426,961 research outputs found

    Moderate deviations via cumulants

    Full text link
    The purpose of the present paper is to establish moderate deviation principles for a rather general class of random variables fulfilling certain bounds of the cumulants. We apply a celebrated lemma of the theory of large deviations probabilities due to Rudzkis, Saulis and Statulevicius. The examples of random objects we treat include dependency graphs, subgraph-counting statistics in Erd\H{o}s-R\'enyi random graphs and UU-statistics. Moreover, we prove moderate deviation principles for certain statistics appearing in random matrix theory, namely characteristic polynomials of random unitary matrices as well as the number of particles in a growing box of random determinantal point processes like the number of eigenvalues in the GUE or the number of points in Airy, Bessel, and sin\sin random point fields.Comment: 24 page

    Moderate deviations for particle filtering

    Full text link
    Consider the state space model (X_t,Y_t), where (X_t) is a Markov chain, and (Y_t) are the observations. In order to solve the so-called filtering problem, one has to compute L(X_t|Y_1,...,Y_t), the law of X_t given the observations (Y_1,...,Y_t). The particle filtering method gives an approximation of the law L(X_t|Y_1,...,Y_t) by an empirical measure \frac{1}{n}\sum_1^n\delta_{x_{i,t}}. In this paper we establish the moderate deviation principle for the empirical mean \frac{1}{n}\sum_1^n\psi(x_{i,t}) (centered and properly rescaled) when the number of particles grows to infinity, enhancing the central limit theorem. Several extensions and examples are also studied.Comment: Published at http://dx.doi.org/10.1214/105051604000000657 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Delta method in large deviations and moderate deviations for estimators

    Get PDF
    The delta method is a popular and elementary tool for deriving limiting distributions of transformed statistics, while applications of asymptotic distributions do not allow one to obtain desirable accuracy of approximation for tail probabilities. The large and moderate deviation theory can achieve this goal. Motivated by the delta method in weak convergence, a general delta method in large deviations is proposed. The new method can be widely applied to driving the moderate deviations of estimators and is illustrated by examples including the Wilcoxon statistic, the Kaplan--Meier estimator, the empirical quantile processes and the empirical copula function. We also improve the existing moderate deviations results for MM-estimators and LL-statistics by the new method. Some applications of moderate deviations to statistical hypothesis testing are provided.Comment: Published in at http://dx.doi.org/10.1214/10-AOS865 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Moderate deviations for recursive stochastic algorithms

    Full text link
    We prove a moderate deviation principle for the continuous time interpolation of discrete time recursive stochastic processes. The methods of proof are somewhat different from the corresponding large deviation result, and in particular the proof of the upper bound is more complicated. The results can be applied to the design of accelerated Monte Carlo algorithms for certain problems, where schemes based on moderate deviations are easier to construct and in certain situations provide performance comparable to those based on large deviations.Comment: Submitted to Stochastic System

    Option Pricing in the Moderate Deviations Regime

    Get PDF
    We consider call option prices in diffusion models close to expiry, in an asymptotic regime ("moderately out of the money") that interpolates between the well-studied cases of at-the-money options and out-of-the-money fixed-strike options. First and higher order small-time moderate deviation estimates of call prices and implied volatility are obtained. The expansions involve only simple expressions of the model parameters, and we show in detail how to calculate them for generic local and stochastic volatility models. Some numerical examples for the Heston model illustrate the accuracy of our results

    Moderate deviations and extinction of an epidemic

    Full text link
    Consider an epidemic model with a constant flux of susceptibles, in a situation where the corresponding deterministic epidemic model has a unique stable endemic equilibrium. For the associated stochastic model, whose law of large numbers limit is the deterministic model, the disease free equilibrium is an absorbing state, which is reached soon or later by the process. However, for a large population size, i.e. when the stochastic model is close to its deterministic limit, the time needed for the stochastic perturbations to stop the epidemic may be enormous. In this paper, we discuss how the Central Limit Theorem, Moderate and Large Deviations allow us to give estimates of the extinction time of the epidemic, depending upon the size of the population

    Moderate deviations for diffusions with Brownian potentials

    Full text link
    We present precise moderate deviation probabilities, in both quenched and annealed settings, for a recurrent diffusion process with a Brownian potential. Our method relies on fine tools in stochastic calculus, including Kotani's lemma and Lamperti's representation for exponential functionals. In particular, our result for quenched moderate deviations is in agreement with a recent theorem of Comets and Popov [Probab. Theory Related Fields 126 (2003) 571-609] who studied the corresponding problem for Sinai's random walk in random environment.Comment: Published at http://dx.doi.org/10.1214/009117904000000829 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore