5 research outputs found

    ДОСЛІДЖЕННЯ ЕКСПЛУАТАЦІЙНИХ ПАРАМЕТРІВ АВІАЦІЙНОГО ДВИГУНА, З ВИКОРИСТАННЯМ АЛЬТЕРНАТИВНИХ ПАЛИВ НА ОСНОВІ ВІДНОВЛЮВАНОЇ РОСЛИННОЇ СИРОВИНИ

    Get PDF
    Дана стаття присвячена оцінці параметрів роботи реактивного двигуна з використанням звичайного та альтернативного реактивного палива, отриманого шляхом сумішшю з біологічними добавками рослинного масла, під час випробувань на стенді. Стандартне реактивне паливо та новостворене альтернативне реактивне паливо було перевірено та порівняно в умовах роботи двигуна. Перевірена та доведена гіпотеза, що альтернативні реактивні палива можуть бути використані як робочий елемент реактивних двигунів, що забезпечують його надійну та ефективну роботу. Було експериментально визначено, що використання альтернативних реактивних палив призводить до покращення характеристик штреку реактивних двигунів та зменшення витрати палива. Вони забезпечують більш енергоефективне функціонування реактивного двигуна. Було також виявлено, що використання альтернативних реактивних палив призводить до зменшення температури газу в струменевій трубі. Це може позитивно впливати на довговічність матеріалів і конструкції двигуна проти високих температур, а також на зменшення викидів NOx. Результати дослідження показують, що експлуатаційні параметри реактивного двигуна, оснащеного новими альтернативними реактивними паливами, повністю задовольняють експлуатаційні норми, встановлені в специфікації для перевіреного двигуна. Альтернативні авіаційні палива, запропоновані в дослідженні, можуть використовуватися як робочий елемент авіаційного двигуна без необхідності внесення змін у його конструкцію. У статті детально представлені результати дослідження щодо таких показників: тяга, витрата палива, тиск на форсунках, температура газу за турбіною, відносна частота обертання ротора, прийомистість. Всі розрахунки представлені графічно та у таблицях. Зроблені висновки щодо кожного з перерахованих параметрів оцінки та проведено порівняння традиційного палива з винайденим альтернативним, згідно до чого було отримано, що використання результаті стендових випробувань було зроблено висновок, що експлуатаційні параметри ГТД за використання нових альтернативних палив повністю задовольняють експлуатаційні норми, встановлені для випробуваного ГТД

    Evaluation of jet engine operation parameters using conventional and alternative jet fuels

    Get PDF
    Jet engine operation parameters using conventional and alternative jet fuels, obtained by blending with plant oil bio-additives, during bench tests were evaluated. Jet fuels were tested and compared in conditions of engine operation. It was determined that using alternative jet fuels improves jet engine thrust characteristics and reduces fuel flow. These provide more energy efficient operation of jet engine. Using alternative jet fuels results in reduction of gas temperature in the jet pipe. This contributes to durability of materials and structure of the engine against high temperature, as well as reducing of NOx emissions. The results of the study show that operational parameters of the jet engine powered with new alternative jet fuels completely satisfy exploitation norms set in specification for tested engine. Alternative jet fuels, proposed in the study, may be used as a working body of the jet engine without a need of making changes in its design

    Predictive Maintenance of Critical Equipment for Floating Liquefied Natural Gas Liquefaction Process

    Get PDF
