1,912 research outputs found

    Group sparse optimization for learning predictive state representations

    Get PDF
    Predictive state representations (PSRs) are a commonly used approach for agents to summarize the information from history generated during their interaction with a dynamical environment and the agents may use PSRs to predict the future observation. Existing works have shown the benefits of PSRs for modelling partially observable dynamical systems. One of the key issues in PSRs is to discover a set of tests for representing states, which is called core tests. However, there is no very efficient technique to find the core tests for a large and complex problem in practice. In this paper, we formulate the discovering of the set of core tests as an optimization problem and exploit a group sparsity of the decision-making matrix to solve the problem. Then the PSR parameters can be obtained simultaneously. Hence, the model of the underlying system can be built immediately. The new learning approach doesn’t require the specification of the number of core tests. Furthermore, the embedded optimization method for solving the considered group Lasso problem, called alternating direction method of multipliers (ADMM), can achieve a global convergence. We conduct experiments on three problem domains including one extremely large problem domain and show promising performances of the new approach

    A new class of multiscale lattice cell (MLC) models for spatio-temporal evolutionary image representation

    Get PDF
    Spatio-temporal evolutionary (STE) images are a class of complex dynamical systems that evolve over both space and time. With increased interest in the investigation of nonlinear complex phenomena, especially spatio-temporal behaviour governed by evolutionary laws that are dependent on both spatial and temporal dimensions, there has been an increased need to investigate model identification methods for this class of complex systems. Compared with pure temporal processes, the identification of spatio-temporal models from observed images is much more difficult and quite challenging. Starting with an assumption that there is no apriori information about the true model but only observed data are available, this study introduces a new class of multiscale lattice cell (MLC) models to represent the rules of the associated spatio-temporal evolutionary system. An application to a chemical reaction exhibiting a spatio-temporal evolutionary behaviour, is investigated to demonstrate the new modelling framework

    ToyArchitecture: Unsupervised Learning of Interpretable Models of the World

    Full text link
    Research in Artificial Intelligence (AI) has focused mostly on two extremes: either on small improvements in narrow AI domains, or on universal theoretical frameworks which are usually uncomputable, incompatible with theories of biological intelligence, or lack practical implementations. The goal of this work is to combine the main advantages of the two: to follow a big picture view, while providing a particular theory and its implementation. In contrast with purely theoretical approaches, the resulting architecture should be usable in realistic settings, but also form the core of a framework containing all the basic mechanisms, into which it should be easier to integrate additional required functionality. In this paper, we present a novel, purposely simple, and interpretable hierarchical architecture which combines multiple different mechanisms into one system: unsupervised learning of a model of the world, learning the influence of one's own actions on the world, model-based reinforcement learning, hierarchical planning and plan execution, and symbolic/sub-symbolic integration in general. The learned model is stored in the form of hierarchical representations with the following properties: 1) they are increasingly more abstract, but can retain details when needed, and 2) they are easy to manipulate in their local and symbolic-like form, thus also allowing one to observe the learning process at each level of abstraction. On all levels of the system, the representation of the data can be interpreted in both a symbolic and a sub-symbolic manner. This enables the architecture to learn efficiently using sub-symbolic methods and to employ symbolic inference.Comment: Revision: changed the pdftitl
    corecore