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1. Introduction 
The degree of malignancy in brain glioma [1] decides its treatment. If the malignancy of brain glioma is low-grade, the success rate of operation is satisfactory. Otherwise, high surgical risk and poor life quality after surgery must be taken into account. The degree is predicted mainly by Magnetic Resonance Imaging (MRI) findings and clinical data before operation. Since brain glioma is severe but infrequent, only a small number of neuroradiologists have the opportunity to accumulate enough experience to make correct judgments. Rules that can describe the relationship between glioma MRI features and the degree of malignancy are desirable. Ye [2] considered several constraints, i.e. accuracy, robustness, missing values and understandability, and proposed a fuzzy rule extraction algorithm based on Fuzzy Min-Max Neural Networks (FRE-FMMNN) [3,4]. This algorithm was compared with decision trees [5], a Multi-Layer Perceptron (MLP) network trained with a backpropagation algorithm [6], and a Nearest-Neighborhood method [7]. FRE-FMMNN was found to produce better predictions than the other methods.  

However, Ye mainly focused on classification. The FRE-FMMNN algorithm produced only two rules, which may not be sufficient for medical experts to analyze brain glioma data and find the real cause-and-effect dependency relations between glioma MRI features and the degree of malignancy.

Medical data, such as brain glioma data, often contain irrelevant features, while uncertainties and missing values also exist. The analysis of medical data often requires dealing with incomplete and inconsistent information, and with manipulation of various levels of representation of data. Some intelligent techniques such as neural networks, decision trees, fuzzy theory etc. [2] are mainly based on quite strong assumptions (e.g. knowledge about dependencies, probability distributions, large number of experiments). They cannot derive conclusions from incomplete knowledge, or manage inconsistent information.
Rough set theory [9] can deal with uncertainty and incompleteness in data analysis. It deems knowledge as a kind of discriminability. The attribute reduction algorithm removes redundant information or features and selects a feature subset that has the same discernibility as the original set of features. From the medical point of view, this aims at identifying subsets of the most important attributes influencing the treatment of patients. Rough set rule induction algorithms generate decision rules, which may potentially reveal profound medical knowledge and provide new medical insight. These decision rules are more useful for medical expert to analyze and gain understanding into the problem at hand. 

Rough sets have been a useful tool for medical applications. Hassanien [10] applies rough set theory to breast cancer data analysis. Tsumoto [15] proposed a rough set algorithm to generate diagnostic rules based on the hierarchical structure of differential medical diagnosis. The induced rules can correctly represent experts’ decision processes. Komorowski and Ohrn [14] use a rough set approach for identifying a patient group in need of a scintigraphic scan for subsequent modeling. Bazan [16] compares rough set-based methods, in particular dynamic reducts, with statistical methods, neural networks, decision trees and decision rules. He analyzes medical data, i.e. lymphography, breast cancer and primary tumors, and finds that error rates for rough sets are fully comparable as well as often significantly lower than that for other techniques. In [12], a rough set classification algorithm exhibits a higher classification accuracy than decision tree algorithms, such as ID3 and C4.5. The generated rules are more understandable than those produced by decision tree methods.
In this paper, we apply rough sets to predict the malignancy degree of brain glioma. A rough set feature selection algorithm is used to select feature subsets that are more efficient. (We say the feature subset is ‘more efficient’, because by the rough set approach redundant features are discarded and the selected features can describe the decisions as well as the original whole feature set, leading to better prediction accuracy. The selected features are those that influence the decision concepts, so will be helpful for cause-effect analysis). The chosen subsets are then employed within a decision rule generation process, creating descriptive rules for the classification task. We propose a rough set attribute reduction algorithm that incorporates a search method based on Particle Swarm Optimization (PSO). This algorithm is compared with other rough set reduction algorithms. Experimental results show that reducts found by the proposed algorithm are more efficient and can generate decision rules with better classification performance. The rough set rule-based method can achieve higher classification accuracy than other intelligent analysis methods.

The article is organized as follows. In Section 2, the main concepts of rough sets are introduced. The proposed rough set feature selection algorithm with Particle Swarm Optimization (PSORSFS) is demonstrated in Section 3. The rough set rule induction algorithm and rule-based classification method are described in Section 4. Section 5 describes the brain glioma data set. Experimental results and comparative studies are presented in Section 6. Finally, Section 7 concludes the paper.  