    Predictive Maintenance of Critical Equipment for Liquefied Natural Gas Liquefaction Process Meeting global energy demand is a massive challenge, especially with the quest of more affinity towards sustainable and cleaner energy. Natural gas is viewed as a bridge fuel to a renewable energy. LNG as a processed form of natural gas is the fastest growing and cleanest form of fossil fuel. Recently, the unprecedented increased in LNG demand, pushes its exploration and processing into offshore as Floating LNG (FLNG). The offshore topsides gas processes and liquefaction has been identified as one of the great challenges of FLNG. Maintaining topside liquefaction process asset such as gas turbine is critical to profitability and reliability, availability of the process facilities. With the setbacks of widely used reactive and preventive time-based maintenances approaches, to meet the optimal reliability and availability requirements of oil and gas operators, this thesis presents a framework driven by AI-based learning approaches for predictive maintenance. The framework is aimed at leveraging the value of condition-based maintenance to minimises the failures and downtimes of critical FLNG equipment (Aeroderivative gas turbine). In this study, gas turbine thermodynamics were introduced, as well as some factors affecting gas turbine modelling. Some important considerations whilst modelling gas turbine system such as modelling objectives, modelling methods, as well as approaches in modelling gas turbines were investigated. These give basis and mathematical background to develop a gas turbine simulated model. The behaviour of simple cycle HDGT was simulated using thermodynamic laws and operational data based on Rowen model. Simulink model is created using experimental data based on Rowen’s model, which is aimed at exploring transient behaviour of an industrial gas turbine. The results show the capability of Simulink model in capture nonlinear dynamics of the gas turbine system, although constraint to be applied for further condition monitoring studies, due to lack of some suitable relevant correlated features required by the model. AI-based models were found to perform well in predicting gas turbines failures. These capabilities were investigated by this thesis and validated using an experimental data obtained from gas turbine engine facility. The dynamic behaviours gas turbines changes when exposed to different varieties of fuel. A diagnostics-based AI models were developed to diagnose different gas turbine engine’s failures associated with exposure to various types of fuels. The capabilities of Principal Component Analysis (PCA) technique have been harnessed to reduce the dimensionality of the dataset and extract good features for the diagnostics model development. Signal processing-based (time-domain, frequency domain, time-frequency domain) techniques have also been used as feature extraction tools, and significantly added more correlations to the dataset and influences the prediction results obtained. Signal processing played a vital role in extracting good features for the diagnostic models when compared PCA. The overall results obtained from both PCA, and signal processing-based models demonstrated the capabilities of neural network-based models in predicting gas turbine’s failures. Further, deep learning-based LSTM model have been developed, which extract features from the time series dataset directly, and hence does not require any feature extraction tool. The LSTM model achieved the highest performance and prediction accuracy, compared to both PCA-based and signal processing-based the models. In summary, it is concluded from this thesis that despite some challenges related to gas turbines Simulink Model for not being integrated fully for gas turbine condition monitoring studies, yet data-driven models have proven strong potentials and excellent performances on gas turbine’s CBM diagnostics. The models developed in this thesis can be used for design and manufacturing purposes on gas turbines applied to FLNG, especially on condition monitoring and fault detection of gas turbines. The result obtained would provide valuable understanding and helpful guidance for researchers and practitioners to implement robust predictive maintenance models that will enhance the reliability and availability of FLNG critical equipment.Petroleum Technology Development Funds (PTDF) Nigeri

