4 research outputs found

    Design and modeling of the multi-agent robotic system: SMART

    Full text link
    This article presents the design, kinematic model and communication architecture for the multi-agent robotic system called SMART. The philosophy behind this kind of system requires the communication architecture to contemplate the concurrence of the whole system. The proposed architecture combines different communication technologies (TCP/IP and Bluetooth) under one protocol designed for the cooperation among agents and other elements of the system such as IP-Cameras, image processing library, path planner, user Interface, control block and data block. The high level control is modeled by Work-Flow Petri nets and implemented in C++ and C♯♯. Experimental results show the performance of the designed architecture

    Supervisory control theory applied to swarm robotics

    Get PDF
    Currently, the control software of swarm robotics systems is created by ad hoc development. This makes it hard to deploy these systems in real-world scenarios. In particular, it is difficult to maintain, analyse, or verify the systems. Formal methods can contribute to overcome these problems. However, they usually do not guarantee that the implementation matches the specification, because the system’s control code is typically generated manually. Also, there is cultural resistance to apply formal methods; they may be perceived as an additional step that does not add value to the final product. To address these problems, we propose supervisory control theory for the domain of swarm robotics. The advantages of supervisory control theory, and its associated tools, are a reduction in the amount of ad hoc development, the automatic generation of control code from modelled specifications, proofs of properties over generated control code, and the reusability of formally designed controllers between different robotic platforms. These advantages are demonstrated in four case studies using the e-puck and Kilobot robot platforms. Experiments with up to 600 physical robots are reported, which show that supervisory control theory can be used to formally develop state-of-the-art solutions to a range of problems in swarm robotics

    Supervisory control theory applied to swarm robotics

    Get PDF
    Currently, the control software of swarm robotics systems is created by ad hoc development. This makes it hard to deploy these systems in real-world scenarios. In particular, it is difficult to maintain, analyse, or verify the systems. Formal methods can contribute to overcome these problems. However, they usually do not guarantee that the implementation matches the specification, because the system?s control code is typically generated manually. Also, there is cultural resistance to apply formal methods; they may be perceived as an additional step that does not add value to the final product. To address these problems, we propose supervisory control theory for the domain of swarm robotics. The advantages of supervisory control theory, and its associated tools, are a reduction in the amount of ad hoc development, the automatic generation of control code from modelled specifications, proofs of properties over generated control code, and the reusability of formally designed controllers between different robotic platforms. These advantages are demonstrated in four case studies using the e-puck and Kilobot robot platforms. Experiments with up to 600 physical robots are reported, which show that supervisory control theory can be used to formally develop state-of-the-art solutions to a range of problems in swarm robotics
    corecore