2. Rough Set Theory 

Rough set theory [9, 26] is a mathematical approach for handling vagueness and uncertainty in data analysis. Objects may be indiscernible due to the limited available information. A rough set is characterized by a pair of precise concepts, called lower and upper approximations, generated using object indiscernibilities. Here, the most important problems are the reduction of attributes and the generation of decision rules. In rough set theory, inconsistencies are not corrected or aggregated. Instead the lower and upper approximations of all decision concepts are computed and rules are induced. The rules are categorized into certain and approximate (possible) rules depending on the lower and upper approximations respectively.

2.1 Basic Rough Set Concepts
Let 
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be an information system, where U is the universe with a non-empty set of finite objects. A is a non-empty finite set of condition attributes, and d is the decision attribute (such a table is also called decision table). 
[image: image2.wmf]A

a

Î

"

 there is a corresponding function 
[image: image3.wmf]a

a

V

U

f

®

:

, where
[image: image4.wmf]a

V

 is the set of values of a. If
[image: image5.wmf]A

P

Í

, there is an associated equivalence relation:   

	
[image: image6.wmf])}

(

)

(

,

|

)

,

{(

)

(

y

f

x

f

P

a

U

U

y

x

P

IND

a

a

=

Î

"

´

Î

=


	(1)


The partition of U, generated by IND (P) is denoted U/P. If
[image: image7.wmf])

(

)

,

(

P

IND

y

x

Î

, then x and y are indiscernible by attributes from P. The equivalence classes of the P-indiscernibility relation are denoted 
[image: image8.wmf]P

x

]

[

. Let 
[image: image9.wmf]U

X

Í

, the P-lower approximation 
[image: image10.wmf]X

P

and P-upper approximation
[image: image11.wmf]X

P

of set X can be defined as:

	
[image: image12.wmf]}

]

[

|

{

X

x

U

x

X

P

P

Í

Î

=


	(2)

	
[image: image13.wmf]}

]

[

|

{

f

¹

Ç

Î

=

X

x

U

x

X

P

P


	(3)


Let 
[image: image14.wmf]A

Q

P

Í

,

 be equivalence relations over U, then the positive, negative and boundary regions can be defined as:
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The positive region of the partition U/Q with respect to P, 
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If k=1, Q depends totally on P, if 0<k<1, Q depends partially on P, and if k=0 then Q does not depend on P. When P is a set of condition attributes and Q is the decision, 
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The goal of attribute reduction is to remove redundant attributes so that the reduced set provides the same quality of classification as the original. The set of all reducts is defined as:  
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A dataset may have many attribute reducts. The set of all optimal reducts is: 
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2.2 Decision rules

The definition of decision Rules [12, 17] can be described as follows.

An expression c: (a=v) where 
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A decision rule r for A is any expression of the form 
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 is the set of values of d. The set of attribute-value pairs occurring in the left hand side of the rule r is the condition part, Pred(r), and the right hand is the decision part, Succ(r). An object 
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As in [15], the accuracy and coverage of a decision rule 
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3 Rough set Feature Selection with Particle Swarm Optimization
Rough sets for feature selection [19] is valuable, as the selected feature subset can generate more general decision rules and better classification quality of new samples. However, the problem of finding a minimal reduct is NP-hard [20]. So some heuristic or approximation algorithms have to be considered. K.Y. Hu [21] computes the significance of an attribute using heuristic ideas from discernibility matrices and proposes a heuristic reduction algorithm (DISMAR). X. Hu [22] gives a rough set reduction algorithm using a positive region-based attribute significance measure as a heuristic (POSAR). G.Y. Wang [23] develops a conditional information entropy reduction algorithm (CEAR). 

In this paper, we propose a new algorithm to find minimal rough set reducts by Particle Swarm Optimization (PSO) (PSORSFS) on brain glioma data. The proposed algorithm [18] has been studied and compared with other deterministic rough set reduction algorithms on benchmark datasets. Experimental results show that PSO can be efficient for minimal rough set reduction. 
Particle swarm optimization (PSO) is an evolutionary computation technique developed by Kennedy and Eberhart [24, 31]. The original intent was to graphically simulate the choreography of a bird flock. Shi.Y. introduced the concept of inertia weight into the particle swarm optimizer to produce the standard PSO algorithm [25, 30]. PSO has been used to solve combinatorial optimization problems. We apply PSO to find minimal rough set reducts.

