14 research outputs found

    Generative agent-based architectural design computation : behavioral strategies for integrating material, fabrication and construction characteristics in design processes

    Get PDF
    The aim of this thesis is to investigate the generative potential of agent-based systems for integrating material and fabrication characteristics into design processes. This generative agent-based system reflects the significance of behavioral strategies in computational design and construction. This work presents a generative behavioral approach for integrating fabrication processes with material specifications. The development of a computational framework facilitates this integration via an agent-based system. A series of experiments with related case studies emphasizes behavioral strategies within the processes of formation and materialization. This research proposes the integration of material and fabrication processes through an agent-based system. The utilization of this system reflects a theoretical framework in developing an integrative computational method. The implementation of this theoretical framework in practical studies demonstrates the applicability of this research. The practical developments highlight the importance of behavioral strategies to establish integral design computation. Chapter 1 introduces the extended behavioral strategies to integration design. Chapter 2 provides a study about integrative design computation to abstract the main drivers of design integration through agent-based modeling. Chapter 3 presents agent-based systems in architectural design, specifically, in regards to material, fabricational, and environmental principles. Chapter 4 explores experiments and case studies to adjust the development of a generative agent-based system for integrating material and fabrication characteristics in design processes. Chapter 5 explains procedures for setting-up a generative agent-based design computation. Chapter 6 discusses the significance of behavioral strategies to develop different behavioral layers within a generative agent-based architectural design. Chapter 7 concludes the integral behavioral strategies by proposing trends to minimize the gap between formation and materialization through coalescing computational and physical agent-based systems.Ziel dieser Arbeit ist es, die generativen Potentiale von Agenten-basierten Systemen zur Integration von Material- und Fertigungseigenschaften im Entwurfsprozess zu untersuchen. Diese generative, Agenten-basierten Systeme spiegeln die Bedeutung von Regel- und Verhaltens-basierten Strategien für das digitale Entwerfen, Planen und Konstruieren wider. Die vorliegende Forschungsarbeit stellt einen generativen Ansatz zur Integration der Charakteristika von Material und Fertigung dar. Dies erfolgt über die Entwicklung einer digitalen Methode, die die Integration in ein Agent-basiertes System ermöglicht, was an einer Reihe von Experimenten und Fallstudien und der dazugehörigen Verhaltensstrategien für die Formgenerierung und Materialisierung erprobt wurde. Das operative Potential des theoretischen Rahmens wird in diesen praktischen Studien demonstriert und belegt die Anwendbarkeit der Forschung. Die theoretischen und praktischen Entwicklungen zeigen die Bedeutung von Verhaltensstrategien für das architektonische Entwerfen und einen ganzheitlichen digitalen Gestaltungs- und Bildungsprozess

    Proceedings of the 18th International Conference on Engineering Design (ICED11):Book of Abstracts

    Get PDF
    The ICED series of conferences is the Design Society's "flagship" event. ICED11 took place on August 15-18, 2011, at the campus of the Danish Technical University in Lyngby/Copenhagen, Denmark. The Proceedings of the conference are published in 10 individual volumes, arranged according to topics. All volumes of the Proceedings may be purchased individually through Amazon and other on-line booksellers. For members of the Design Society, all papers are available on this website. The Programme and Abstract Book is publically available for download

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen

    Applications of Crystal Plasticity in Forming Technologies

    Get PDF
    In this Special Issue, we have gathered work on simulations of polycrystalline metals and alloys at various length scales to model multiscale localization phenomena such as slip bands, cracks, and twins. The series highlights innovative techniques that combine simulation and experiments to capture material production and guide the development of forming theories. The published work helps to understand the effect of microstructure characteristics on deformation and damage behavior under multiaxial load conditions. Furthermore, these models and the studies can be used with machine learning technologies to optimize microstructure functions for materials application and process paths

    A Statistical Approach to the Alignment of fMRI Data

    Get PDF
    Multi-subject functional Magnetic Resonance Image studies are critical. The anatomical and functional structure varies across subjects, so the image alignment is necessary. We define a probabilistic model to describe functional alignment. Imposing a prior distribution, as the matrix Fisher Von Mises distribution, of the orthogonal transformation parameter, the anatomical information is embedded in the estimation of the parameters, i.e., penalizing the combination of spatially distant voxels. Real applications show an improvement in the classification and interpretability of the results compared to various functional alignment methods

    A comparison of the CAR and DAGAR spatial random effects models with an application to diabetics rate estimation in Belgium

    Get PDF
    When hierarchically modelling an epidemiological phenomenon on a finite collection of sites in space, one must always take a latent spatial effect into account in order to capture the correlation structure that links the phenomenon to the territory. In this work, we compare two autoregressive spatial models that can be used for this purpose: the classical CAR model and the more recent DAGAR model. Differently from the former, the latter has a desirable property: its ρ parameter can be naturally interpreted as the average neighbor pair correlation and, in addition, this parameter can be directly estimated when the effect is modelled using a DAGAR rather than a CAR structure. As an application, we model the diabetics rate in Belgium in 2014 and show the adequacy of these models in predicting the response variable when no covariates are available
    corecore