1,770 research outputs found

    Improved planning and resource management in next generation green mobile communication networks

    Get PDF
    In upcoming years, mobile communication networks will experience a disruptive reinventing process through the deployment of post 5th Generation (5G) mobile networks. Profound impacts are expected on network planning processes, maintenance and operations, on mobile services, subscribers with major changes in their data consumption and generation behaviours, as well as on devices itself, with a myriad of different equipment communicating over such networks. Post 5G will be characterized by a profound transformation of several aspects: processes, technology, economic, social, but also environmental aspects, with energy efficiency and carbon neutrality playing an important role. It will represent a network of networks: where different types of access networks will coexist, an increasing diversity of devices of different nature, massive cloud computing utilization and subscribers with unprecedented data-consuming behaviours. All at greater throughput and quality of service, as unseen in previous generations. The present research work uses 5G new radio (NR) latest release as baseline for developing the research activities, with future networks post 5G NR in focus. Two approaches were followed: i) method re-engineering, to propose new mechanisms and overcome existing or predictably existing limitations and ii) concept design and innovation, to propose and present innovative methods or mechanisms to enhance and improve the design, planning, operation, maintenance and optimization of 5G networks. Four main research areas were addressed, focusing on optimization and enhancement of 5G NR future networks, the usage of edge virtualized functions, subscriber’s behavior towards the generation of data and a carbon sequestering model aiming to achieve carbon neutrality. Several contributions have been made and demonstrated, either through models of methodologies that will, on each of the research areas, provide significant improvements and enhancements from the planning phase to the operational phase, always focusing on optimizing resource management. All the contributions are retro compatible with 5G NR and can also be applied to what starts being foreseen as future mobile networks. From the subscriber’s perspective and the ultimate goal of providing the best quality of experience possible, still considering the mobile network operator’s (MNO) perspective, the different proposed or developed approaches resulted in optimization methods for the numerous problems identified throughout the work. Overall, all of such contributed individually but aggregately as a whole to improve and enhance globally future mobile networks. Therefore, an answer to the main question was provided: how to further optimize a next-generation network - developed with optimization in mind - making it even more efficient while, simultaneously, becoming neutral concerning carbon emissions. The developed model for MNOs which aimed to achieve carbon neutrality through CO2 sequestration together with the subscriber’s behaviour model - topics still not deeply focused nowadays – are two of the main contributions of this thesis and of utmost importance for post-5G networks.Nos próximos anos espera-se que as redes de comunicações móveis se reinventem para lá da 5ª Geração (5G), com impactos profundos ao nível da forma como são planeadas, mantidas e operacionalizadas, ao nível do comportamento dos subscritores de serviços móveis, e através de uma miríade de dispositivos a comunicar através das mesmas. Estas redes serão profundamente transformadoras em termos tecnológicos, económicos, sociais, mas também ambientais, sendo a eficiência energética e a neutralidade carbónica aspetos que sofrem uma profunda melhoria. Paradoxalmente, numa rede em que coexistirão diferentes tipos de redes de acesso, mais dispositivos, utilização massiva de sistema de computação em nuvem, e subscritores com comportamentos de consumo de serviços inéditos nas gerações anteriores. O trabalho desenvolvido utiliza como base a release mais recente das redes 5G NR (New Radio), sendo o principal focus as redes pós-5G. Foi adotada uma abordagem de "reengenharia de métodos” (com o objetivo de propor mecanismos para resolver limitações existentes ou previsíveis) e de “inovação e design de conceitos”, em que são apresentadas técnicas e metodologias inovadoras, com o principal objetivo de contribuir para um desenho e operação otimizadas desta geração de redes celulares. Quatro grandes áreas de investigação foram endereçadas, contribuindo individualmente para um todo: melhorias e otimização generalizada de redes pós-5G, a utilização de virtualização de funções de rede, a análise comportamental dos subscritores no respeitante à geração e consumo de tráfego e finalmente, um modelo de sequestro de carbono com o objetivo de compensar as emissões produzidas por esse tipo de redes que se prevê ser massiva, almejando atingir a neutralidade carbónica. Como resultado deste trabalho, foram feitas e demonstradas várias contribuições, através de modelos ou metodologias, representando em cada área de investigação melhorias e otimizações, que, todas contribuindo para o mesmo objetivo, tiveram em consideração a retro compatibilidade e aplicabilidade ao que se prevê que sejam as futuras redes pós 5G. Focando sempre na perspetiva do subscritor da melhor experiência possível, mas também no lado do operador de serviço móvel – que pretende otimizar as suas redes, reduzir custos e maximizar o nível de qualidade de serviço prestado - as diferentes abordagens que foram desenvolvidas ou propostas, tiveram como resultado a resolução ou otimização dos diferentes problemas identificados, contribuindo de forma agregada para a melhoria do sistema no seu todo, respondendo à questão principal de como otimizar ainda mais uma rede desenvolvida para ser extremamente eficiente, tornando-a, simultaneamente, neutra em termos de emissões de carbono. Das principais contribuições deste trabalho relevam-se precisamente o modelo de compensação das emissões de CO2, com vista à neutralidade carbónica e um modelo de análise comportamental dos subscritores, dois temas ainda pouco explorados e extremamente importantes em contexto de redes futuras pós-5G

