411 research outputs found

    Kevoree Modeling Framework (KMF): Efficient modeling techniques for runtime use

    Get PDF
    The creation of Domain Specific Languages(DSL) counts as one of the main goals in the field of Model-Driven Software Engineering (MDSE). The main purpose of these DSLs is to facilitate the manipulation of domain specific concepts, by providing developers with specific tools for their domain of expertise. A natural approach to create DSLs is to reuse existing modeling standards and tools. In this area, the Eclipse Modeling Framework (EMF) has rapidly become the defacto standard in the MDSE for building Domain Specific Languages (DSL) and tools based on generative techniques. However, the use of EMF generated tools in domains like Internet of Things (IoT), Cloud Computing or Models@Runtime reaches several limitations. In this paper, we identify several properties the generated tools must comply with to be usable in other domains than desktop-based software systems. We then challenge EMF on these properties and describe our approach to overcome the limitations. Our approach, implemented in the Kevoree Modeling Framework (KMF), is finally evaluated according to the identified properties and compared to EMF.Comment: ISBN 978-2-87971-131-7; N° TR-SnT-2014-11 (2014

    Structured Sequence Modeling with Graph Convolutional Recurrent Networks

    Full text link
    This paper introduces Graph Convolutional Recurrent Network (GCRN), a deep learning model able to predict structured sequences of data. Precisely, GCRN is a generalization of classical recurrent neural networks (RNN) to data structured by an arbitrary graph. Such structured sequences can represent series of frames in videos, spatio-temporal measurements on a network of sensors, or random walks on a vocabulary graph for natural language modeling. The proposed model combines convolutional neural networks (CNN) on graphs to identify spatial structures and RNN to find dynamic patterns. We study two possible architectures of GCRN, and apply the models to two practical problems: predicting moving MNIST data, and modeling natural language with the Penn Treebank dataset. Experiments show that exploiting simultaneously graph spatial and dynamic information about data can improve both precision and learning speed

    Run-time Support to Manage Architectural Variability Speci ed with CVL

    Get PDF
    The execution context in which pervasive systems or mobile computing run changes continuously. Hence, applications for these systems should be adapted at run-time according to the current context. In order to implement a context-aware dynamic reconfiguration service, most approaches usually require to model at design-time both the list of all possible configurations and the plans to switch among them. In this paper we present an alternative approach for the automatic run-time generation of application configurations and the reconfiguration plans. The generated configurations are optimal regarding di erent criteria, such as functionality or resource consumption (e.g. battery or memory). This is achieved by: (1) modelling architectural variability at design-time using Common Variability Language (CVL), and (2) using a genetic algorithm that finds at run-time nearly-optimal configurations using the information provided by the variability model. We also specify a case study and we use it to evaluate our approach, showing that it is efficient and suitable for devices with scarce resources.Campus de Excelencia Internacional Andalucia Tech y proyectos de investigación TIN2008-01942, P09-TIC-5231 and INTER-TRUST FP7-317731
    corecore