411 research outputs found
Kevoree Modeling Framework (KMF): Efficient modeling techniques for runtime use
The creation of Domain Specific Languages(DSL) counts as one of the main
goals in the field of Model-Driven Software Engineering (MDSE). The main
purpose of these DSLs is to facilitate the manipulation of domain specific
concepts, by providing developers with specific tools for their domain of
expertise. A natural approach to create DSLs is to reuse existing modeling
standards and tools. In this area, the Eclipse Modeling Framework (EMF) has
rapidly become the defacto standard in the MDSE for building Domain Specific
Languages (DSL) and tools based on generative techniques. However, the use of
EMF generated tools in domains like Internet of Things (IoT), Cloud Computing
or Models@Runtime reaches several limitations. In this paper, we identify
several properties the generated tools must comply with to be usable in other
domains than desktop-based software systems. We then challenge EMF on these
properties and describe our approach to overcome the limitations. Our approach,
implemented in the Kevoree Modeling Framework (KMF), is finally evaluated
according to the identified properties and compared to EMF.Comment: ISBN 978-2-87971-131-7; N° TR-SnT-2014-11 (2014
Structured Sequence Modeling with Graph Convolutional Recurrent Networks
This paper introduces Graph Convolutional Recurrent Network (GCRN), a deep
learning model able to predict structured sequences of data. Precisely, GCRN is
a generalization of classical recurrent neural networks (RNN) to data
structured by an arbitrary graph. Such structured sequences can represent
series of frames in videos, spatio-temporal measurements on a network of
sensors, or random walks on a vocabulary graph for natural language modeling.
The proposed model combines convolutional neural networks (CNN) on graphs to
identify spatial structures and RNN to find dynamic patterns. We study two
possible architectures of GCRN, and apply the models to two practical problems:
predicting moving MNIST data, and modeling natural language with the Penn
Treebank dataset. Experiments show that exploiting simultaneously graph spatial
and dynamic information about data can improve both precision and learning
speed
Run-time Support to Manage Architectural Variability Speci ed with CVL
The execution context in which pervasive systems or mobile
computing run changes continuously. Hence, applications for these systems
should be adapted at run-time according to the current context.
In order to implement a context-aware dynamic reconfiguration service,
most approaches usually require to model at design-time both the list of
all possible configurations and the plans to switch among them. In this
paper we present an alternative approach for the automatic run-time generation
of application configurations and the reconfiguration plans. The
generated configurations are optimal regarding di erent criteria, such as
functionality or resource consumption (e.g. battery or memory). This is
achieved by: (1) modelling architectural variability at design-time using
Common Variability Language (CVL), and (2) using a genetic algorithm
that finds at run-time nearly-optimal configurations using the information
provided by the variability model. We also specify a case study
and we use it to evaluate our approach, showing that it is efficient and
suitable for devices with scarce resources.Campus de Excelencia Internacional Andalucia Tech y proyectos de investigación TIN2008-01942, P09-TIC-5231 and INTER-TRUST FP7-317731
- …