3.1 Standard PSO algorithm

PSO is initialized with a population of particles. Each particle is treated as a point in an S-dimensional space. The ith particle is represented as
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Where w is the inertia weight, suitable selection of the inertia weight provides a balance between global and local exploration and thus require less iterations on average to find the optimum. If a time varying inertia weight is employed, better performance can be expected [29]. The acceleration constants c1 and c2 in equation (12) represent the weighting of the stochastic acceleration terms that pull each particle toward pbest and gbest positions. Low values allow particles to roam far from target regions before being tugged back, while high values result in abrupt movement toward, or past, target regions. rand() and Rand() are two random functions in the range [0,1]. Particle’s velocities on each dimension are limited to a maximum velocity Vmax. If Vmax is too small, particles may not explore sufficiently beyond locally good regions. If Vmax is too high particles might fly past good solutions. 

The first part of equation (12) enables the “flying particles” with memory capability and the ability to explore new search space areas. The second part is the “cognition” part, which represents the private thinking of the particle itself. The third part is the “social” part, which represents the collaboration among the particles. Equation (12) is used to update the particle’s velocity. Then the particle flies toward a new position according to equation (13). The performance of each particle is measured according to a pre-defined fitness function.

The process for implementing the PSO algorithm is as follows: 

1) Initialize a population of particles with random positions and velocities on S dimensions in the problem space. Initialize
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 with the index of the particle with the best fitness function value among the population.
2) For each particle, evaluate the desired optimization fitness function in d variables.

3) Compare the particle’s fitness evaluation with particle’s pbest. If the current value is better than pbest, then set pbest value equal to the current value, and the pbest location equal to the current location in d dimensional space.

4) Compare fitness evaluation with the population’s overall previous best. If current value is better than gbest, then reset gbest to the current particle’s array index and value.

5) Change the velocity and position of the particle according to formulas (12) and (13).

6) Loop to 2) until a criterion is met, usually a sufficiently good fitness or a maximum number of iterations (generations).

3.2 Encoding

To apply PSO to rough set reduction, we represent the particle’s position as binary bit strings of length N, where N is the total attribute number. Every bit represents an attribute, the value ‘1’ means the corresponding attribute is selected while ‘0’ not selected. Each position is an attribute subset.
3.3 Representation of Velocity

Each particle’s velocity is represented as a positive integer, varying between 1 and Vmax. It implies that at one time how many of the particle’s bit should be changed to be the same as that of the global best position, i.e. the velocity of the particle flying toward the best position. The number of different bits between two particles relates to the difference between their positions. 

For example, Pgbest=[1 0 1 1 1 0 1 0 0 1], 
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=[0 1 0 0 1 1 0 1 0 1]. The difference between gbest and the particle’s current position is Pgbest-Xi=[1 –1 1 1 0 –1 1 –1 0 0]. ‘1’ means that, compared with the best position, this bit (feature) should be selected but it is not, decreasing classification quality. On the other hand, ‘-1’ means that compared with the best position, this bit should not be selected but it is. Redundant features will increase the cardinality of the subset. Both cases will lead to a lower fitness value. Assume that the number of ‘1’s is a and that of ‘-1’ is b. The value of (a-b) is the distance between two positions. (a-b) may be positive or negative; such a variety makes particles possess ‘exploration ability’ in solution space. In this example, (a-b)=4-3=1, so 
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3.4 Strategies to Update Position

After the updating of velocity, a particle’s position will be updated by the new velocity. If the new velocity is V, and the number of different bits between the current particle and gbest is xg, there exist two situations while updating the position:

1) V<=xg. In such a situation, randomly change V bits of the particle, which are different from that of gbest. The particle will move toward the global best while keeping its ‘searching ability’. 

2) V>xg. In this case, besides changing all the different bits to be same as that of gbest, we should further randomly (‘random’ implies ‘exploration ability’) change (V-xg) bits outside the different bits between the particle and gbest. So after the particle reaches the global best position, it keeps on moving some distance toward other directions, which gives it further searching ability. 
3.5 The limit of Velocity (Maximum Velocity, Vmax)

In experimentation, the particles’ velocity was initially limited to the region [1, N]. However, it was noticed that in some cases after several generations, the swarms find a good solution (but not the real optimal one), and in the following generations gbest remains stationary. Hence, only a sub-optimal solution is located. This indicates that the maximum velocity is too high and particles often ‘fly past’ the optimal solution. 

