3,283 research outputs found

    Modelling human teaching tactics and strategies for tutoring systems

    Get PDF
    One of the promises of ITSs and ILEs is that they will teach and assist learning in an intelligent manner. Historically this has tended to mean concentrating on the interface, on the representation of the domain and on the representation of the student’s knowledge. So systems have attempted to provide students with reifications both of what is to be learned and of the learning process, as well as optimally sequencing and adjusting activities, problems and feedback to best help them learn that domain. We now have embodied (and disembodied) teaching agents and computer-based peers, and the field demonstrates a much greater interest in metacognition and in collaborative activities and tools to support that collaboration. Nevertheless the issue of the teaching competence of ITSs and ILEs is still important, as well as the more specific question as to whether systems can and should mimic human teachers. Indeed increasing interest in embodied agents has thrown the spotlight back on how such agents should behave with respect to learners. In the mid 1980s Ohlsson and others offered critiques of ITSs and ILEs in terms of the limited range and adaptability of their teaching actions as compared to the wealth of tactics and strategies employed by human expert teachers. So are we in any better position in modelling teaching than we were in the 80s? Are these criticisms still as valid today as they were then? This paper reviews progress in understanding certain aspects of human expert teaching and in developing tutoring systems that implement those human teaching strategies and tactics. It concentrates particularly on how systems have dealt with student answers and how they have dealt with motivational issues, referring particularly to work carried out at Sussex: for example, on responding effectively to the student’s motivational state, on contingent and Vygotskian inspired teaching strategies and on the plausibility problem. This latter is concerned with whether tactics that are effectively applied by human teachers can be as effective when embodied in machine teachers

    Learner Modelled Environments

    Get PDF
    Learner modelled environments (LMEs) are digital environments that are capable of automatically detecting learner’s behaviours in relation to a specific knowledge domain, to reason about those behaviours in order to asses learner’s performance, skills, socio-emotional and cognitive needs, and to act accordingly in a pedagogically appropriate manner. Digital environments that possess such capabilities are typically referred to as Intelligent Learning Environments, or more traditionally – as Intelligent Tutoring Systems (ITSs)

    Reviews

    Get PDF
    Europe In the Round CD‐ROM, Guildford, Vocational Technologies, 1994

    Knowledge Elicitation Methods for Affect Modelling in Education

    Get PDF
    Research on the relationship between affect and cognition in Artificial Intelligence in Education (AIEd) brings an important dimension to our understanding of how learning occurs and how it can be facilitated. Emotions are crucial to learning, but their nature, the conditions under which they occur, and their exact impact on learning for different learners in diverse contexts still needs to be mapped out. The study of affect during learning can be challenging, because emotions are subjective, fleeting phenomena that are often difficult for learners to report accurately and for observers to perceive reliably. Context forms an integral part of learners’ affect and the study thereof. This review provides a synthesis of the current knowledge elicitation methods that are used to aid the study of learners’ affect and to inform the design of intelligent technologies for learning. Advantages and disadvantages of the specific methods are discussed along with their respective potential for enhancing research in this area, and issues related to the interpretation of data that emerges as the result of their use. References to related research are also provided together with illustrative examples of where the individual methods have been used in the past. Therefore, this review is intended as a resource for methodological decision making for those who want to study emotions and their antecedents in AIEd contexts, i.e. where the aim is to inform the design and implementation of an intelligent learning environment or to evaluate its use and educational efficacy

    A gentle transition from Java programming to Web Services using XML-RPC

    Get PDF
    Exposing students to leading edge vocational areas of relevance such as Web Services can be difficult. We show a lightweight approach by embedding a key component of Web Services within a Level 3 BSc module in Distributed Computing. We present a ready to use collection of lecture slides and student activities based on XML-RPC. In addition we show that this material addresses the central topics in the context of web services as identified by Draganova (2003)

    Automating the analysis of problem-solving activities in learning environments: the co-lab case study

    Get PDF
    The analysis of problem-solving activities carried out by students in learning settings involves studying the students' actions and assessing the solutions they have created. This analysis constitutes an ideal starting point to support an automatic intervention in the student activity by means of feedback or other means to help students build their own knowledge. In this paper, we present a model-driven framework to facilitate the automation of this problemsolving analysis and of providing feedback. This framework includes a set of authoring tools that enable software developers to specify the analysis process and its intervention mechanisms by means of visual languages. The models specified in this way are computed by the framework in order to create technological support to automate the problem-solving analysis. The use of the framework is illustrated thanks to a case study in the field of System Dynamics where problem-solving practices are analysed.The Ministerio de Educación y Ciencia (España) has partially supported this research under Project TIN2011-29542-C02-02. The authors would like to express their gratitude to Ton de Jong, Wouter R. van Joolingen and Sylvia van Borkulo (University of Twente), for supporting this research. The work reported here was done during Rafael Duque’s stay at the Department of Instructional Technology of the University of Twente
    corecore