45,431 research outputs found

    PROTECT: Proximity-based Trust-advisor using Encounters for Mobile Societies

    Full text link
    Many interactions between network users rely on trust, which is becoming particularly important given the security breaches in the Internet today. These problems are further exacerbated by the dynamics in wireless mobile networks. In this paper we address the issue of trust advisory and establishment in mobile networks, with application to ad hoc networks, including DTNs. We utilize encounters in mobile societies in novel ways, noticing that mobility provides opportunities to build proximity, location and similarity based trust. Four new trust advisor filters are introduced - including encounter frequency, duration, behavior vectors and behavior matrices - and evaluated over an extensive set of real-world traces collected from a major university. Two sets of statistical analyses are performed; the first examines the underlying encounter relationships in mobile societies, and the second evaluates DTN routing in mobile peer-to-peer networks using trust and selfishness models. We find that for the analyzed trace, trust filters are stable in terms of growth with time (3 filters have close to 90% overlap of users over a period of 9 weeks) and the results produced by different filters are noticeably different. In our analysis for trust and selfishness model, our trust filters largely undo the effect of selfishness on the unreachability in a network. Thus improving the connectivity in a network with selfish nodes. We hope that our initial promising results open the door for further research on proximity-based trust

    Mobile Social Networking aided content dissemination in heterogeneous networks

    No full text
    Since more and more mobile applications are based on the proliferation of social information, the study of Mobile Social Net-works (MSNs) combines social sciences and wireless communications. Operating wireless networks more efficiently by exploiting social relationships between MSN users is an appealing but challenging option for network operators. An MSN-aided content dissemination technique is presented as a potential ex-tension of conventional cellular wireless net-works in order to satisfy growing data traffic. By allowing the MSN users to create a self-organized ad hoc network for spontaneously disseminating contents, the network operator may be able to reduce the operational costs and simultaneously achieve an improved network performance. In this paper, we first summarize the basic features of the MSN architecture, followed by a survey of the factors which may affect MSN-aided content dissemination. Using a case study, we demonstrate that one can save resources of the Base Station (BS) while substantially lowering content dissemination delay. Finally, other potential applications of MSN-aided content dissemination are introduced, and a range of future challenges are summarized

    Applications of Temporal Graph Metrics to Real-World Networks

    Get PDF
    Real world networks exhibit rich temporal information: friends are added and removed over time in online social networks; the seasons dictate the predator-prey relationship in food webs; and the propagation of a virus depends on the network of human contacts throughout the day. Recent studies have demonstrated that static network analysis is perhaps unsuitable in the study of real world network since static paths ignore time order, which, in turn, results in static shortest paths overestimating available links and underestimating their true corresponding lengths. Temporal extensions to centrality and efficiency metrics based on temporal shortest paths have also been proposed. Firstly, we analyse the roles of key individuals of a corporate network ranked according to temporal centrality within the context of a bankruptcy scandal; secondly, we present how such temporal metrics can be used to study the robustness of temporal networks in presence of random errors and intelligent attacks; thirdly, we study containment schemes for mobile phone malware which can spread via short range radio, similar to biological viruses; finally, we study how the temporal network structure of human interactions can be exploited to effectively immunise human populations. Through these applications we demonstrate that temporal metrics provide a more accurate and effective analysis of real-world networks compared to their static counterparts.Comment: 25 page

    Delay Tolerant Networking over the Metropolitan Public Transportation

    Get PDF
    We discuss MDTN: a delay tolerant application platform built on top of the Public Transportation System (PTS) and able to provide service access while exploiting opportunistic connectivity. Our solution adopts a carrier-based approach where buses act as data collectors for user requests requiring Internet access. Simulations based on real maps and PTS routes with state-of-the-art routing protocols demonstrate that MDTN represents a viable solution for elastic nonreal-time service delivery. Nevertheless, performance indexes of the considered routing policies show that there is no golden rule for optimal performance and a tailored routing strategy is required for each specific case
    • …
    corecore