1

2
𝑣𝑎

2 +
1

2
𝑣𝑏

2 − 𝑣𝑎𝑣𝑏] (B-11) 

 =
1

2
∑(𝑊𝑇𝑊)𝑎𝑏ℎ𝑎

𝑡 (

𝑎𝑏

𝑣𝑎 − 𝑣𝑏)2 (B-12) 

 ≥ 0 (B-13) 

The minimum of 𝐺(ℎ, ℎ𝑡) with respect to h is determined by setting the gradient to zeros: 

 
𝑑𝐺(ℎ, ℎ𝑡)

𝑑ℎ𝑎
= − ∑ 𝑣𝑖

𝑊𝑖𝑎ℎ𝑎
𝑡

∑ 𝑊𝑖𝑏ℎ𝑏
𝑡

𝑏

1

ℎ𝑎
𝑖

+ ∑ 𝑊𝑖𝑎

𝑖

= 0 (B-14) 

Thus, the update rule of Equation (B-2) is: 

 ℎ𝑎
𝑡+1 =

ℎ𝑎
𝑡

∑ 𝑊𝑘𝑏𝑏
∑

𝑣𝑖

∑ 𝑊𝑖𝑏ℎ𝑏
𝑡

𝑏
𝑖

𝑊𝑖𝑎 (B-15) 

Define: 

 

𝐺(ℎ, ℎ𝑡) = ∑(𝑣𝑖𝑙𝑜𝑔𝑣𝑖 − 𝑣𝑖)

𝑖

+ ∑ 𝑊𝑖𝑎ℎ𝑎

𝑖𝑎

− ∑ 𝑣𝑖

𝑊𝑖𝑎ℎ𝑎
𝑡

∑ 𝑊𝑖𝑏ℎ𝑏
𝑡

𝑏

(𝑙𝑜𝑔𝑊𝑖𝑎ℎ𝑎 − 𝑙𝑜𝑔
𝑊𝑖𝑎ℎ𝑎

𝑡

∑ 𝑊𝑖𝑏ℎ𝑏
𝑡

𝑏

)

𝑖𝑎

 
(B-16) 

This is an auxiliary function for 

 𝐹(ℎ) = ∑ 𝑣𝑖𝑙𝑜𝑔
𝑣𝑖

∑ 𝑊𝑖𝑎ℎ𝑎
𝑡

𝑎
− 𝑣𝑖 + ∑ 𝑊𝑖𝑎ℎ𝑎𝑎𝑖 . (B-17) 

It is obvious that 𝐺(ℎ, ℎ) = 𝐹(ℎ). To prove 𝐺(ℎ, ℎ′) ≥ 𝐹(ℎ), we use the convexity of the 

log function to derive the inequality: 
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 − log ∑ 𝑊𝑖𝑎ℎ𝑎𝑎 ≤ − ∑ 𝛼𝑎𝑙𝑜𝑔
𝑊𝑖𝑎ℎ𝑎

𝛼𝑎
𝑎 . (B-18) 

where 𝛼𝑎 =
𝑊𝑖𝑎ℎ𝑎

𝑡

∑ 𝑊𝑖𝑏ℎ𝑏
𝑡

𝑏
. Equation (B-18) holds for all nonnegative 𝛼𝑎  that sum to unity. 

Then from the inequality it follows that 𝐺(ℎ, ℎ′) ≥ 𝐹(ℎ). 

 

References 

Lee, D. D. & H. S. Seung. 2001. Algorithms for non-negative matrix factorization. In 

Advances in neural information processing systems, 556-562. 
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Appendix C: Theoretical justification of the LPP and NPE 

algorithms 

In the previous section 4.2.1.1 LPP and NPE, both the locality preserving projection (LPP) 

and neighborhood preserving embedding (NPE) algorithms convert the minimization 

problem into eigenproblem. Here, the theoretical justification for this conversion is 

provided. See (Chung 1997) for a comprehensive reference. 

Recall the objective of a LPP algorithm. For two data points that are close to each other 

in the original space, the LPP algorithm aims to keep them close in the projected feature 

space. To ensure this objective, the minimization problem as below is used: 

 min ∑ (𝑦𝑖 − 𝑦𝑗)2𝑊𝑖𝑗𝑖𝑗 , (C-1) 

where  𝑦𝑖 and 𝑦𝑗 are data points in the projected feature space; and the 𝑊𝑖𝑗 is the weight 

between point i and j. The minimization function forces a heavy penalty if neighboring 

points 𝑥𝑖 and 𝑥𝑗 are mapped far apart in the projected feature space. Thus, by minimizing 

the function, the neighboring points stay close in the projected feature space. 