We set Vmax as (1/3)*N and limit the velocity in [1, (1/3)*N], which prevents this from being too large. By limiting the maximum velocity, particles cannot fly too far away from the optimal solution. Once finding a global best position, other particles will adjust their velocities and positions, searching around the best position. If V<1, then V=1. If V>(1/3)*N, V=(1/3)*N. PSO can often find optimal reducts quickly under such a limit. 

3.6 Fitness Function

We use the fitness function as given in equation (14): 
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Where 
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3.7 Setting parameters

In the algorithm, the inertia weight decreases along with the iterations according to equation (15) [25, 29].
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Where 
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3.8 Time Complexity of the Algorithm
Let N be the number of features (conditional attributes) and M the total objects. The time complexity of POSAR is 
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For PSORSFS, the complexity of the fitness function is
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4 Rough Set Rule Induction Algorithms

4.1 Algorithm for induction of Minimum set of decision rules

The LEM2 algorithm [11, 12, 13] was proposed to extract a minimum set of decision rules. Let K be a nonempty lower or upper approximation of a concept, c is an elementary condition, and C is a conjunction of such conditions being a candidate for the condition part of the decision rule, C(G) denotes the set of conditions currently considered to be added to the conjunction C. Rule r is characterized by its condition part R. The LEM2 algorithm can be described as follows.

Procedure LEM2

(Input: a set of objects K,

Output: decision rules R);

begin

  G:=K;
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 then R:=R-r;

end {procedure};

The LEM2 algorithm follows a heuristic strategy for creating an initial rule by choosing sequentially the ‘best’ elementary conditions according to some heuristic criteria. Then learning examples that match this rule are removed from consideration. The process is repeated iteratively while some learning examples remain uncovered. The resulting set of rules covers all learning examples. 

4.2 Decision Rules-Based Classification

The LEM2 algorithm is primarily used for classification. The induced set of rules is employed to classify new objects. If the new object matches more than one rule, it needs to resolve conflicts between sets of rules classifying tested objects to different decision classes.

In [11], additional coefficients characterizing rules are taken into account: the strength of matched or partly matched rules (the total number of cases correctly classified by the rule during training), the number of no-matched conditions, the rule specificity (i.e. length of condition parts). All these coefficients are combined and the strongest decision wins. If no rule is matched, the partly matched rules are considered and the most probable decision is chosen. 

The global strength defined in [17] for rule negotiation is a rational number in [0,1] representing the importance of the sets of decision rules relative to the considered tested object. Let us assume that 
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To classify a new case, rules are first selected matching the new case. The strength of the selected rule sets is calculated for any decision class, and then the decision class with maximal strength is selected, with the new case being classified to this class. The quality of the complete set of rules on a dataset with size n is evaluated by the classification accuracy:
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5. Brain glioma Data Set
The brain glioma data set [2] contains 14 condition attributes and one decision attribute, as shown in Table 1. The decision attribute ‘Clinical Grade’, is the actual grade of glioma obtained from surgery. Except ‘Gender’, ‘Age’ and ‘Clinical Grade’, other items are derived from the MRI of the patient and described with uncertainty to various extents. Except for attribute ‘Age’, all other attributes are discrete (Symbolic). The numerical attribute ‘Age’ is discretized as three degrees, 1~30, 31~60, 61~90, represented by 1, 2, 3 respectively. 

In total, 280 cases of brain glioma are collected and divided into two classes: low-grade and high-grade, in which 169 are of low-grade glioma and 111 are of high-grade. There are 126 cases containing missing values on “Post-Contrast enhancement”. By deleting the incomplete 126 cases, the remaining subset of 154 complete cases contains 85 low-grade glioma and 69 high-grade. Investigations are conducted on both the 280 cases and the 154 complete cases without missing values. The quality of classification for both the 280 and 154 cases data are equal to 1, i.e. the positive regions contain all the cases.  
6 Experiment Results

We implement the PSORSFS algorithm and other rough set feature selection algorithms in MatLab 6.5. The computer is Intel P4, 2.66 GHz CPU; 512MB RAM and the system is Windows XP Professional.
In our experiments, we firstly use the rough set feature selection algorithm to select efficient feature subsets from the brain glioma data. Then, the selected feature subsets are applied to generate decision rules to help the neuroradiologists predict the degree of malignancy in brain glioma. 