    Modification of jet fuels composition with renewable bio-additives

    Get PDF
    1. Abu-Taieh C., Evon J.: Technology Engineering and Management in Aviation: Advancements and Discoveries. Information Science Reference, 2011. 2. Ajam M, Woolard C, Wiljoen CL. Biomass pyrolysis oil as a renewable feedstock for bio-jet fuel. In: Proceedings of the 13th international conference on stability, handling and use of liquid fuels (IASH2013), Rhodes, Greece; October 2013. p. 6–10. 3. Аnnual report to Parliament on the renewable transport fuel obligation. Renewable Fuels Agency. The Stationery Office, 2011. 4. Agarwal S., Chhibber V. K., Bhatnagar A. K.:Tribological behavior of diesel fuels and the effect of anti-wear additives. Fuel. Vol. 106, 2013, p. 21–29, 5. Alves S. M., Barros B.S., Trajano M.F.: Tribological behavior of vegetable oil-based lubricants with nanoparticles of oxides in boundary lubrication conditions. Tribology International. Vol. 65, 2013, p. 28–36. 6. Asgari H., Chen X., Sainudiin R.: Modelling and simulation of gas turbines. International Journalof Modelling, Identification and Control, Vol.25, No.3, 2013, p. 1–15. 7. Bartis James T. LaTourrette T., Dixon L.: Oil Shale Development in the United States: Prospects and Policy Issues. Santa Monica, Calif.: RAND Corporation, MG-414-NETL, 2005. 8. Bassam N. El.: Handbook of Bioenergy Crops: A Complete Reference to Species. Development and Applications Earthscan, 2010. 9. Bazazzadeh M., Badihi H., Shahriari A.: Gas Turbine Engine Control Design Using Fuzzy Logic and Neural Networks. International Journal of Aerospace Engineering. Vol. 1, 2011, p. 1–13. 10. Blakey S, Rye L, Wilson C.W.: Aviation gas turbine alternative fuels: A review. P Combust Inst, No. 33, 2011, p. 2863–2885. 11. Boichenko S., Iakovlieva A., Vovk O.: Traditional and alternative jet fuels: problems of quality standardization. Journal of Petroleum & Environmental Biotechnology. Vol. 4. Iss. 3, 2013. 12. Boichenko S., Shkilniuk I., Turchak V.. The problems of biopollution with jet fuels and the way of achieving solution. Transport. 23, 2008; p. 253–257. 13. Boichenko S., Yakovleva A. Prospects of biofuels introduction into aviation. Transport engineering and management: Proceedings of the 15-th conference for Lithuania Junior researchers. Science – future of Lithuania, 4 May 2012. Vilnius: Technika. p. 90–94. 14. Boichenko S., Yakovlieva A., Gryshchenko O., Zinchuk A. Prospects of using different generations biofuels for minimizing impact of modern aviation on environment, Энерготехнологии и ресурсосбережение, № 1, 2018, p. 10–20. 15. Boichenko S., Lejda K., Yakovlieva A., Vovk O. Comparative characteristics of low-temperature properties of jet fuels modified with bio-additives, International Automotive Conference (KONMOT2018). IOP Conf. Series: Materials Science and Engineering 421, 2018. 16. Breil C., Meullemiestre A., Vian M., Chemat F.: Bio-Based Solvents for Green Extraction of Lipids from Oleaginous Yeast Biomass for Sustainable Aviation Biofuel. Molecules. Iss. 21(196), 2016, p. 1–14. 17. Carels N., Sujatha M., Bahadur B.: Jatropha, Challenges for a New Energy Crop. Vol. 1: Farming, Economics and Biofuel. Springer Science & Business Media, 2012. 