    All you can stream: Investigating the role of user behavior for greenhouse gas intensity of video streaming

    Full text link
    The information and communication technology sector reportedly has a relevant impact on the environment. Within this sector, video streaming has been identified as a major driver of CO2-emissions. To make streaming more sustainable, environmentally relevant factors must be identified on both the user and the provider side. Hence, environmental assessments, like life cycle assessments (LCA), need to broaden their perspective from a mere technological to one that includes user decisions and behavior. However, quantitative data on user behavior (e.g. streaming duration, choice of end device and resolution) are often lacking or difficult to integrate in LCA. Additionally, identifying relevant determinants of user behavior, such as the design of streaming platforms or user motivations, may help to design streaming services that keep environmental impact at a passable level. In order to carry out assessments in such a way, interdisciplinary collaboration is necessary. Therefore, this exploratory study combined LCA with an online survey (N= 91, 7 consecutive days of assessment). Based on this dataset the use phase of online video streaming was modeled. Additionally, factors such as sociodemographic, motivational and contextual determinants were measured. Results show that CO2-intensity of video streaming depends on several factors. It is shown that for climate intensity there is a factor 10 between choosing a smart TV and smartphone for video streaming. Furthermore, results show that some factors can be tackled from provider side to reduce overall energy demand at the user side; one of which is setting a low resolution as default.Comment: 7th International Conference on ICT for Sustainability (ICT4S

    A Survey on Energy Consumption and Environmental Impact of Video Streaming

    Full text link
    Climate change challenges require a notable decrease in worldwide greenhouse gas (GHG) emissions across technology sectors. Digital technologies, especially video streaming, accounting for most Internet traffic, make no exception. Video streaming demand increases with remote working, multimedia communication services (e.g., WhatsApp, Skype), video streaming content (e.g., YouTube, Netflix), video resolution (4K/8K, 50 fps/60 fps), and multi-view video, making energy consumption and environmental footprint critical. This survey contributes to a better understanding of sustainable and efficient video streaming technologies by providing insights into the state-of-the-art and potential future directions for researchers, developers, and engineers, service providers, hosting platforms, and consumers. We widen this survey's focus on content provisioning and content consumption based on the observation that continuously active network equipment underneath video streaming consumes substantial energy independent of the transmitted data type. We propose a taxonomy of factors that affect the energy consumption in video streaming, such as encoding schemes, resource requirements, storage, content retrieval, decoding, and display. We identify notable weaknesses in video streaming that require further research for improved energy efficiency: (1) fixed bitrate ladders in HTTP live streaming; (2) inefficient hardware utilization of existing video players; (3) lack of comprehensive open energy measurement dataset covering various device types and coding parameters for reproducible research

