115 research outputs found

    Soft Actuators and Robotic Devices for Rehabilitation and Assistance

    Get PDF
    Soft actuators and robotic devices have been increasingly applied to the field of rehabilitation and assistance, where safe human and machine interaction is of particular importance. Compared with their widely used rigid counterparts, soft actuators and robotic devices can provide a range of significant advantages; these include safe interaction, a range of complex motions, ease of fabrication and resilience to a variety of environments. In recent decades, significant effort has been invested in the development of soft rehabilitation and assistive devices for improving a range of medical treatments and quality of life. This review provides an overview of the current state-of-the-art in soft actuators and robotic devices for rehabilitation and assistance, in particular systems that achieve actuation by pneumatic and hydraulic fluid-power, electrical motors, chemical reactions and soft active materials such as dielectric elastomers, shape memory alloys, magnetoactive elastomers, liquid crystal elastomers and piezoelectric materials. Current research on soft rehabilitation and assistive devices is in its infancy, and new device designs and control strategies for improved performance and safe human-machine interaction are identified as particularly untapped areas of research. Finally, insights into future research directions are outlined

    Soft Actuators and Robotic Devices for Rehabilitation and Assistance

    Get PDF
    Soft actuators and robotic devices have been increasingly applied to the field of rehabilitation and assistance, where safe human and machine interaction is of particular importance. Compared with their widely used rigid counterparts, soft actuators and robotic devices can provide a range of significant advantages; these include safe interaction, a range of complex motions, ease of fabrication and resilience to a variety of environments. In recent decades, significant effort has been invested in the development of soft rehabilitation and assistive devices for improving a range of medical treatments and quality of life. This review provides an overview of the current state-of-the-art in soft actuators and robotic devices for rehabilitation and assistance, in particular systems that achieve actuation by pneumatic and hydraulic fluid-power, electrical motors, chemical reactions and soft active materials such as dielectric elastomers, shape memory alloys, magnetoactive elastomers, liquid crystal elastomers and piezoelectric materials. Current research on soft rehabilitation and assistive devices is in its infancy, and new device designs and control strategies for improved performance and safe human-machine interaction are identified as particularly untapped areas of research. Finally, insights into future research directions are outlined

    Soft Gloves: A Review on Recent Developments in Actuation, Sensing, Control and Applications

    Get PDF
    Interest in soft gloves, both robotic and haptic, has enormously grown over the past decade, due to their inherent compliance, which makes them particularly suitable for direct interaction with the human hand. Robotic soft gloves have been developed for hand rehabilitation, for ADLs assistance, or sometimes for both. Haptic soft gloves may be applied in virtual reality (VR) applications or to give sensory feedback in combination with prostheses or to control robots. This paper presents an updated review of the state of the art of soft gloves, with a particular focus on actuation, sensing, and control, combined with a detailed analysis of the devices according to their application field. The review is organized on two levels: a prospective review allows the highlighting of the main trends in soft gloves development and applications, and an analytical review performs an in-depth analysis of the technical solutions developed and implemented in the revised scientific research. Additional minor evaluations integrate the analysis, such as a synthetic investigation of the main results in the clinical studies and trials referred in literature which involve soft gloves

    Wearable exoskeleton systems based-on pneumatic soft actuators and controlled by parallel processing

    Get PDF
    Human assistance innovation is essential in an increasingly aging society and one technology that may be applicable is exoskeletons. However, traditional rigid exoskeletons have many drawbacks. This research includes the design and implementation of upper-limb power assist and rehabilitation exoskeletons based on pneumatic soft actuators. A novel extensor-contractor pneumatic muscle has been designed and constructed. This new actuator has bidirectional action, allowing it to both extend and contract, as well as create force in both directions. A mathematical model has been developed for the new novel actuator which depicts the output force of the actuator. Another new design has been used to create a novel bending pneumatic muscle, based on an extending McKibben muscle and modelled mathematically according to its geometric parameters. This novel bending muscle design has been used to create two versions of power augmentation gloves. These exoskeletons are controlled by adaptive controllers using human intention. For finger rehabilitation a glove has been developed to bend the fingers (full bending) by using our novel bending muscles. Inspired by the zero position (straight fingers) problem for post-stroke patients, a new controllable stiffness bending actuator has been developed with a novel prototype. To control this new rehabilitation exoskeleton, online and offline controller systems have been designed for the hand exoskeleton and the results have been assessed experimentally. Another new design of variable stiffness actuator, which controls the bending segment, has been developed to create a new version of hand exoskeletons in order to achieve more rehabilitation movements in the same single glove. For Forearm rehabilitation, a rehabilitation exoskeleton has been developed for pronation and supination movements by using the novel extensor-contractor pneumatic muscle. For the Elbow rehabilitation an elbow rehabilitation exoskeleton was designed which relies on novel two-directional bending actuators with online and offline feedback controllers. Lastly for upper-limb joint is the wrist, we designed a novel all-directional bending actuator by using the moulding bladder to develop the wrist rehabilitation exoskeleton by a single all-directional bending muscle. Finally, a totally portable, power assistive and rehabilitative prototype has been developed using a parallel processing intelligent control chip