18. Cavani F., Albonetti S., Basile F., Gandini A.: Chemicals and Fuels from Bio-Based Building Blocks. John Wiley & Sons, 2015. 19. Cermak S. C., Evangelista R. L., Kenar J. A.: Distillation of Natural Fatty Acids and Their Chemical Derivatives, Distillation - Advances from Modeling to Applications, Dr. Sina Zereshki (Ed.), InTech, 2012. – р. 5. – 140. 20. Chai M. Thermal Decomposition of Methyl Esters in Biodiesel Fuel: Kinetics, Mechanisms and Products, Ph.D. Thesis, University оf Cincinnati, 2012. 21. Chiaramonti D, Bonini M, Fratini E, Tondi G, Gartner K, Bridgwater AV, et al. Development of emulsion from biomass pyrolysis liquid and diesel and their use in engines – Part 1: emulsion production. Biomass Bioenergy, No. 25, 2003, p. 85–99. 22. Chiaramonti D, Bonini M, Fratini E, Tondi G, Gartner K, Bridgwater AV, et al. Development of emulsion from biomass pyrolysis liquid and diesel and their use in engines – Part 2: tests in diesel engines. Biomass Bioenergy, No. 25, 2003, p. 101–11. 23. Chuck C.J., Donnelly J.: The compatibility of potential bioderived fuels with Jet A-1 aviation kerosene. Applied Energy. Vol. 118, 2014, p. 83–91. 24. Cleveland C.J., Morris C. G.: Handbook of energy. Volume II: Cronologies, top ten lists, and words clouds. Elsvier Inc., 2014. 25. Cushion E., Whiteman A., Dieterle G.: Bioenergy Development: Issues and Impacts for Poverty and Natural Resource Management. World Bank Publications, 2010. 26. Daggett D. L., Hendricks R.C., Walther R., Corporan E.: Alternative fuels for use in commercial aircrafts. The Boeing Company, 2007. 27. Dahlquist E.: Biomass as Energy Source. Resources, Systems and Applications. CRC Press, 2013. 28. Delmon B., Grange P., Froment G.F.: Hydrotreatment and Hydrocracking of Oil Fractions. Elsevier, 1999. 29. Doc 9889 Airport Air Quality Manual. International Civil Aviation Organization, 2011. 30. Doc 9977. Manual on Civil Aviation Jet Fuel Supply, 2012. 31. Edwards T.: Advancements in Gas Turbine Fuels from 1943 to 2005. J Eng Gas Power, No. 129, 2007, p. 13–20. 32. Firrisa M. T., Van Duren I., Voinov A.: Energy efficiency for rapeseed biodiesel production in different farming systems. Energy Efficiency, 2013. 33. Garcia-Anton J., Monzo J., Guninon J.L.: Study of corrosion on copper strips by petroleum naphtha in the ASTM D-130 test by means of electronic microscopy (SEM) and energy dispersive X-ray (EDX). Fresenius Journal of Analytical Chemistry. Iss. 337, 1990, p. 382–388. 34. Garcia Santander C.M., Gymez Rueda S.M., de Lima da Silva N.: Measurements of normal boiling points of fatty acid esters and triacylglycerols by thermogravimetric analysis, Fuel, Iss. 92, 2012, p. 158–161. 35. Geller D. P., Goodrum J.: W. Effects of specific fatty acid methyl esters on diesel fuel lubricity, Fuel, Vol. 83, 2004, p. 2351–2356. 36. Gupta, K. K, Rehman A, Sarviya R. M.: Bio-fuels for the gas turbine: A review. Renew. Sust. Energ. Rev. No. 14, 2010, p. 2946–2955. 37. Harvey B. G, Merriman W.W., Koontz T.A.: High-Density Renewable Diesel and Jet Fuels Prepared from Multicyclic Sesquiterpanes and a 1‑Hexene-Derived Synthetic Paraffinic Kerosene, Energy Fuels, 2013. 38. Hemighaus G., Boval T., Bosley C.: Alternative Jet Fuels. Addendum 1 to Aviation Fuels Technical Review (FTR-3/A1). Chevron Corporation, 2006. 39. Hileman J.I., Stratton R.W.: Alternative jet fuel feasibility. Transport Policy. Vol. 34, 2014, p. 52–62. 40. Hileman J.I., Wong H.M., Waitz I.: Near-Term Feasibility of Alternative Jet Fuels. Santa Monica, California: RAND Corporation, 2009. 41. Hileman, J. Ortiz D., Bartis J.: Near-Term Feasibility of Alternative Jet Fuels. Jointly published by the RAND Corporation (Report No. TR-554-FAA) and the Partnership for Air Transportation Noise and Emissions Reduction, 2009. 