Given a transformation vector a that has 𝑦𝑇 = 𝒂𝑇𝑋. The ith column vector of X is 𝑥𝑖. The 

minimization function (C-1) can be reformulated as below: 

 
1

2
∑(𝑦𝑖 − 𝑦𝑗)2𝑊𝑖𝑗 =

1

2
∑(𝑦𝑖

2 + 𝑦𝑗
2 − 2𝑦𝑖𝑦𝑗)𝑊𝑖𝑗

𝑖𝑗𝑖𝑗

 (C-2) 

 =
1

2
(∑ 𝑦𝑖

2

𝑖

𝐷𝑖𝑖 + ∑ 𝑦𝑗
2

𝑗

𝐷𝑗𝑗 − 2 ∑ 𝑦𝑖𝑦𝑗𝑊𝑖𝑗

𝑖,𝑗

)  

 =
1

2
(2 ∑ 𝑦𝑖

2

𝑖

𝐷𝑖𝑖 − 2 ∑ 𝑦𝑖𝑦𝑗𝑊𝑖𝑗

𝑖,𝑗

) = ∑ 𝒂𝑇𝑥𝑖𝐷𝑖𝑖𝑥𝑖
𝑇𝒂

𝑖

− ∑ 𝒂𝑇𝑥𝑖𝑊𝑖𝑗𝑥𝑗
𝑇𝒂

𝑖𝑗

  

 = 𝒂𝑇𝑋(𝐷 − 𝑊)𝑋𝑇𝒂 = 𝒂𝑇𝑋𝐿𝑋𝑇𝒂，  



 

  

 164 

where the Laplacian matrix L = D − W ; and D𝑖𝑖 = ∑ 𝑊𝑗𝑖𝑗  is a diagonal matrix with 

column sums of W. Matrix D is a natural measure on the data points. The bigger the 

value 𝐷𝑖𝑖  is, the more impact from 𝑦𝑖  is put on the minimization function. In order to 

remove an arbitrary scaling factor in the embedding, an additional constraint is imposed 

as follows: 

 𝑦𝑇𝐷𝑦 = 1 ⇒ 𝒂𝑇𝑋𝐿𝑋𝑇𝒂 = 𝟏, (C-3) 

Then, the minimization problem reduces to the function below: 

 min 𝒂𝑇𝑋𝐿𝑋𝑇𝒂, s.t. 𝒂𝑇𝑋𝐿𝑋𝑇𝒂 = 𝟏. (C-4) 

The transformation vector a that minimizes the objective function is given by the 

minimum eigenvalue solution to the generalized eigenvalue problem: 

 𝑋𝐿𝑋𝑇𝒂 = 𝜆XD𝑋𝑇𝒂. (C-5) 

In the case of the NPE algorithm, the objective function is to keep the reconstruction 

error among each neighborhood small: 

 min ∑ (𝑦𝑖 − ∑ 𝑊𝑖𝑗𝑗 𝑦𝑗)2
𝑖𝑗 . (C-6) 

Suppose a transformation vector a that has 𝑦𝑇 = 𝒂𝑇𝑋. The ith column vector of X is 𝑥𝑖. 

Define 

 𝑧𝑖 = 𝑦𝑖 − ∑ 𝑊𝑖𝑗𝑦𝑗𝑗 . (C-7) 

Then, we have the vector form: 

 𝒛 = 𝒚 − 𝑾𝒚 = (𝑰 − 𝑾)𝒚. (C-8) 

where 𝐼 = 𝑑𝑖𝑎𝑔(1, … , 1). 

The NPE objective function can be reformulated as below: 
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 ∑(𝑦𝑖 − ∑ 𝑊𝑖𝑗𝑦𝑗

𝑗

)2 = ∑(𝑧𝑖)
2

𝑖𝑖

 (C-9) 

 = 𝒛𝑇𝐳 = 𝑦𝑇(𝐼 − 𝑊)𝑇(I − W)y  

 = 𝒂𝑇𝑋(𝐼 − 𝑊)𝑇(I − W)𝑋𝑇𝒂  

 = 𝒂𝑇𝑋𝑀𝑋𝑇𝒂.  

where 𝑀 = (𝐼 − 𝑊)𝑇(𝐼 − 𝑊) . In order to remove an arbitrary scaling factor in the 

embedding, an additional constraint is imposed as follows: 

 𝑦𝑇𝑦 = 1 ⇒ 𝒂𝑇𝑋𝑋𝑇𝒂 = 𝟏, (C-10) 

Then, the minimization problem reduces to the function below: 

 min 𝒂𝑇𝑋𝑀𝑋𝑇𝒂, s.t. 𝒂𝑇𝑋𝑋𝑇𝒂 = 𝟏. (C-11) 

The transformation vector a that minimizes the objective function is given by the 

minimum eigenvalue solution to the generalized eigenvalue problem: 

 𝑋𝑀𝑋𝑇𝒂 = 𝜆XM𝑋𝑇𝒂. (C-12) 

 

References 

Chung, F. R. K. 1997. Spectral graph theory. American Mathematical Soc. 

