177 research outputs found

    Piezoelectric Energy Harvesting: Enhancing Power Output by Device Optimisation and Circuit Techniques

    Get PDF
    Energy harvesting; that is, harvesting small amounts of energy from environmental sources such as solar, air flow or vibrations using small-scale (≈1cm 3 ) devices, offers the prospect of powering portable electronic devices such as GPS receivers and mobile phones, and sensing devices used in remote applications: wireless sensor nodes, without the use of batteries. Numerous studies have shown that power densities of energy harvesting devices can be hundreds of µW; however the literature also reveals that power requirements of many electronic devices are in the mW range. Therefore, a key challenge for the successful deployment of energy harvesting technology remains, in many cases, the provision of adequate power. This thesis aims to address this challenge by investigating two methods of enhancing the power output of a piezoelectric-based vibration energy harvesting device. Cont/d

    Power Processing for Electrostatic Microgenerators

    No full text
    Microgenerators are electro-mechanical devices which harvest energy from local environmental from such sources as light, heat and vibrations. These devices are used to extend the life-time of wireless sensor network nodes. Vibration-based microgenerators for biomedical applications are investigated in this thesis. In order to optimise the microgenerator system design, a combined electro-mechanical system simulation model of the complete system is required. In this work, a simulation toolkit (known as ICES) has been developed utilising SPICE. The objective is to accurately model end-to-end microgenerator systems. Case-study simulations of electromagnetic and electrostatic microgenerator systems are presented to verify the operation of the toolkit models. Custom semiconductor devices, previously designed for microgenerator use, have also been modelled so that system design and optimisation of complete microgenerator can be accomplished. An analytical framework has been developed to estimate the maximum system effectiveness of an electrostatic microgenerator operating in constant-charge and constant-voltage modes. The calculated system effectiveness values are plotted with respect to microgenerator sizes for different input excitations. Trends in effectiveness are identified and discussed in detail. It was found that when the electrostatic transducer is interfaced with power processing circuit, the parasitic elements of the circuit are reducing the energy generation ability of the transducer by sharing the charge during separation of the capacitor plates. Also, found that in constant-voltage mode the electrostatic microgenerator has a better effectiveness over a large operating range than constant-charge devices. The ICES toolkit was used to perform time-domain simulation of a range of operating points and the simulation results provide verification of the analytical results

    MEMS piezoelectric vibrational energy harvesters and circuits for IoT applications

    Get PDF
    In the Internet of Things (IoT) world, more and more sensor nodes are being deployed and more mobile power sources are required. Alternative solutions to batteries are the subjects of worldwide extended research. Among the possibilities is the harvesting of energy from the ambient. A novel energy harvesting system to power wireless sensor nodes is a necessity and inevitable path, with more and more market interest. Microelectromechnaical systems (MEMS) based piezoelectric vibrational energy harvesters (PVEH) are considered in this thesis due to their good energy densities, conversion efficiency, suitability for miniaturization and CMOS integration. Cantilever beams are favored for their relatively high average strains, low frequencies and simplicity of fabrication. Proof masses are essential in micro scale devices in order to decrease the resonance frequency and increase the strain along the beam to increase the output power. In this thesis, the effects of proof mass geometry on piezoelectric vibration energy harvesters are studied. Different geometrical dimension ratios have significant impact on the resonance frequency, e.g., beam to mass lengths, and beam to mass widths. The responses of various prototypes are studied. Furthermore, the impact of geometry on the performance of cantilever-based PVEH is investigated. Namely, rectangular and trapezoidal T-shaped designs are fabricated and tested. Optimized cross-shaped geometries are fabricated using a commercial technology PiezoMUMPs process from MEMSCAP. They are characterized for their resonant frequency, strain distribution and output power. The output of an energy harvester is not directly suited as a power supply for circuits because of variations in its power and voltage over time, therefore a power management circuit is required. The circuit meets the requirements of responding to an input voltage that varies with the ambient conditions to generate a regulated output voltage, and the ability to power multiple outputs from a fixed input voltage. In this thesis, new design architectures for a reconfigurable circuit are considered. A charge pump which modifies dynamically the number of stages to generate a plurality of voltage levels has been designed and fabricated using a CMOS 0.13 μm technology. This provides biasing voltages for electrostatic MEMS devices. Electrostatic MEMS require relatively high and variable actuation voltages and the fabricated circuit serves this goal and attains a measured maximum output voltage of 10.1 V from a 1.2 V supply. In this thesis, design recommendations are given and MEMS piezoelectric harvesters are implemented and validated through fabrications. T-shaped harvesters bring improvements over cantilever designs, namely the trapezoidal T-shaped structures. A cross-shaped design has the advantage of utilizing four beams and the proposed proof mass improves the performance significantly. A cross-coupled circuit rectifies the output efficiently towards an optimal energy harvesting solution