    Monolithic PneuNets Soft Actuators for Robotic Rehabilitation: Methodologies for Design, Production and Characterization

    Get PDF
    Soft-robotics for biomedical applications, such as rehabilitation robots, is a field of intense research activity. Different actuation solutions have been proposed in the last decades, involving study and development of soft actuators of different types and materials. The purpose of the paper is to present procedures for an optimized design, and for easy and low cost production and characterization of monolithic PneuNets soft-actuators. An innovative design approach has been developed. The parameterization of the geometry, combined with FEM simulations is the basis for an optimized design of the actuator, as a function of the obtained bending and of the generated forces. Simple and cheap characterization setup and procedures have been identified for the actuator characterization and for simulation results validation. An easy and low-cost fabrication method based on lost wax core obtained through a silicone based mold has been developed for a monolithic PneuNets soft-actuator. The proposed solution performs well in bending, without the need for a strain limiting layer. Experimental results validated simulations, confirming the feasibility of adopting an optimized simulation-based design approach

    Towards the Development of a Wearable Tremor Suppression Glove

    Get PDF
    Patients diagnosed with Parkinson’s disease (PD) often associate with tremor. Among other symptoms of PD, tremor is the most aggressive symptom and it is difficult to control with traditional treatments. This thesis presents the assessment of Parkinsonian hand tremor in both the time domain and the frequency domain, the performance of a tremor estimator using different tremor models, and the development of a novel mechatronic transmission system for a wearable tremor suppression device. This transmission system functions as a mechatronic splitter that allows a single power source to support multiple independent applications. Unique features of this transmission system include low power consumption and adjustability in size and weight. Tremor assessment results showed that the hand tremor signal often presents a multi-harmonics pattern. The use of a multi-harmonics tremor model produced a better estimation result than using a monoharmonic tremor model

    The waterbomb actuator: a new origami-based pneumatic soft muscle

    Get PDF
    This project introduces a new Pneumatic Artificial Muscle (PAM) design based on an origami structure. This artificial muscle is designed to operate at a very low range of pressures while being lightweight and compliant. It is also designed to reduce the pressure threshold and hysteresis problems present on other PAMs like the McKibben actuator. These properties are achieved thanks to a rearranging membrane based on the Waterbomb pattern, which can contract upon inflation while keeping the surface area constant. This concept has been tested using paper prototypes coated with silicone. We created thee different structures (4x8, 6x12 and 8x16 cells waterbomb actuators) from the same paper sheet (14x28cm2) and we actuated them under loads of 2, 4 and 7N. The 4x8 was discarded, but the 6x12 and 8x16 actuators contracted a maximum of 12.5% of the original length (≃10cm) while the operating pressures remained under 5Pa. We also proposed a novel approach to 3D print these actuators using a Stratasys Objet260 Connex3 3D printer. The main idea consists in creating a flat structure that can self-assemble using a technique known as 4D Printing. The pattern is printed as a flat sheet where the hinges are composites composed of an elastomeric material and shape memory polymer (SMP) fibers. These hinges can be activated through a thermomechanical process inducing a self-folding effect. Unfortunately, we were not able to verify this fabrication process due to the lack of material availability

    Design and Fabrication of Soft 3D Printed Actuators: Expanding Soft Robotics Applications

    Get PDF
    Soft pneumatic actuators are ideal for soft robotic applications due to their innate compliance and high power-weight ratios. Presently, the majority of soft pneumatic actuators are used to create bending motions, with very few able to produce significant linear movements. Fewer can actively produce strains in multiple directions. The further development of these actuators is limited by their fabrication methods, specifically the lack of suitable stretchable materials for 3D printing. In this thesis, a new highly elastic resin for digital light projection 3D printers, designated ElastAMBER, is developed and evaluated, which shows improvements over previously synthesised elastic resins. It is prepared from a di-functional polyether urethane acrylate oligomer and a blend of two different diluent monomers. ElastAMBER exhibits a viscosity of 1000 mPa.s at 40 °C, allowing easy printing at near room temperatures. The 3D-printed components present an elastomeric behaviour with a maximum extension ratio of 4.02 ± 0.06, an ultimate tensile strength of (1.23 ± 0.09) MPa, low hysteresis, and negligible viscoelastic relaxation
    corecore