 



 

  

 166 

Appendix D: Matlab code 

function [W, H, opt] = NMF_sparse_volume_robust(X, K, opt) 

  
% Non-Negative Matrix Factorisation with three different constraints 
% 
% Linear model:     X = W*H + e,    s.t. X>=0, W>=0, H>=0 
% 
% Input: 
% - X (M,N) : M (dimensionality) x N (samples) non negative input 

matrix 
% - K       : Number of endmembers 
% - opt 
%   .lambda : Weight for sparsity on H 

%   .alpha  : Weight for min. volume constraint on W 
%   .omega  : Weight for nonlinearity 
%   .W.init : Initialization of W (optional) 
%   .W.step : Initial stepsize for W (optional) 
%   .H.init : Initialization of H (optional) 
%   .H.step : Initial stepsize for H (optional) 
%   .R.init : Initialization of R (optional) 
%   .R.step : Initial stepsize for R (optional) 
%   .tol    : Convergence criteria tolerance 
%   .maxIt  : Maximum number of iterations to run 
% 
% Output: 
% - W       : Vertices/Endmembers,   M x K matrix 
% - H       : Fractional abundances, K x N matrix 
% 
% Copyright (c) 2018: Boyu Feng, July 2018. 

% Based on 2009: Morten Arngren, September 2009. 
% 

 
tic 
try opt.lambda;     catch opt.lambda     = 0;     end  % Sparsity for H. 
try opt.alpha;      catch opt.alpha      = 0;     end   % Min vol for W. 
try opt.omega;      catch opt.omega      = 0;     end  % Nonlinearity. 
try opt.W.init;     catch opt.W.init     = [];    end  % Init. of W. 
try opt.W.step;     catch opt.W.step     = 1e-3;  end 

try opt.H.init;     catch opt.H.init     = [];    end  % Init. of H. 
try opt.H.step;     catch opt.H.step     = 1e-3;  end 
try opt.R.init;     catch opt.R.init     = 0;     end  % Init. of H. 
try opt.maxIt;      catch opt.maxIt      = 1000;  end 
try opt.maxItLocal; catch opt.maxItLocal = 100;   end 

 

 
% Init W or H from outside 
if ~isempty(opt.W.init) 
  W(:,1:size(opt.W.init,2)) = opt.W.init; 
else 
  W = X(:,ceil(N*rand(K,1)));   
end 
if opt.H.init 
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  H = opt.H.init; 
else 
  H = rand(K,N);   
end 
if opt.R.init 
  R = opt.R.init; 
else 
  R = rand(D,N);   
end 

  
Rscale  = sum(sum(W*H)); 
sqrnorm = sqrt(Rscale/Xscale); 
H       = H/sqrnorm; 
W       = W/sqrnorm; 
R       = R/sqrnorm; 
H       = H ./ repmat(sum(H),K,1);   % Sum-to-one normalization 

  
XX2     = sum(sum(X.^2)); 
meanX   = mean(X,2); 
meanX = repmat(mean(X,2), 1, K); 

 
% initial min vol constraint term 
J   = det(W'*W); 

 
% Calculate initial error 
errOld = XX2 - 2*sum(sum(W'*X.*H)) + sum(sum( W'*W.*(H*H') )); 
errOld = 0.5*(errOld + opt.lambda*sum(sum(H)) + opt.alpha*J + 

opt.omega*sum(sqrt(sum(R.^2,1)))); 
Err    = errOld; 

  
%% Iterate 
n = 1; deltaErr = inf; Outerloop = 1; 
while Outerloop  

   
  % update R, the outlier term 
  R = R.*((X.*(W*H).^(-1))./((W*H).^0 + 

opt.omega*R./repmat(sqrt(sum(R.^2,1)),size(X,1),1))); 

     
  %%%%%% Update H 
  WtX = W'*X; 
  WtW = W'*W; 

   
  grad = WtW*H - WtX + opt.lambda; 
  grad = grad - repmat(sum(H.*grad),K,1); 

   
  loop = 1; itLocal = 0; 
  while loop 
    H_       = H - opt.H.step*grad; 
    H_(H_<0) = 0;       % Project negative elements to positive 
    H_       = H_ ./ repmat(sum(H_),K,1); 
    err      = XX2 - 2*sum(sum(WtX.*H_)) + sum(sum( WtW.*(H_*H_') )); 
    err      = 0.5*(err + opt.lambda*sum(sum(H)) + opt.alpha *J + 

opt.omega*sum(sqrt(sum(R.^2,1)))); 
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    if err < errOld 
      opt.H.step = 1.2*opt.H.step; 
      H = H_; loop = 0; 
    else 
      opt.H.step = 0.5*opt.H.step; 
    end 
    itLocal = itLocal + 1; 
    if itLocal > opt.maxItLocal, loop = 0; end 
  end 

   
  % Save current error 
  errOld = err; 

   
  %%%%%% Update W 
  HHt  = H*H'; 
  XHt  = X*H'; 
  grad = W*HHt - XHt; 
  loop = 1; itLocal = 0; 