    Energy harvesting from human and machine motion for wireless electronic devices

    No full text
    Published versio

    Energy harvesting technologies and devices from vehicular transit and natural sources on roads for a sustainable transport: state-of-the-art analysis and commercial solutions

    Get PDF
    The roads we travel daily are exposed to several energy sources (mechanical load, solar radiation, heat, air movement, etc.), which can be exploited to make common systems and apparatus for roadways (i.e., lighting, video surveillance, and traffic monitoring systems) energetically autonomous. For decades, research groups have developed many technologies able to scavenge energy from the said sources related to roadways: electromagnetism, piezoelectric and triboelectric harvesters for the cars’ stress and vibrations, photovoltaic modules for sunlight, thermoelectric solutions and pyroelectric materials for heat and wind turbines optimized for low-speed winds, such as the ones produced by moving vehicles. Thus, this paper explores the existing technologies for scavenging energy from sources available on roadways, both natural and related to vehicular transit. At first, to contextualize them within the application scenario, the available energy sources and transduction mechanisms were identified and described, arguing the main requirements that must be considered for developing harvesters applicable on roadways. Afterward, an overview of energy harvesting solutions presented in the scientific literature to recover energy from roadways is introduced, classifying them according to the transduction method (i.e., piezoelectric, triboelectric, electromagnetic, photovoltaic, etc.) and proposed system architecture. Later, a survey of commercial systems available on the market for scavenging energy from roadways is introduced, focusing on their architecture, performance, and installation methods. Lastly, comparative analyses are offered for each device category (i.e., scientific works and commercial products), providing insights to identify the most promising solutions and technologies for developing future self-sustainable smart roads

    Piezoelectric energy harvesting : enhancing power output by device optimisation and circuit techniques

    Get PDF
    Energy harvesting; that is, harvesting small amounts of energy from environmental sources such as solar, air flow or vibrations using small-scale (≈1cm 3 ) devices, offers the prospect of powering portable electronic devices such as GPS receivers and mobile phones, and sensing devices used in remote applications: wireless sensor nodes, without the use of batteries. Numerous studies have shown that power densities of energy harvesting devices can be hundreds of µW; however the literature also reveals that power requirements of many electronic devices are in the mW range. Therefore, a key challenge for the successful deployment of energy harvesting technology remains, in many cases, the provision of adequate power. This thesis aims to address this challenge by investigating two methods of enhancing the power output of a piezoelectric-based vibration energy harvesting device. Cont/d.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    ISM-Band Energy Harvesting Wireless Sensor Node

    Get PDF
    In recent years, the interest in remote wireless sensor networks has grown significantly, particularly with the rapid advancements in Internet of Things (IoT) technology. These networks find diverse applications, from inventory tracking to environmental monitoring. In remote areas where grid access is unavailable, wireless sensors are commonly powered by batteries, which imposes a constraint on their lifespan. However, with the emergence of wireless energy harvesting technologies, there is a transformative potential in addressing the power challenges faced by these sensors. By harnessing energy from the surrounding environment, such as solar, thermal, vibrational, or RF sources, these sensors can potentially operate autonomously for extended periods. This innovation not only enhances the sustainability of wireless sensor networks but also paves the way for a more energy-efficient and environmentally conscious approach to data collection and monitoring in various applications. This work explores the development of an RF-powered wireless sensor node in 22nm FDSOI technology working in the ISM band for energy harvesting and wireless data transmission. The sensor node encompasses power-efficient circuits, including an RF energy harvesting module equipped with a multi-stage RF Dickson rectifier, a robust power management unit, a DLL and XOR-based frequency synthesizer for RF carrier generation, and a class E power amplifier. To ensure the reliability of the WSN, a dedicated wireless RF source powers up the WSN. Additionally, the RF signal from this dedicated source serves as the reference frequency input signal for synthesizing the RF carrier for wireless data transmission, eliminating the need for an on-chip local oscillator. This approach achieves high integration and proves to be a cost-effective implementation of efficient wireless sensor nodes. The receiver and energy harvester operate at 915 MHz Frequency, while the transmitter functions at 2.45 GHz, employing On-Off Keying (OOK) for data modulation. The WSN utilizes an efficient RF rectifier design featuring a remarkable power conversion efficiency, reaching 55% at an input power of -14 dBm. Thus, the sensor node can operate effectively even with an extremely low RF input power of -25 dBm. The work demonstrates the integration of the wireless sensor node with an ultra-low-power temperature sensor, designed using 65 nm CMOS technology. This temperature sensor features an ultra-low power consumption of 60 nW and a Figure of Merit (FOM) of 0.022 [nJ.K-2]. The WSN demonstrated 55% power efficiency at a TX output power of -3.8 dBm utilizing a class E power amplifier

    Power Management Electronics

    No full text
    Accepted versio
    corecore