    Environmental impact assessment of online advertising

    Get PDF
    There are no commonly agreed ways to assess the total energy consumption of the Internet. Estimating the Internet's energy footprint is challenging because of the interconnectedness associated with even seemingly simple aspects of energy consumption. The first contribution of this paper is a common modular and layered framework, which allows researchers to assess both energy consumption and CO2e emissions of any Internet service. The framework allows assessing the energy consumption depending on the research scope and specific system boundaries. Further, the proposed framework allows researchers without domain expertise to make such an assessment by using intermediate results as data sources, while analyzing the related uncertainties. The second contribution is an estimate of the energy consumption and CO2e emissions of online advertising by utilizing our proposed framework. The third contribution is an assessment of the energy consumption of invalid traffic associated with online advertising. The second and third contributions are used to validate the first. The online advertising ecosystem resides in the core of the Internet, and it is the sole source of funding for many online services. Therefore, it is an essential factor in the analysis of the Internet's energy footprint. As a result, in 2016, online advertising consumed 20–282 TWh of energy. In the same year, the total infrastructure consumption ranged from 791 to 1334 TWh. With extrapolated 2016 input factor values without uncertainties, online advertising consumed 106 TWh of energy and the infrastructure 1059 TWh. With the emission factor of 0.5656 kg CO2e/kWh, we calculated the carbon emissions of online advertising, and found it produces 60 Mt CO2e (between 12 and 159 Mt of CO2e when considering uncertainty). The share of fraudulent online advertising traffic was 13.87 Mt of CO2e emissions (between 2.65 and 36.78 Mt of CO2e when considering uncertainty). The global impact of online advertising is multidimensional. Online advertising affects the environment by consuming significant amounts of energy, leading to the production CO2e emissions. Hundreds of billions of ad dollars are exchanged yearly, placing online advertising in a significant role economically. It has become an important and acknowledged component of the online-bound society, largely due to its integration with the Internet and the amount of revenue generated through it

    Energy sustainable paradigms and methods for future mobile networks: A survey

    Full text link
    In this survey, we discuss the role of energy in the design of future mobile networks and, in particular, we advocate and elaborate on the use of energy harvesting (EH) hardware as a means to decrease the environmental footprint of 5G technology. To take full advantage of the harvested (renewable) energy, while still meeting the quality of service required by dense 5G deployments, suitable management techniques are here reviewed, highlighting the open issues that are still to be solved to provide eco-friendly and cost-effective mobile architectures. Several solutions have recently been proposed to tackle capacity, coverage and efficiency problems, including: C-RAN, Software Defined Networking (SDN) and fog computing, among others. However, these are not explicitly tailored to increase the energy efficiency of networks featuring renewable energy sources, and have the following limitations: (i) their energy savings are in many cases still insufficient and (ii) they do not consider network elements possessing energy harvesting capabilities. In this paper, we systematically review existing energy sustainable paradigms and methods to address points (i) and (ii), discussing how these can be exploited to obtain highly efficient, energy self-sufficient and high capacity networks. Several open issues have emerged from our review, ranging from the need for accurate energy, transmission and consumption models, to the lack of accurate data traffic profiles, to the use of power transfer, energy cooperation and energy trading techniques. These challenges are here discussed along with some research directions to follow for achieving sustainable 5G systems.Comment: Accepted by Elsevier Computer Communications, 21 pages, 9 figure

    Energy challenges for ICT

    Get PDF
    The energy consumption from the expanding use of information and communications technology (ICT) is unsustainable with present drivers, and it will impact heavily on the future climate change. However, ICT devices have the potential to contribute signi - cantly to the reduction of CO2 emission and enhance resource e ciency in other sectors, e.g., transportation (through intelligent transportation and advanced driver assistance systems and self-driving vehicles), heating (through smart building control), and manu- facturing (through digital automation based on smart autonomous sensors). To address the energy sustainability of ICT and capture the full potential of ICT in resource e - ciency, a multidisciplinary ICT-energy community needs to be brought together cover- ing devices, microarchitectures, ultra large-scale integration (ULSI), high-performance computing (HPC), energy harvesting, energy storage, system design, embedded sys- tems, e cient electronics, static analysis, and computation. In this chapter, we introduce challenges and opportunities in this emerging eld and a common framework to strive towards energy-sustainable ICT