 
  WtW  = W'*W; 
  J    = det(WtW); 
  grad = grad + (tau*2*J*W)/WtW; 

     
    while loop 
      W_ = W - opt.W.step*grad; 
      if opt.W.nn 
        W_(W_<0) = 0;   % Project negative elements to positive 
      end 
      WtW = W_'*W_; 

       
      % Calc. new regulation term for error estimation. 
      J   = det(WtW); 

         
      % Calc. error of new step 
      err = XX2 - 2*sum(sum(W_.*XHt)) + sum(sum( WtW.*HHt )); 
      err = 0.5*(err + opt.lambda*sum(sum(H)) + opt.alpha*J + 

opt.omega*sum(sqrt(sum(R.^2,1)))); 

       
      if err < errOld 
        opt.W.step = 1.2*opt.W.step; 
        W = W_; loop = 0; 
      else 
        opt.W.step = 0.5*opt.W.step; 
      end 
      itLocal = itLocal + 1; 
      if itLocal > opt.maxItLocal, loop = 0; end 
    end 
  end 

   
  % Cals. errors 
  deltaErr = Err-err; 
  Err      = err; 
  errOld   = err; 
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  n        = n + 1; 
  regWAll  = [regWAll J]; 

   
  % Is error low enough to stop? 
  Outerloop = abs(deltaErr) > opt.tol & n<opt.maxIt; 

   
end 
opt.it = n; 

  
toc(tic) 
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function [t]=mvntf_constrained(X,R,L,A,B,C,N,options) 
% x: the HSI in XJK where the I J K denote the width height and band 

number 
% R: the number of endmembers 
% L: Rank of each abudance map 
% A:initialization of A (I*RL) 
% B: initial value of B (J*RL) 
% C: initial value of C (K*R) 
% N: initial value of Nonlinear (I*JK) 
% options: 
%    derta:  the sum to one penalty 
%    alpha:  the volume penalty 
%    lambda: weight for sparsity on abundance 
%    omega:  weight for outlinear term 
%         
% maxiters=options.maxiters;%number of maximum iteration 

% 

% Copyright (c) 2018: Boyu Feng, July 2018. 

% Based on 2017: Yuntao Qian, March 2017. 
% 
 

 
convergeNum=options.convergeNum;%converge number 
derta=options.derta;%sum to one penalty 
alpha=options.alpha; 
lambda=options.lambda; 
omega=options.omega; 
[I,J,K]=size(X);     % Size of the problem 

  
% Matrix Unfoldings of X 
X1=tens2mat(X,1);  % X1 is IxJK  
X2=tens2mat(X,2);  % X2 is JxIK (or smaller dimensions if compression 

was done) 
X3=tens2mat(X,3);  % X3 is KxJI (idem) 
Ps=kron(eye(R),ones(L,1)); % Pattern matrix 
% LOOP for alternating updates 
volConstrain=C-mean(C,2)*ones(1,R); 
volConstrain=sum(sum(volConstrain.^2)); 
btdRes{1}=A; 
btdRes{2}=B; 
btdRes{3}=C; 
abundanceRes=normAbundance(btdRes,R,L); 
times=0; 
sad=0; 
rmse=0; 
sumToOne=ones(I,J); 
iter=1; 
objNew=norm(X1-A*myKr(C,B,ones(1,R),ones(1,R)*L)'-

N,'fro')+0.5*alpha*volConstrain+0.5*lambda*norm(abundanceRes,2); 
objhistory=[]; 
objhistory=[objhistory objNew]; 
while 1 
    oldEndmember=C; 
    oldAbundance=abundanceRes; 
    objOld=objNew; 
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    oldSparsity=sparsity; 
    oldSad=sad; 
    oldRmse=rmse;   
    M=myKr(C,B,ones(1,R),ones(1,R)*L); 
    A=A.*((X1*M+derta*sumToOne*B)./(A*M'*M+1e-4+derta*A*B'*B)); 
    M=myKr(C,A,ones(1,R),ones(1,R)*L); 
    B=B.*((X2*M+derta*sumToOne'*A)./(B*M'*M+1e-4+derta*B*A'*A)); 
    M=kr(B,A)*Ps; 
    C=C.*((X3*M)./(C*M'*M)); 
    volConstrain=C-mean(C,2)*ones(1,R); 
    volConstrain=sum(sum(volConstrain.^2)); 
    if omega==0 
        X1_ap=A*myKr(C,B,ones(1,R),ones(1,R)*L)'; 
    else 
        X1_ap=A*myKr(C,B,ones(1,R),ones(1,R)*L)'+N; 
    end 

     
    if ~omega==0 
        N=N.*((X1.*X1_ap.^0)./(X1_ap.^1 + 

omega*N./repmat(sqrt(sum(N.^2,1))+eps,I*J,1))); 
    end 
    btdRes{1}=A; 
    btdRes{2}=B; 
    btdRes{3}=C; 
    %btdRes{4}=N; 
    abundanceRes=normAbundance(btdRes,R,L); 
    objNew=0.5*norm(X1-A*myKr(C,B,ones(1,R),ones(1,R)*L)'-