42. Honga T.D., Soerawidjajab T.H., Reksowardojoa I.K.: A study on developing aviation biofuel for the Tropics: Production process – Experimental and theoretical evaluation of their blends with fossil kerosene, Chemical Engineering and Processing: Process Intensification, Vol. 74, 2013, p. 124–130. 43. Hristova M., Tchaoushev S.: Сalculation of flash points and flammability limits of substances and mixtures. Journal of the University of Chemical Technology and Metallurgy, Iss. 41(3), p. 291–296, 2006. 44. Hu J., Du Z., Li C., Min E.: Study on the lubrication properties of biodiesel as fuel lubricity enhancers, Fuel. Vol. 84, 2005. p. 1601–1606. 45. Iakovlieva A., Boichenko S., Vovk O.: Investigation of the fractional composition of rape oil-derived aviation biofuels. Aviation in the XXI-st century. Safety in aviation and space technologies: the fifth world congress, 25–27 September 2012: abstracts. Kyiv, Vol. 3, 2012, p. 5.41–5.43. 46. Iakovlieva A.V. Boichenko S.V., Vovk O.O.: Overview of innovative technologies for aviation fuels production. Journal of Chemistry and chemical technology, Vol. 7. Iss. 3, 2013, p. 305–312. 47. Iakovlieva A., Lejda K., Vovk O., Boichenko S.: Peculiarities of the development and implementation of aviation biofuels in Ukraine. World Congress on Petrochemistry and Chemical Engineering. Journal of Petroleum & Environmental Biotechnology. November 2013, San Antonio. Vol.4. Iss. 6, 2013, p. 47. 48. Iakovlieva A., Boichenko S., Gay A.: Cause-Effect Analysis of the Modern State in Production of Jet Fuels. Journal of Сhemistry & Chemical Technology. Vol. 8. No 1, 2014, p. 107–116. 49. Iakovlieva A., Boichenko S., Vovk O., Lejda K.: Potential of jet biofuels production and application in Ukraine and Poland. International Journal of Sustainable Aviation. Vol. 1. No.4, 2015, p. 314–323. 50. Iakovlieva A., Boichenko S., Lejda K.: Impact of rape oil ethyl esters additives on some characteristics of jet fuel. Проблеми хіммотології. Теорія та практика раціонального використання традиційних і альтернативних паливно -мастильних матеріалів: V міжнар. наук.-техн. конф., 6–10 жовт. 2014. Київ, c. 286 – 289. 51. Iakovlieva A., Lejda K., Vovk O., Boichenko S., Skilniuk I.: Vacuum Distillation of Rapeseed Oil Esters for Production of Jet Fuel Bio-Additives, Procedia Engineering, Vol. 187, 2017, p. 363 – 370. 52. Iakovlieva A., Lejda K., Vovk O., Boichenko S.: Рotential of jet biofuels production and application in Ukraine and Poland. Proceedings of the 1st International Simposium on Sustainable Aviation.–31 May–03 June 2015, Isntanbul, p. 137. 53. Iakovlieva A., Boichenko S., Lejda K.: Experimental study on antiwear properties for blends of jet fuel with biocomponents derived from rapeseed oil. Eastern-European journal of enterprise technologies. No. 5/8(77), 2015, p. 20–28. 54. Iakovlieva A., Vovk O., Boichenko S.: Еxperimental study of rape oil esters influence on physical-chemical properties of jet fuels. Proceedings of the 19th Conference for Junior Researchers ‘Science – Future of Lithuania’ Тransport engineering and management, 6 May 2016, Vilnius. p. 85–89. 55. Iakovlieva A., Lejda K., Vovk O., Boichenko S., Kuszewski H. Improvement of technological scheme of fatty acids ethyl esters production for use as jet fuels biocomponents. International Journal of Theoretical and Applied Science. Iss. 11(19), 2014, p. 44–55. 56. International Air Transport organization. Vision 2050. Report. Montreal. Geneva, 2011. 57. Jansen R. A.: Second Generation Biofuels and Biomass: Essential Guide for Investors, Scientists and Decision Makers. Wiley. 2012. 