12,165,944 research outputs found

    Employing Classifying Terms for Testing Model Transformations

    Get PDF
    This contribution proposes a new technique for developing test cases for UML and OCL models. The technique is based on an approach that automatically constructs object models for class models enriched by OCL constraints. By guiding the construction process through so-called classifying terms, the built test cases in form of object models are classified into equivalence classes. A classifying term can be an arbitrary OCL term on the class model that calculates for an object model a characteristic value. From each equivalence class of object models with identical characteristic values one representative is chosen. The constructed test cases behave significantly different with regard to the selected classifying term. By building few diverse object models, properties of the UML and OCL model can be explored effectively. The technique is applied for automatically constructing relevant source model test cases for model transformations between a source and target metamodel.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Fast Calculation Methods in Collective Dynamical Models of Beam/Plasma Physics

    Full text link
    We consider an application of modification of our variational-wavelet approach to some nonlinear collective model of beam/plasma physics: Vlasov/Boltzmann-like reduction from general BBGKY hierachy related to modeling of propagation of intense charged particle beams in high-intensity accelerators and transport systems. We use fast convergent multiscale variational-wavelet representations for solutions which allow to consider polynomial and rational type of nonlinearities. The solutions are represented via the multiscale decomposition in nonlinear high-localized eigenmodes (waveletons). In contrast with different approaches we do not use perturbation technique or linearization procedures.Comment: 4 pages, 2 figures, JAC2001.cls, presented at European Particle Accelerator Conference (EPAC02), Paris, June 3-7, 2002; changed from A4 to US format for correct printin

    Images and Models of Thought

    Get PDF
    One really extraordinary ability of the mind is its capacity to match objects and form plausible hypotheses from just a few elements that we see through our eyes. We recognize a feather even if it is mostly covered by a book sitting on top of it. Even if we cannot see the whole shape, we recognize it as pertaining to a category, a set of objects called “feathers”. If by imagination we mean the ability to represent things for ourselves that are not present in the act of sensing, we should realize that the hypothesis of the feather is an imaginative construction of the mind, a mental representation, a model referred to by the sensory input

    Design and Evaluation of Path Planning Decision Support for Planetary Surface Exploration

    Get PDF
    Human intent is an integral part of real-time path planning and re-planning, thus any decision aiding system must support human-automation interaction. The appropriate balance between humans and automation for this task has previously not been adequately studied. In order to better understand task allocation and collaboration between humans and automation for geospatial path problem solving, a prototype path planning aid was developed and tested. The focus was human planetary surface exploration, a high risk, time-critical domain, but the scenario is representative of any domain where humans path plan across uncertain terrain. Three visualizations, including elevation contour maps, a novel visualization called levels of equal costs, and a combination of the two were tested along with two levels of automation. When participants received the lower level of automation assistance, their path costs errors were less than 35% of the optimal, and they integrated manual sensitivity analysis strategies. When participants used the higher level of automation assistance, path costs errors were reduced to a few percentages, and they saved on average 1.5 minutes in the task. However, this increased performance came at the price of decreased situation awareness and automation bias.We would like to acknowledge the NASA Harriett G. Jenkins Predoctoral Fellowship and the Office of Naval Research for sponsoring this research

    Accuracy and transferability of Gaussian approximation potential models for tungsten

    Get PDF
    We introduce interatomic potentials for tungsten in the bcc crystal phase and its defects within the Gaussian approximation potential framework, fitted to a database of first-principles density functional theory calculations. We investigate the performance of a sequence of models based on databases of increasing coverage in configuration space and showcase our strategy of choosing representative small unit cells to train models that predict properties observable only using thousands of atoms. The most comprehensive model is then used to calculate properties of the screw dislocation, including its structure, the Peierls barrier and the energetics of the vacancy-dislocation interaction. All software and raw data are available at www.libatoms.org
    corecore