omega*N,'fro')+0.5*derta*norm(sumToOne-

A*B','fro')+0.5*alpha*volConstrain+0.5*lambda*norm(abundanceRes,2); 
    objhistory=[objhistory objNew]; 
    toltemp = abs(objOld - objNew)/objOld; 
    fprintf('iter [%d]: obj [%d],sad [%d],rmse [%d], C[%d]\n ', 

iter,objNew,sad,rmse,sparsity,norm(C(:),2)); 
    [sad,allSadDistance,sor]=cosDistance(C,oldEndmember); 
    [rmse]=HyperRmse(oldAbundance,abundanceRes,sor); 
    if (abs(oldSparsity-sparsity)/oldSparsity<2e-4&&abs(oldSad-

sad)/oldSad<(2e-4)&&abs(oldRmse-rmse)/oldRmse<(2e-4)) 
        times = times + 1; 
    else 
        times=0; 
    end 

  
    iter = iter+1; 
    if times==convergeNum 
        t{1}=C; 
        t{2}=abundanceRes; 
        t{3}=objhistory; 
        t{4}=btdRes; 
        break; 
    end 

     
end 

 
%**********************************************************************

********* 
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function [U1,U2,U3,S,S1,S2,S3] = mlsvd3(X,size_core) 
%MLSVD3 Multilinear singular value decomposition of a third-order 

tensor. 
[I1,I2,I3]=size(X); 
[U1,S1,temp]=svd(reshape(X,I1,I3*I2),'econ'); S1=diag(S1); 
[U2,S2,temp]=svd(reshape(permute(X,[2 3 1]),I2,I1*I3),'econ'); 

S2=diag(S2); 
[U3,S3,temp]=svd(reshape(permute(X,[3 1 2]),I3,I2*I1),'econ'); 

S3=diag(S3); 
if nargin==2 
    U1=U1(:,1:min(size_core(1),I2*I3)); 
    U2=U2(:,1:min(size_core(2),I1*I3)); 
    U3=U3(:,1:min(size_core(3),I1*I2)); 
end 
S=tmprod(tmprod(tmprod(X,U1',1),U2',2),U3',3); 
end 

  
%**********************************************************************

********* 
function X_out = tmprod(X,U,mode) 
%TMPROD mode-n tensor-matrix product. 
[I,J,K]=size(X); 
[M,N]=size(U); 
if (mode~=1) && (mode~=2) && (mode~=3) 
    error('The input variable mode should be 1, 2 or 3') 
end 
if N~=size(X,mode) 
    error(['The number of columns of the input matrix should be equal 

to dimension ',int2str(mode),' of the input tensor']) 
end 
if mode==1 
    X_out = reshape(U*reshape(X,I,J*K) ,M,J,K); 
elseif mode==2 
    X_out = permute(reshape (U*reshape(permute(X,[2 1 3]),J,I*K), 

M,I,K),[2 1 3]); 
elseif mode==3 
    X_out = permute(reshape (U*reshape(permute(X,[3 1 2]),K,I*J), 

M,I,J),[2 3 1]); 
end 
end 

  
function C = kr(A,B) 
%KR Khatri-Rao product. 
[I R1]=size(A); J=size(B,1); 
C=zeros(I*J,R1); 
for j=1:R1 
    C(:,j)=reshape(B(:,j)*A(:,j).',I*J,1); 
end 
end 

  
%**********************************************************************

********* 
function Mat = kr_part(B,C,partB,partC) 
%KR_PART Partition-Wise Kronecker product 
[J M]=size(B); 
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[K N]=size(C); 
if (sum(partB)~=M) 
    error(['Error: a matrix with ',int2str(M),' columns can not be 

partitioned in such a way']) 
end 
if (sum(partC)~=N) 
    error(['Error: a matrix with ',int2str(N),' columns can not be 

partitioned in such a way']) 
end 
if length(partB)~=length(partC) 
    error('Error: the 2 input matrices do not have the same number of 

blocks') 
end 

  
indB=[0 cumsum(partB)]; 
indC=[0 cumsum(partC)]; 
indMat=[0 cumsum(partB.*partC)]; 

  
Mat=zeros(J*K,sum(partB.*partC)); 
for i=1:length(partC) 
    Mat(:,indMat(i)+1:indMat(i+1))=fast_kron( B(:,indB(i)+1:indB(i+1)) , 

C(:,indC(i)+1:indC(i+1))); 
end 
end 
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function [U, V, B, eigvalue_U,eigvalue_V, eigvalue_B,posIdx,Y] = 

TensorLPP (X, W, options,bLPP) 
% TensorLPP: Tensor Locality Preserving Projections 
% 
% [U, V, eigvalue_U, eigvalue_V, posIdx, Y] = TensorLPP(X, W, options) 
%  
%             Input: 
%               X       - 3D data matrix. X(:,:,i) is the i-th data 
%                          sample. 
%               W       - Weight matrix. 
%               options - Struct value in Matlab. The fields in options 
%                          that can be set: 
%                            nRepeat     -   The repeat times of the 
%                                            iterative procedure.  