58. Jenkins R.W., Munro M., Christopher S.N., Chuck C.: Potential renewable oxygenated biofuels for the aviation and road transport sectors. Fuel, Vol. 103, 2013, p. 593–599. 59. Jacyna M., Żak J., Jacyna-Gołda I., Merkisz J., Merkisz-Guranowska A., Pielecha J.: Selected aspects of the model of proecological transport system. Journal of KONES Powertrain and Transport, Vol. 20, No. 3, 2013, p. 193 – 202. 60. Kallio P., Pasztor A., Akhtar M.K., Jones P.R.: Renewable jet fuel. Current Opinion in Biotechnology. Vol. 26, 2014, p. 50–55. 61. Kandaramath Hari T., Yaakob Z., Binitha N.N.: Aviation biofuel from renewable resources: Routes, opportunities and challenges. Renewable and Sustainable Energy Reviews. Vol. 42, 2015, p. 1234–1244. 62. Kinder J. D., Rahmes T.: Evaluation of Bio-Derived Synthetic Paraffinic Kerosene (Bio-SPK). The Boeing Company Sustainable Biofuels Research&Technology Program, 2009. 63. Kirklin P.W., David. P.: Aviation Fuel: Thermal Stability. ASTM International, 1992. 64. Lapuerta M., Rodriguez-Fernandeza J., Estevez C., Bayarri N.: Properties of fatty acid glycerol formal ester (FAGE) for use as a component in blends for diesel engines. Biomass and bioenergy. Vol. 76, 2015, p. 130–140. 65. Lebedevas S., Vaicekauskas A.: Research into the application of biodiesel in the transport sector of Lithuania. Transport. Vol. 21, Iss. 2, 2006, p. 80–87. 66. Liu G., Yan B., Chen G.: Technical review on jet fuel production. Renewable and Sustainable Energy Reviews. Vol. 25, 2013, p. 59–70. 67. Lu M., Chai M.: Experimental Investigation of the Oxidation of Methyl Oleate: One of the Major Biodiesel Fuel Components Synthetic Liquids Production and Refining. Chapter 13, P. 289–312. American Chemical Society. 2011 68. Merkisz J., Merkisz-Guranowska, A., Pielecha J., Nowak M., Jacyna M., Lewczuk K., Żak J.: Exhaust emission measurements in the development of sustainable road transport. Journal of KONES Powertrain and Transport, Vol. 20, No. 4 2013, p. 277 – 284. 69. Maksimuk Yu., Antonova Z., Fes’ko V., Kursevich V.: Diesel biofuel viscosity and heat of combustion. Chemistry and technology of fuels and oils. Iss. 45, 2009, p. 343–346. 70. Maru M. M., Trommer R.M., Cavalcanti K.F.: The Stribeck curve as a suitable characterization method of the lubricity of biodiesel and diesel blends. Energy. Vol. 69, 2014, p. 673–681. 71. Maurice L.Q., Lander H., Edwards T., Harrison W.E.: Advanced aviation fuels: a look ahead via a historical perspective. Fuel. Vol. 80, Iss. 5, 2001, p. 747–756. 72. Merkisz J., Markowski J., Pielecha J. Emission tests of the AI-14RA aircraft engine under real operating conditions of PZL-104" Wilga" plane. Silniki Spalinowe. No. 3, 2009, p. 64–70. 73. Merkisz J., Galant M., Karpiński D., Kubiak, K. Evaluation of possibility to use the LTO cycle for emission test on example of the model turbine engine GTM-120 Journal of Mechanical and Transport Engineering. Vol. 66, No. 2, 2014, p. 25—33. 74. Murphy D.J., Hall C.A.S.: Year in review—EROI or energy return on (energy) invested. Annals of the New York academy of sciences. Issue: Ecological Economics Reviews. Iss. 1185, 2010, p. 102–118. 75. Murphy D.J., Hall C.A.S., Powers B.:New perspectives on the energy return on (energy) investment (EROI) of corn ethanol. Environment, Development and Sustainability. Vol. 13, Iss. 1, 2011, p. 179–202. 76. Naik S.N., Goud V.V., Rout P.K., Dalai A.K.: Production of first and second generation biofuels: A comprehensive review. Renew. Sust. Energ. Rev., No. 14, 2010, p. 578–597. 77. Nollet Leo M. L.: Handbook of Food Analysis: Physical characterization and nutrient analysis. CRC Press, 2004. 78. Orszulik S.: Environmental Technology in the Oil Industry. Springer Science & Business Media, 2013. 