6.1 Feature Selection and Rule Set-based Classification

We use ten-fold cross validation to evaluate the classification accuracy of the rule set induced from the data set. All cases are randomly re-ordered (not guaranteeing the preservation of the distribution of objects) and then the set of all cases is divided into ten disjoint subsets of approximately equal size. For each subset, all remaining cases are used for training, i.e. for rule induction, while the remaining subset is used for testing. Different re-orderings result in slightly different error rates, so for each test we perform ten times ten-fold cross validation and the results are averaged.

The experimental results are listed in Table 3 and Table 4. The parameter settings for PSORSFS are in Table 2. We perform experimentation on the 280-case brain glioma dataset and the 154-case data. For both datasets, decision rules generated from reducts produce a higher classification accuracy than those with the full 14 condition attributes. So, it can be seen that feature selection can improve the accuracy effectively.

The proposed rough set feature selection algorithm (PSORSFS) is compared with other rough set reduction algorithms. The reducts found by our proposed algorithm are more efficient and can generate decision rules with better classification performance. Furthermore, compared with the other methods [2] (Table 3, Table 4), the rough set rule-based classification method can achieve higher classification accuracy. Our average classification accuracy is 86.67%, higher than that of Ye’s FRE-FMMNN.

The selected feature subsets of different methods are in Table 5. By medical experiments, attributes 5, 6, 7, 8, 9, 10, 12, 13, 14 are important diagnostic factors. Ye [2] retained eight features in total. On both the 280 cases and 154 complete datasets, PSORSFS selects the same feature subset, 2, 3, 5, 6, 8, 9, 13, 14. Though by the experience of medical experts, the total 14 features are all related to the malignancy degree of brain glioma, but from the view of rough sets, only 8 features are needed to classify all the samples correctly. The intersection of PSORSFS and Ye’s method is 2, 6, 8, 9, 13. Although the feature, Post-Contrast Enhancement, has missing values, it is one of the most important factors for degree prediction. 

The features Age, Edema, Post-Contrast Enhancement, Blood Supply and Signal Intensity of the T1-weighted Image are the most important factors for malignancy degree prediction. These results are in accord with the experiences of experts and other researchers’ contributions [2, 8], and are useful to neuroradiologists.

6.2 Decision Rules generated from Brain Glioma data

The results based on the full 280 cases are more useful to neuroradiologists. In Table 6 we present part of the rules extracted from the 280-case brain glioma data. The rules are generated by the rough set rule induction algorithm including some certain rules and possible rules. Rules 1, 2, 3 are possible rules and others are certain rules. 

The three possible rules have rather high accuracy and coverage. Rule 1, If (absent Post-Contrast Enhancement) Then (Low-grade brain Glioma), covers 55 of 169 low-grade cases and has an accuracy of 98.2%. Rule 2, If (affluent Blood Supply) Then (High-grade brain Glioma), covers 80 of 111 high-grade cases and has an accuracy of 81.6%. Also, rule 3 shows that hypointense only of Signal Intensity of the T1 and T2-weighted Image always leads to low-grade brain glioma. This rule covers 114 of 169 low-grade cases and has an accuracy of 72.61%. 

Rule4-Rule13 are certain rules, where rule4-rule10 are for low-grade and rule11-rule13 are for high-grade brain glioma. From these rules, the following two conclusions can be drawn:

(1) If (young Age) AND (regular Shape) AND (absent or light Edema) AND (absent Post-Contrast Enhancement) AND (normal Blood Supply) AND (hypointense only of Signal Intensity of the T1 and T2-weighted Image) Then (most possibly brain Glioma will be Low-grade)

(2) If (old Age) AND (irregular Shape) AND (heavy Edema) AND (homogeneous or heterogeneous Post-Contrast Enhancement) AND (affluent Blood Supply) Then (most possibly brain Glioma will be High-grade)

The absent or light Edema often imply low-grade brain glioma, whereas if the Edema tends to heavy, it is most likely to be high-grade. If the Shape is regular (round or ellipse) the brain glioma will most possibly be low-grade, and high-grade when irregular. Rule 4 demonstrates that absent Post-Contrast Enhancement and normal Blood Supply always indicate low-grade, while affluent Blood Supply turn to be high-grade.

Such experimental results are also in accord with the medical experts’ experiences and other researchers’ contributions [2, 8], and have meaningful medical explanations.  