%          Default: 10 

%      bLPP - 0/1 value. 1-TLPP and 0-TNPE 
% 
%             Output: 
%               U, V, B     - Embedding functions, for a new data point 
%                           (matrix) x, y = x *1 U *2 V *3 B 
%              eigvalue_U - corresponding eigenvalue. 
%              eigvalue_V - corresponding eigenvalue. 

%              eigvalue_B - corresponding eigenvalue. 
%  
%               Y         - The embedding results, Each row vector is a 
%                           data point. The features in Y has been   

%        sorted that Y(:,i) will be important to  

%        Y(:,j)with respect to the objective    

%        function if i<j  
% 
%               posIdx    - Resort idx. For a new data sample (matrix)  
%                            
% Copyright (c) 2018: Boyu Feng, July 2018. 

% Based on 2007: Deng Cai. 
% 

   
if (~exist('options','var')) 
   options = []; 
else 
   if ~strcmpi(class(options),'struct')  
       error('parameter error!'); 
   end 
end 

  
if ~isfield(options,'nRepeat') 
    options.nRepeat = 10; 
else 
    options.nRepeat = options.nRepeat; % 
end 

  
 [window1,window2,nBand,nSmp] = size(X); 

  
if bLPP 
    D = sparse(1:nSmp,1:nSmp,sum(W,2),nSmp,nSmp); 
    if nargout == 8 
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        [U, V, B, eigvalue_U, eigvalue_V, 

eigvalue_B,posIdx,Y]=TensorLGE_3ways_v3(X, W, D, options); 
    else 
        [U, V, B, eigvalue_U, eigvalue_V, 

eigvalue_B,posIdx]=TensorLGE_3ways_v3(X, W, D, options); 
    end 
else 
    D=[]; 
    if nargout == 8 
        [U, V, B, eigvalue_U, eigvalue_V, 

eigvalue_B,posIdx,Y]=TensorLGE (X, W, D, options); 
    else 
        [U, V, B, eigvalue_U, eigvalue_V, eigvalue_B,posIdx]=TensorLGE 

(X, W, D, options); 
    end 
end 

  

  



 

  

 176 

function [U, V, B, eigvalue_U, eigvalue_V, eigvalue_B,posIdx,Y] = 

TensorLGE (X, W, D, options) 
% TensorLGE: Tensor-based Linear Graph Embedding 
%  
%             Input: 
%               X       -  3D data matrix. X(:,:,i) is the i-th data 
%                          sample. 
%               W       - Weight matrix.  
%               D       - Graph matrix.  
% 
%               options - Struct value in Matlab. The fields in options 
%                         that can be set: 
% 
%                            nRepeat     -   The repeat times of the 
%                                            iterative procedure.  

%          Default: 10 
% 
%             Output: 
%               %             Output: 
%               U, V, B     - Embedding functions, for a new data point 
%                           (matrix) x, y = x *1 U *2 V *3 B 
%              eigvalue_U - corresponding eigenvalue. 
%              eigvalue_V - corresponding eigenvalue. 

%              eigvalue_B - corresponding eigenvalue. 
%  
%               Y         - The embedding results, Each row vector is a 
%                           data point. The features in Y has been   

%        sorted that Y(:,i) will be important to  

%        Y(:,j)with respect to the objective    

%        function if i<j  
% 
%               posIdx    - Resort idx. For a new data sample (matrix) %                            
%  
% Copyright (c) 2018: Boyu Feng, July 2018. 

% Based on 2007: Deng Cai. 
% 

  
if (~exist('options','var')) 
   options = []; 
end 

  
if isfield(options,'nRepeat') 
    nRepeat = options.nRepeat; % 
else 
    nRepeat = 10; 
end 

  
bD = 1; 
if ~exist('D','var') | isempty(D) 
    bD = 0; 
end 

  
[window1,window2,nBand,nSmp] = size(X); 
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if size(W,1) ~= nSmp 
    error('W and X mismatch!'); 
end 
if bD & (size(D,1) ~= nSmp) 
    error('D and X mismatch!'); 
end 

  
[i_idx,j_idx,v_idx] = find(W); 
if bD  
    [Di_idx,Dj_idx,Dv_idx] = find(D); 
end 

  
U = eye(window1); 
V = eye(window2); 
B = eye(nBand); 

  
for repeat = 1:nRepeat  
    XVB = zeros(window1,window2*nBand,nSmp); 
    for i = 1:nSmp 
        a = nmodeproduct(X(:,:,:,i),V',2); 
        a = nmodeproduct(a,B',3); 
        XVB(:,:,i) = tensor_unfolding(a,1); 
    end 