79. Pandey A.: Biofuels: Alternative Feedstocks and Conversion Processes. Academic Press, 2011. 80. Pearlson M.N.: A techno-economic and environmental assessment of hydroprocessed renewable distillate fuels. Master of Science in Technology and Policy. Massachiussets Institute of Technology. June 2011. 81. Prag P.: Renewable Energy in the Countryside. Taylor & Francis, 2014. 82. Prussi M, Chiaramonti D, Recchia L, Martelli F, Guidotti F, Pari L.: Alternative feedstock for the biodiesel and energy production: the OVEST project. Energy Journal, No. 58, 2013, p. 2–8. 83. Rahmes T.F., Kinder J.D., Henry T.M., etc.: Sustainable Bio-Derived Synthetic Paraffinic Kerosene (BioSPK) Jet Fuel Flights and Engine Tests Program Results. American Institute of Aeronautics and Astronautics, 2009. 84. Rajagopal D., Zilberman D.: Environmental, Economic and Policy Aspects of Biofuels. Nеw Publishers Inc., 2008. 85. Report on alternative fuels. International Air Transport Association IATA. http://www.iata.org/publications/Documents/2012-report-alternativefuels. pdf; 2012 86. Rosillo Calle F, Trhan D, Seiffert M, Teeluckingh S. The potential and role of biofuels in commercial air transport – biojetfuels. Task 40 sustainable international bioenergy trade. IEA Bioenergy 87. Sarin R., Kumar R., Srivastav B., etc.: Biodiesel surrogates: Achieving performance demands. Bioresource Technology. Vol. 100, Iss. 12, 2009, p. 3022–3028. 88. Shen Y.. Аn experimental study on thermal stability of FAEE biodiesel fuel with ethanol. Master Thesis, 2015. 89. Shepherd J.E., Nuyt C.D., Lee J.J.: Flash Point and Chemical Composition of Aviation Kerosene (Jet A). National Transportation Safety Board, 2000. 90. Singh B.: Biofuel Crops: Production, Physiology and Genetics. CABI, 2013. 91. Singh B.: Biofuel Crop Sustainability. John Wiley & Sons, 2013. 92. Sperling D., Cannon J.S.: Reducing Climate Impacts in the Transportation Sector. Springer Science & Business Media, 2011. 93. Szczerek M., Tuszyсski W. Tribological researches – scuffing. Radom: Institute for Sustainable Technologies – National Research Institute, 2000. 94. The jet engine. Rolls-Royce plc. Renault Printing Co Ltd., 1996. 95. T-02U. Aparat czterokulowy – instrukcja obsługi. Radom: Wydawnictwo Instytutu Technologii Eksploatacji, 2011. 96. Wcisło G.: Determination of the impact of FAME biocomponent on the fractional composition of diesel engine fuels. Combustion Engines. Iss. 154(3), 2013, p. 1098–1103. 97. Xu Y., Wang Q., Hu X.: Characterization of the lubricity of bio-oil/diesel fuel blends by high frequency reciprocating test rig. Energy. Vol. 35, Iss. 1, 2010, p. 283–287. 98. Yakovleva A.V., Boichenko S.V., Lejda K, Vovk O.O., Kuszewski H.: Antiwear Properties of Plant—Mineral-Based Fuels for Airbreathing Jet Engines, Chemistry and Technology of Fuels and Oils, Vol. 53, Iss. 1, 2017, p. 1–9. 99. Yakovlieva A.V., Boichenko S.V., Leida K., Vovk O.A., Kuzhevskii Kh.. Influence of Rapeseed Oil Ester Additives on Fuel Quality Index for Air Jet Engines, Chemistry and Technology of Fuels and Oils, Vol. 53, Iss. 3, 2017. p. 308–317. 100. Yakovlieva A., Boichenko S., Vovk O., Lejda K., Gryshchenko O.. Case Study of Alternative Jet Fuel Production with Bio-additives from Plant Oils in Ukraine and Poland. Advances in Sustainable Aviation. Springer International Publishing, 2018. Chapter 4. 101. Yakovlieva A., Boshkov V. Experimental study of low-temperature properties of alternative aviation fuels, Proceedings of the 21th Conference for Junior Researchers ‘Science – Future of Lithuania’ Transport Engineering and Management, 4-5 May 2018, Vilnius, Lithuania. 2018. p. 130 – 134. 