7 Conclusions

In this paper, we applied rough set theory to predict the malignancy degree of brain glioma and achieved satisfactory results. A rough set attribute reduction algorithm with Particle Swarm Optimization (PSO) was proposed to select more efficient feature subsets. The selected subsets were used to generate decision rules for degree prediction. The proposed algorithm was compared with other rough set reduction algorithms. Experimental results showed that reducts found by the proposed algorithm were more efficient and generated decision rules with better classification performance. Features such as Age, Shape, Edema, Post-Contrast Enhancement, Blood Supply, Signal Intensity of the T1 and T2-weighted Image are crucial to the degree prediction of malignancy in brain glioma. Feature selection can improve the classification accuracy effectively. Compared to other intelligent analysis methods, the rough set rule-based method can achieve higher classification accuracy on brain glioma data. 

Moreover, the decision rules induced by the rough set rule induction algorithm are useful for both classification and medical knowledge discovery. They can potentially reveal regular and interpretable patterns of the relations between glioma MRI features and the degree of malignancy, which are helpful for medical experts. 

Rough set feature selection and rule induction methods are effective for medical applications to analyze medical data even if uncertainty and missing values exist. 

8 Discussions
Li et al. [32] adopt another method to predict the malignancy degree in brain glioma. They use a backward floating search method to perform feature selection and use Support Vector Machines (SVM) for classification. They demonstrate that their method can get fewer features and rules and higher classification accuracy than that of Ye et al.’s method, FRE-FMMNN. Indeed, they state that they generate only one rule. 

However, their rule is not really a “rule” as such; it is in fact the SVM classification hyperplane. The features of the data sample are calculated as the parameters of the hyperplane equation. The degree of the brain glioma, benign or malignant, is determined by the calculation result. So the “rule” is just a calculated condition and not an explicable rule. 

The classification accuracy on a dataset depends on not only the classification algorithm but also the dataset itself. The brain glioma dataset determines that the best classification accuracy is about 86%, different classification algorithms vary only slightly around this. For instance, it is impossible to find an algorithm that can classify the data at more than 95% average accuracy.  So, for the different algorithms, while the classification accuracies are the same or similar, the one which can get meaningful rules to help the domain experts to analyze the problem will be more attractive. 

Ye et al. [2] predict with a fuzzy rule extraction algorithm based on FMMNN. FRE-FMMNN employs a series of hyperboxes to construct a fuzzy classifier. During classification, a test sample’s membership values to each hyperbox is calculated under the control of the sensitivity parameter (, and its type is decided by the hyperbox having the maximum value. The fuzzy rules are obtained by translating hyperboxes into linguistic forms. The FRE-FMMNN algorithm generates two fuzzy rules and produces a good classification accuracy. However, it may not be sufficient for medical experts to analyze brain glioma data and find the real cause-and-effect dependency relations between glioma MRI features and the degree of malignancy. Furthermore, the membership function and sensitivity parameter must be set beforehand.

Rough set methods do not need membership functions and prior parameter settings. It can extract knowledge from the data itself by means of indiscernibility relations, and generally needs fewer calculations than that of fuzzy set theory. Decision rules extracted by rough set algorithms are concise and valuable, which can benefit medical experts to reveal some essence hidden in the data. 

Rough set and fuzzy set theory can be combined to make things better. Ye el al.’s FRE-FMMNN algorithm, the fuzzy rule induction algorithm is sensitive to the dimensionality of the dataset. While the number of features and classes increase, it is hard to construct hyperboxes, and will be frustrated by high dimensional datasets. Shen and Chouchoulas [33] present an approach that integrates a fuzzy rule induction algorithm with a rough set feature reduction method. The proposed method can classify patterns composed of a large number of features. 
Traditional rough set theory is concerned with discrete or Boolean data based on indiscernibility relations. Previously, real or continuous valued features had to be discretized for rough set algorithms, which may result in some loss of information. Jensen and Shen [34, 35, 36] propose the fuzzy-rough feature selection method for real-valued features, which is based on fuzzy-rough set theory. Fuzzy-rough set theory is a combination of fuzzy set and rough set theories. They show that fuzzy-rough reduction is more powerful than the conventional rough set based approach, it can reduce dimensions with minimal loss of information. Classifiers that use a lower dimensional set of attributes which are retained by fuzzy-rough reduction outperform those that employ more attributes returned by the crisp rough set reduction method.

As for the brain glioma data whose features are all discrete, there is no need for the application of a fuzzy-rough set based method. However, fuzzy-rough feature selection can be considered for other continuous valued datasets to improve performance without discretization. 
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