  
    S_vb = zeros(window1,window1); 
    D_vb = zeros(window1,window1); 

  
    if bD 
        for idx=1:length(Di_idx) 
            D_vb = D_vb + 

Dv_idx(idx)*XVB(:,:,Di_idx(idx))*XVB(:,:,Dj_idx(idx))'; 
        end 
    else 
        for i=1:nSmp 
            D_vb = D_vb + XVB(:,:,i)*XVB(:,:,i)'; 
        end 
    end 

  
    if bD 
        for idx=1:length(i_idx) 
            S_vb = S_vb + v_idx(idx)*(XVB(:,:,i_idx(idx))-

XVB(:,:,j_idx(idx)))*(XVB(:,:,i_idx(idx))-XVB(:,:,j_idx(idx)))'; 
        end 
    else 

         
        for idx=1:length(i_idx) 
            S_vb = S_vb + (XVB(:,:,i_idx(idx))-

v_idx(idx)*XVB(:,:,j_idx(idx)))*(XVB(:,:,i_idx(idx))-

v_idx(idx)*XVB(:,:,j_idx(idx)))'; 
        end 

         
    end 

  
    D_vb = max(D_vb,D_vb'); 
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    S_vb = max(S_vb,S_vb'); 

         
    [U, eigvalue_U] = eig(S_vb,D_vb); 
    eigvalue_U = diag(eigvalue_U); 
    [junk, index] = sort(-eigvalue_U); 
    U = U(:, index); 
    eigvalue_U = eigvalue_U(index); 

     
    for i = 1:size(U,2) 
        U(:,i) = U(:,i)./norm(U(:,i)); 
    end 
 

    XUB = zeros(window2,window1*nBand,nSmp); 
    for i = 1:nSmp 
        a = nmodeproduct(X(:,:,:,i),U',1); 
        a = nmodeproduct(a,B',3); 
        XUB(:,:,i) = tensor_unfolding(a,2); 
    end 

  
    S_ub = zeros(window2,window2); 
    D_ub = zeros(window2,window2); 

  
    if bD 
        for idx=1:length(Di_idx) 
            D_ub = D_ub + 

Di_idx(idx)*XUB(:,:,Di_idx(idx))*XUB(:,:,Dj_idx(idx))'; 
        end 
    else 
        for i=1:nSmp 
            D_ub = D_ub + XUB(:,:,i)*XUB(:,:,i)'; 
        end 
    end 

  
    if bD 
        for idx=1:length(i_idx) 
            S_ub = S_ub + v_idx(idx)*(XUB(:,:,i_idx(idx))-

XUB(:,:,j_idx(idx)))*(XUB(:,:,i_idx(idx))-XUB(:,:,j_idx(idx)))'; 
        end 
    else 

         
        for idx=1:length(i_idx) 
            S_ub = S_ub + (XUB(:,:,i_idx(idx))-

v_idx(idx)*XUB(:,:,j_idx(idx)))*(XUB(:,:,i_idx(idx))-

v_idx(idx)*XUB(:,:,j_idx(idx)))'; 
        end 

         
    end 

  
    D_ub = max(D_ub,D_ub'); 
    S_ub = max(S_ub,S_ub'); 

     
    [V, eigvalue_V] = eig(S_ub,D_ub); 
    eigvalue_V = diag(eigvalue_V); 
    [junk, index] = sort(-eigvalue_V); 
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    V = V(:, index); 
    eigvalue_V = eigvalue_V(index); 

     
    for i = 1:size(V,2) 
        V(:,i) = V(:,i)./norm(V(:,i)); 
    end 

  
    XUV = zeros(nBand,window1*window2,nSmp); 
    for i = 1:nSmp 
        a = nmodeproduct(X(:,:,:,i),U',1); 
        a = nmodeproduct(a,V',2); 
        XUV(:,:,i) = tensor_unfolding(a,3); 
    end 

  
    S_uv = zeros(nBand,nBand); 
    D_uv = zeros(nBand,nBand); 

  
    if bD 
        for idx=1:length(Di_idx) 
            D_uv = D_uv + 

Di_idx(idx)*XUV(:,:,Di_idx(idx))*XUV(:,:,Dj_idx(idx))'; 
        end 
    else 
        for i=1:nSmp 
            D_uv = D_uv + XUV(:,:,i)*XUV(:,:,i)'; 
        end 
    end 

  
    if bD 
        for idx=1:length(i_idx) 
            S_uv = S_uv+ v_idx(idx)*(XUV(:,:,i_idx(idx))-

XUV(:,:,j_idx(idx)))*(XUV(:,:,i_idx(idx))-XUV(:,:,j_idx(idx)))'; 
        end 
    else 

         
        for idx=1:length(i_idx) 
            S_uv = S_uv + (XUV(:,:,i_idx(idx))-

v_idx(idx)*XUV(:,:,j_idx(idx)))*(XUV(:,:,i_idx(idx))-

v_idx(idx)*XUV(:,:,j_idx(idx)))'; 
        end 

         
    end 

  
    D_uv = max(D_uv,D_uv'); 
    S_uv = max(S_uv,S_uv'); 

