576,652 research outputs found

    Basic research planning in mathematical pattern recognition and image analysis

    Get PDF
    Fundamental problems encountered while attempting to develop automated techniques for applications of remote sensing are discussed under the following categories: (1) geometric and radiometric preprocessing; (2) spatial, spectral, temporal, syntactic, and ancillary digital image representation; (3) image partitioning, proportion estimation, and error models in object scene interference; (4) parallel processing and image data structures; and (5) continuing studies in polarization; computer architectures and parallel processing; and the applicability of "expert systems" to interactive analysis

    Extraction of Airways with Probabilistic State-space Models and Bayesian Smoothing

    Full text link
    Segmenting tree structures is common in several image processing applications. In medical image analysis, reliable segmentations of airways, vessels, neurons and other tree structures can enable important clinical applications. We present a framework for tracking tree structures comprising of elongated branches using probabilistic state-space models and Bayesian smoothing. Unlike most existing methods that proceed with sequential tracking of branches, we present an exploratory method, that is less sensitive to local anomalies in the data due to acquisition noise and/or interfering structures. The evolution of individual branches is modelled using a process model and the observed data is incorporated into the update step of the Bayesian smoother using a measurement model that is based on a multi-scale blob detector. Bayesian smoothing is performed using the RTS (Rauch-Tung-Striebel) smoother, which provides Gaussian density estimates of branch states at each tracking step. We select likely branch seed points automatically based on the response of the blob detection and track from all such seed points using the RTS smoother. We use covariance of the marginal posterior density estimated for each branch to discriminate false positive and true positive branches. The method is evaluated on 3D chest CT scans to track airways. We show that the presented method results in additional branches compared to a baseline method based on region growing on probability images.Comment: 10 pages. Pre-print of the paper accepted at Workshop on Graphs in Biomedical Image Analysis. MICCAI 2017. Quebec Cit

    Adversarial Sparse-View CBCT Artifact Reduction

    Full text link
    We present an effective post-processing method to reduce the artifacts from sparsely reconstructed cone-beam CT (CBCT) images. The proposed method is based on the state-of-the-art, image-to-image generative models with a perceptual loss as regulation. Unlike the traditional CT artifact-reduction approaches, our method is trained in an adversarial fashion that yields more perceptually realistic outputs while preserving the anatomical structures. To address the streak artifacts that are inherently local and appear across various scales, we further propose a novel discriminator architecture based on feature pyramid networks and a differentially modulated focus map to induce the adversarial training. Our experimental results show that the proposed method can greatly correct the cone-beam artifacts from clinical CBCT images reconstructed using 1/3 projections, and outperforms strong baseline methods both quantitatively and qualitatively

    A Multiresolution Census Algorithm for Calculating Vortex Statistics in Turbulent Flows

    Full text link
    The fundamental equations that model turbulent flow do not provide much insight into the size and shape of observed turbulent structures. We investigate the efficient and accurate representation of structures in two-dimensional turbulence by applying statistical models directly to the simulated vorticity field. Rather than extract the coherent portion of the image from the background variation, as in the classical signal-plus-noise model, we present a model for individual vortices using the non-decimated discrete wavelet transform. A template image, supplied by the user, provides the features to be extracted from the vorticity field. By transforming the vortex template into the wavelet domain, specific characteristics present in the template, such as size and symmetry, are broken down into components associated with spatial frequencies. Multivariate multiple linear regression is used to fit the vortex template to the vorticity field in the wavelet domain. Since all levels of the template decomposition may be used to model each level in the field decomposition, the resulting model need not be identical to the template. Application to a vortex census algorithm that records quantities of interest (such as size, peak amplitude, circulation, etc.) as the vorticity field evolves is given. The multiresolution census algorithm extracts coherent structures of all shapes and sizes in simulated vorticity fields and is able to reproduce known physical scaling laws when processing a set of voriticity fields that evolve over time
    corecore