13,639 research outputs found

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    An overview of decision table literature.

    Get PDF
    The present report contains an overview of the literature on decision tables since its origin. The goal is to analyze the dissemination of decision tables in different areas of knowledge, countries and languages, especially showing these that present the most interest on decision table use. In the first part a description of the scope of the overview is given. Next, the classification results by topic are explained. An abstract and some keywords are included for each reference, normally provided by the authors. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. Other examined topics are the theoretical or practical feature of each document, as well as its origin country and language. Finally, the main body of the paper consists of the ordered list of publications with abstract, classification and comments.

    A Dual Hesitant Fuzzy Multigranulation Rough Set over Two-Universe Model for Medical Diagnoses

    Get PDF
    In medical science, disease diagnosis is one of the difficult tasks for medical experts who are confronted with challenges in dealing with a lot of uncertain medical information. And different medical experts might express their own thought about the medical knowledge base which slightly differs from other medical experts. Thus, to solve the problems of uncertain data analysis and group decision making in disease diagnoses, we propose a new rough set model called dual hesitant fuzzy multigranulation rough set over two universes by combining the dual hesitant fuzzy set and multigranulation rough set theories. In the framework of our study, both the definition and some basic properties of the proposed model are presented. Finally, we give a general approach which is applied to a decision making problem in disease diagnoses, and the effectiveness of the approach is demonstrated by a numerical example

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Diagnosis of Coronary Artery Disease Using Artificial Intelligence Based Decision Support System

    Get PDF
    Heart disease is any disease that affects the normal condition and functionality of heart. Coronary Artery Disease (CAD) is the most common. It is caused by the accumulation of plaques within the walls of the coronary arteries that supply blood to the heart muscles. It may lead to continued temporary oxygen deprivation that will result in the damage of heart muscles. CAD caused more than 7,000,000 deaths every year in the worldwide. It is the second cause of death in Malaysia and the major cause of death in the world. To diagnose CAD, cardiologists usually perform many diagnostic steps. Unfortunately, the results of the diagnostic tests are difficult to interpret which do not always provide defmite answer, but may lead to different opinion. To help cardiologists providing correct diagnosis of CAD in less expensive and non- invasive manner, many researchers had developed decision support system to diagnose CAD. A fuzzy decision support system for the diagnosis of coronary artery disease based on rough set theory is proposed in this thesis. The objective is to develop an evidence based fuzzy decision support system for the diagnosis of coronary artery disease. This proposed system is based on evidences or raw medical data sets, which are taken from University California Irvine (UCI) database. The proposed system is designed to be able to handle the uncertainty, incompleteness and heterogeneity of data sets. Artificial Neural Network with Rough Set Theory attribute reduction (ANNRST) is proposed is the imputation method to solve the incompleteness of data sets. Evaluations of ANNRST based on classifiers performance and rule filtering are proposed by comparing ANNRST and other methods using classifiers and during rule filtering process. RST rule inq'u ction is applied to ANNRST imputed data sets. Numerical values are discretized using Boolean reasoning method. Rule selection based on quality and importance is proposed. RST rule importance measure is used to select the most important high quality rules. The selected rules are used to build fuzzy decision support systems. Fuzzification based on discretization cuts and fuzzy rule weighing based on rule quality are proposed. Mamdani inference method is used to provide the decision with centroid defuziification to give numerical results, which represent the possibility of blocking in coronary, arteries. The results show that proposed ANNRST has similar performance to ANN and outperforms k-Nearest Neighbour (k-NN) and Concept Most Common attribute valueFilling (CMCF). ANNRST is simpler than ANN because it has fewer input attributes and more suitable to be applied for missing data imputation problem. ANNRST also provides strong relationship between original and imputed data sets. It is shown that ANNRST provide better RST rule based classifier than CMCF and k-NN during rule filtering process. Proposed RST based rule selection also performs better than other filtering methods. Developed Fuzzy Decision Support System (FOSS) provides better performance compared to multi layer perceptron ANN, k-NN, rule induction method called C4.5 and Repeated Incremental Pruning to Produce Error Reduction (RIPPER) applied on UCI CAD data sets and Ipoh Specialist Hospital's patients. FOSS has transparent knowledge representation, heterogeneous and incomplete input data handling capability. FOSS is able to give the approximate percentage of blocking of coronary artery based on 13 standard attributes based on historical, simple blood test and ECG data, etc, where coronary angiography or cardiologist can not give the percentage. The results of FOSS were evaluated by three local cardiologists and considered to be efficient and useful
    • …
    corecore