102. Yildirim U, Abanteriba S.: Manufacture, qualification and approval of new aviation turbine fuels and additives, proceedia Engineering, No. 49, 2012, p. 310 – 315. 103. Yutko B. and Hansman J., Approaches to Representing Aircraft Fuel Efficiency Performance for the Purpose of a Commercial Aircraft Certification Standard, MITInternational Center for Air Transportation, Cambridge, Mass, 2011. 104. Zhu Y.: An Experimental Study on Thermal Stability of Biodiesel Fuel. Master Thesis. – 2012. – 160 p. 105. Авиационный турбореактивный двигатель РУ 19A-300, руководство по эксплуатации и техническому обслуживанию, ЗАО «АНТЦ Технолог», 2001. 106. Азев В.С., Середа А.В.: Влияние соединений серы на противоизносные свойства дизельных топлив, Химия и технология топлив и масел. № 3, 2009, c. 23–27. 107. Андіїшин М.П., Марчук Я.С., Бойченко С.В., Рябоконь Л.А.: Газ природний, палива та оливи. Одеса: Астропринт, 2010. 108. Бойченко С.В., Спіркін В.Г. Вступ до хіммотології палив та олив: навч. посіб.: у 2-х ч. Одеса: Астропринт, Ч.1., 2009. 109. Бойченко С.В., Любінін Й.А., Спіркін В.Г.: Вступ до хіммотології палив та олив: навч. посіб.: у 2-х ч. Одеса: Астропринт. Ч.2., 2010. 110. Бойченко С.В., Черняк Л.М., Яковлєва А.В.: Традиційні технології виробництва палив для повітряно-реактивних двигунів. Вісник Національного авіаційного університету. № 2 (55), 2013, с. 195–209. 111. Бойченко С. В., Яковлева А. В., Волошинец В. А., Лейда К. Модифицирование эфиров рапсового масла вакуумным фракционированием, Технологии нефти и газа, №5, 2018, c. 15–20 112. Братичак М.М.: Основи промислової нафтохімії, Львів: Вид-во НУ «Львівська політехніка», 2008. 113. Васильев И.П.: Влияние топлив растительного происхождения на экологические и экономические показатели дизеля, Луганск: Изд-во ВНУ им. В. Даля, 2009. 114. Волошинець В.А. Фізична та колоїдна хімія: Фізико-хімія дисперсних систем та полімерів: навч.посіб. Львів : Вид-во Львів. політехніки, 2013. – 200 с. 115. Голоскоков А.Н. Критерии сравнения эффективности традиционных и альтернативных энергоресурсов. Нефтегазовое дело. № 1, 2011, c. 285–301. 116. Голоскоков А.Н. Пик добычи нефти и начало мирового энергетического кризиса. Нефтегазовое дело. 2010, c. 1–13. 117. Данилов А.М., Каминский Э.Ф., Хавкин В.А.: Альтернативные топлива: достоинства и недостатки. Проблемы применения. Российский химический журнал (Журнал Российского химического общества им. Д.И. Менделеева). Т. XLVII. № 6, 2003, c. 4–11. 118. Дворецкий С.И., Нагорнов С.А., Романцова С.В. и др.: Производство биодизельного топлива из органического сырья. Вопросы современной науки и практики. № 39, 2012, c. 126– 35. 119. Девянин С.Н., Марков В.А., Семенов В.Г.: Растительные масла и топлива на их основе для дизельных двигателей. Харьков: Новое слово. 2007. 120. Ергин Д.: Добыча: Всемирная история борьбы за нефть, деньги и власть. Москва,: Альпина Паблишер, 2011. 121. Запорожець А.О.: Дослідження стехіометричної суміші «повітря ‒ паливо» органічних сполук. Частина 1. Алкани. Наукоємні технології. № 2(22), 2014, c. 163–167. 122. Кириченко В., Бойченко С., Кириченко В., Нездоровин В.: Комплексная переработка технических растительных масел: концепция, методы и технологи. «Systems and means of motor transport» Seria: Transport. Monografia. № 4, 2013, p. 357–370. 123. Колодницька Р.В., Семенов В.Г.: Моделювання низькотемпературних властивостей біодизельних палив. Вісник СевНТУ. Серія: Машиноприладобудування та транспорт. № 134, 2012, c. 135–138. 124. Коллоидная химия нефти и нефтепродуктов: Сборник материалов, посвященных научной деятельности проф. Г.И. Фукса. Москва: Изд-во «Техника». ООО «Тума Групп», 2001. 125. Крылов И.Ф., Емельянов В.Е.: Альтернативные моторные топлива. Производство, применение
    corecore