         
    [B, eigvalue_B] = eig(S_uv,D_uv); 
    eigvalue_B = diag(eigvalue_B); 
    [junk, index] = sort(-eigvalue_B); 
    B = B(:, index); 
    eigvalue_B = eigvalue_B(index); 

     
    for i = 1:size(B,2) 
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        B(:,i) = B(:,i)./norm(B(:,i)); 
    end 

        
end 

  
Y = zeros(window1,window2,nBand,nSmp); 
for i = 1:nSmp 
    y = nmodeproduct(X(:,:,:,i),U',1); 
    y = nmodeproduct(y,V',2); 
    Y(:,:,:,i) = nmodeproduct(y,B',3); 
end 

  
Y = tensor_unfolding(Y,4); 

  
if bD 
    DPrime = sum((Y'*D)'.*Y,1); 
else 
    DPrime = sum(Y.*Y,1);  
end 
LPrime = sum((Y'*W)'.*Y,1); 

  
DPrime(find(DPrime < 1e-14)) = 10000; 
LaplacianScore = LPrime./DPrime; 

  
[dump,posIdx] = sort(-LaplacianScore); 

  
if nargout == 8 
    Y = Y(:,posIdx); 
end 
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function [WRCM_matrix] = weighted_region_covariance_unite(I,l) 

  
%  WRCM_matrix(x,y,:,:) : weighted covariance matrix at position 

(x+l,y+l). 
%  l: half the side length of square in which the covariance 
%     region descriptor is computed, i.e. region is square with 
%     side length (2l+1) 

% 

% Copyright (c) 2018: Boyu Feng, July 2018. 

% 

  
[m, n, d] = size(I); 

  
I2 = zeros(m+2*l,n+2*l,d); 
I2(l+1:m+l,1+l:n+l,:)=I; 

  
for i = 1:l 
    I2(i,1+l:n+l,:) = I2(l+1-i+l,1+l:n+l,:); 
end 
for i = m+l:m+2*l 
    I2(i,1+l:n+l,:) = I2(m+l-(i-(m+l)),1+l:n+l,:); 
end 

  
for i = 1:l 
    I2(:,i,:) = I2(:,l+1-i+l,:); 
end 
for i = n+l:n+2*l 
    I2(:,i,:) = I2(:,n+l-(i-(n+l)),:); 
end 

  
[m, n, d] = size(I2); 

  
WRCM_matrix = zeros(m-2*l,n-2*l,d,d); 

  
options = []; 

  
for i = 1+l:m-l 
    for j = 1+l:n-l 
        WRCM_matrix(i-l,j-l,:,:)=weighted_region_covariance_block(I2(i-

l:i+l,j-l:j+l,:),options,l); 
    end 
end 
WRCM_matrix = reshape(WRCM_matrix,(m-2*l)*(n-2*l),d,d)*10; 
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function [WRCM] = weighted_region_covariance_block(featureBlock,options) 
% Region covariance matrix (GCM) algorithm 
% 
% Inputs: 
%       featureBlock        band*m*n 
%       options             options 
% 
% Copyright (c) 2018: Boyu Feng, July 2018. 

% Based on 2008: Yanwei Pang, July 2018. 
% 

 
    [m,n,d] = size(featureBlock); 
    featureBlock = reshape(featureBlock,m*n,d); 
    mu = mean(featureBlock,1); 
    cPixel = featureBlock(ceil(m*n/2),:); 
    symm = @(X) .5*(X+X'); 

     
    W = EuDist2(featureBlock); 
    W = W/100000; 
    W = exp(-W.^2); 

     
    if ~isfield(options, 'spd_projection') 
        spd_projection = true; 
    else 
        spd_projection = options.spd_projection; 
    end 

     

     
    WRCM = zeros(d,d); 
    for i = 1:m*n 
        for j = 1:m*n 
            WRCM = WRCM + W(i,j)*(featureBlock(i,:)-

featureBlock(j,:))'*(featureBlock(i,:)-featureBlock(j,:));           
        end 
    end 
    WRCM = WRCM/(m*n); 

     

 

 

 

 

 

  



 

  

 183 

Appendix E: Copyright releases from publications 

Chapter 2 

Feng, B. & Wang, J. (in press). Evaluation of unmixing methods for impervious surface area 

extraction from simulated EnMAP imagery. IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing. 
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license, however, you may print out this statement to be used as a permission grant:  
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3) In placing the thesis on the author's university website, please display the following 

message in a prominent place on the website: In reference to IEEE copyrighted material 

which is used with permission in this thesis, the IEEE does not endorse any of 

[university/educational entity's name goes here]'s products or services. Internal or 

personal use of this material is permitted. If interested in reprinting/republishing IEEE 

copyrighted material for advertising or promotional purposes or for creating new 

collective works for resale or redistribution, please go 

to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to 

learn how to obtain a License from RightsLink.  

If applicable, University Microfilms and/or ProQuest Library, or the Archives of Canada 

may supply single copies of the dissertation. 
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