    On Providing Energy-efficient Data Transmission to Mobile Devices

    Get PDF
    The transformation from telephony to mobile Internet has fundamentally changed the way we interact with the world by delivering ubiquitous Internet access and reasonable cost of connectivity. The mobile networks and Internet services are supportive of each other and together drive a fast development of new services and the whole ecosystem. As a result, the number of mobile subscribers has skyrocketed to a magnitude of billions, and the volume of mobile traffic has boomed up to a scale no-one has seen before with exponential growth predictions. However, the opportunities and problems are both rising. Therefore, to enable sustainable growth of the mobile Internet and continued mobile service adaption, this thesis proposes solutions to ensure that the reduction of overall environmental presence and the level of QoE are mutually addressed by providing energy-efficient data transmission to mobile devices. It is important to understand the characteristics of power consumption of mobile data transmission to find opportunities to balance the energy consumption and the growth of mobile services and the data volumes. This research started with power consumption measurements of various radio interfaces and investigations of the trade-off between computation and communication of modern mobile devices. Power consumption models, state machines and the conditions for energy-efficient mobile data transmission were proposed to guide the development of energy-saving solutions. This research has then employed the defined guideline to optimise data transmission for energy-efficient mobile web access. Proxy-based solutions are presented in this thesis, utilising several strategies: bundling-enabled traffic shaping to optimise TCP behaviour over congested wireless links and keep the radio interface in low power consumption states as much as possible, offloading HTTP-object fetching to shorten the time of DNS lookups and web content downloading, and applying selective compression on HTTP payload to further reduce energy consumption of mobile data transmission. As a result, the solutions dramatically reduce the energy consumption of mobile web access and download time, yet maintain or even increase user experience

    Power Consumption Analysis, Measurement, Management, and Issues:A State-of-the-Art Review of Smartphone Battery and Energy Usage

    Get PDF
    The advancement and popularity of smartphones have made it an essential and all-purpose device. But lack of advancement in battery technology has held back its optimum potential. Therefore, considering its scarcity, optimal use and efficient management of energy are crucial in a smartphone. For that, a fair understanding of a smartphone's energy consumption factors is necessary for both users and device manufacturers, along with other stakeholders in the smartphone ecosystem. It is important to assess how much of the device's energy is consumed by which components and under what circumstances. This paper provides a generalized, but detailed analysis of the power consumption causes (internal and external) of a smartphone and also offers suggestive measures to minimize the consumption for each factor. The main contribution of this paper is four comprehensive literature reviews on: 1) smartphone's power consumption assessment and estimation (including power consumption analysis and modelling); 2) power consumption management for smartphones (including energy-saving methods and techniques); 3) state-of-the-art of the research and commercial developments of smartphone batteries (including alternative power sources); and 4) mitigating the hazardous issues of smartphones' batteries (with a details explanation of the issues). The research works are further subcategorized based on different research and solution approaches. A good number of recent empirical research works are considered for this comprehensive review, and each of them is succinctly analysed and discussed

    Improving Sustainable Mobility through Modal Rewarding: The GOOD_GO Smart Platform

    Get PDF
    Private car mobility registers today a h igh accident rate and around 70% of the overall CO2 emissions from transport were generated by road mode split (European Commission, 2016). Moreover, in urban areas they occur 38% of the overall fatalities from road transport, and 23% of the overall CO2 emissions (European Commission, 2013). As a result, a modal shift of at least a part of passenger transport in urban areas, from private car to sustainable transport systems is desirable. This research aims to promote sustainable mobility through two mutually reinforcing "main actions": firstly, there is a r ewarding Open-Source platform, named as GOOD_GO; secondly, there is the SW/HW system connecting to the wide world of private and/or shared bicycles. Through the GOOD_GO platform Web portal and App, a user enters a so called 'social rewarding game' thought to incentive sustainable mobility habits, and gets access to the second item consisting of a system to disincentive bike-theft and based on the passive RFID technology. The low-cost deterrent bike-theft and bike monitoring/tracking system is functional to bring a big number of citizens inside the rewarding game. In 2018, a pilot test has implemented in the city of Livorno (Tuscany, It), and it involved around 1,000 citizens. Results were quite encouraging and today, the cities of Livorno, Pisa and Bolzano will enlarge the incentive system both to home-to-school and home-to-work mobility. The Good_Go platform is an actual M-a-a-S (Mobility-as-a-Service) application, and it becoming a Mobility Management decision system support, jointly with the opportunity of organizing more incentive tenders and rewarding systems types
    corecore