307 research outputs found

    Recognizing Patterns of Music Signals to Songs Classification Using Modified AIS-Based Classifier

    Get PDF
    Human capabilities of recognizing different type of music and grouping them into categories of genre are so remarkable that experts in music can perform such classification using their hearing senses and logical judgment. For decades now, the scientific community were involved in research to automate the human process of recognizing genre of songs. These efforts would normally imitate the human method of recognizing the music by considering every essential component of the songs from artist voice, melody of the music through to the type of instruments used. As a result, various approaches or mechanisms are introduced and developed to automate the classification process. The results of these studies so far have been remarkable yet can still be improved. The aim of this research is to investigate Artificial Immune System (AIS) domain by focusing on the modified AIS-based classifier to solve this problem where the focuses are the censoring and monitoring modules. In this highlight, stages of music recognition are emphasized where feature extraction, feature selection, and feature classification processes are explained. Comparison of performances between proposed classifier and WEKA application is discussed

    The GTZAN dataset: Its contents, its faults, their effects on evaluation, and its future use

    Get PDF
    The GTZAN dataset appears in at least 100 published works, and is the most-used public dataset for evaluation in machine listening research for music genre recognition (MGR). Our recent work, however, shows GTZAN has several faults (repetitions, mislabelings, and distortions), which challenge the interpretability of any result derived using it. In this article, we disprove the claims that all MGR systems are affected in the same ways by these faults, and that the performances of MGR systems in GTZAN are still meaningfully comparable since they all face the same faults. We identify and analyze the contents of GTZAN, and provide a catalog of its faults. We review how GTZAN has been used in MGR research, and find few indications that its faults have been known and considered. Finally, we rigorously study the effects of its faults on evaluating five different MGR systems. The lesson is not to banish GTZAN, but to use it with consideration of its contents.Comment: 29 pages, 7 figures, 6 tables, 128 reference

    Content-based feature selection for music genre classification

    Get PDF
    The most important aspect that one should consider in a content-based analysis study is the feature that represents the information. In music analysis one should know the details of the music contents that can be used to differentiate the songs. The selection of features to represent each music genre is an important step to identify, label, and classify the songs according to the genres. This research investigates, analyzes, and select timbre, rhythm, and pitch-based features to classify music genres. The features that were extracted from the songs consist the singer's voice, the instruments and the melody. The feature selection process focuses on the supervised and unsupervised methods with the reason to select significant generalized and specialized music features. Besides the selection process, two modules of Negative Selection Algorithm; censoring and monitoring are highlighted as well in this work. We then proposed the Modified AIS-based classification algorithm to solve the music genre classification problem. The results from our experiments demonstrate that the features selection process contributes to the proposed modified AIS-based music genre classification performs significantly in classifying the music genres

    A Bio-Inspired Music Genre Classification Framework using Modified AIS-Based Classifier

    Get PDF
    For decades now, scientific community are involved in various works to automate the human process of recognizing different types of music using different elements for example different instruments used. These efforts would imitate the human method of recognizing the music by considering every essential component of the songs from artist voice, melody of the music through to the type of instruments used. Various approaches or mechanisms are introduced and developed to automate the classification process since then. The results of these studies so far have been remarkable yet can still be improved. The aim of this research is to investigate Artificial Immune System (AIS) domain by focusing on the modified AIS-based classifier to solve this problem where the focuses are the censoring and monitoring modules. In this highlight, stages of music recognition are emphasized where feature extraction, feature selection, and feature classification processes are explained. Comparison of performances between proposed classifier and WEKA application is discussed. Almost 20 to 30 percent of classification accuracies are increased in this study

    A Survey of Evaluation in Music Genre Recognition

    Get PDF

    Multiple Instance Learning: A Survey of Problem Characteristics and Applications

    Full text link
    Multiple instance learning (MIL) is a form of weakly supervised learning where training instances are arranged in sets, called bags, and a label is provided for the entire bag. This formulation is gaining interest because it naturally fits various problems and allows to leverage weakly labeled data. Consequently, it has been used in diverse application fields such as computer vision and document classification. However, learning from bags raises important challenges that are unique to MIL. This paper provides a comprehensive survey of the characteristics which define and differentiate the types of MIL problems. Until now, these problem characteristics have not been formally identified and described. As a result, the variations in performance of MIL algorithms from one data set to another are difficult to explain. In this paper, MIL problem characteristics are grouped into four broad categories: the composition of the bags, the types of data distribution, the ambiguity of instance labels, and the task to be performed. Methods specialized to address each category are reviewed. Then, the extent to which these characteristics manifest themselves in key MIL application areas are described. Finally, experiments are conducted to compare the performance of 16 state-of-the-art MIL methods on selected problem characteristics. This paper provides insight on how the problem characteristics affect MIL algorithms, recommendations for future benchmarking and promising avenues for research

    How individuals can shape AI through data - An AI literacy and morality perspective

    Get PDF
    Today’s performance of artificial intelligence (AI) heavily depends on its training data, for which the donation of data by users is an important criterion. However, it is still difficult for users to anticipate how the quantity and quality of training data may affect them. Thus, users face challenges choosing between giving data to companies or keeping it confidential. That is, foregoing their privacy rights in favor of the greater good , i.e., better AI systems not only for themselves but for everyone. In this paper, we provide a conceptual understanding paired with empirical evidence on the impact of donating data of different quality on the AI system\u27s performance. We focus on two common data: medical data and data from entertainment. Furthermore, we discuss ethical concerns within this context. This work is not normative; rather, it empowers people to reflect on their moral beliefs and understand their impact on AI

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Classifying music perception and imagination using EEG

    Get PDF
    This study explored whether we could accurately classify perceived and imagined musical stimuli from EEG data. Successful EEG-based classification of what an individual is imagining could pave the way for novel communication techniques, such as brain-computer interfaces. We recorded EEG with a 64-channel BioSemi system while participants heard or imagined different musical stimuli. Using principal components analysis, we identified components common to both the perception and imagination conditions however, the time courses of the components did not allow for stimuli classification. We then applied deep learning techniques using a convolutional neural network. This technique enabled us to classify perception of music with a statistically significant accuracy of 28.7%, but we were unable to classify imagination of music (accuracy = 7.41%). Future studies should aim to determine which characteristics of music are driving perception classification rates, and to capitalize on these characteristics to raise imagination classification rates

    Developing App from User Feedback using Deep Learning

    Get PDF
    • …
    corecore