58 research outputs found

    Research on 2×2 MIMO Channel with Truncated Laplacian Azimuth Power Spectrum

    Get PDF
    Multiple-input multiple-output (MIMO) Rayleigh fading channel with truncated Laplacian azimuth power spectrum (APS) is studied. By using the power correlation matrix of MIMO channel model and the modified Jakes simulator, into which with random phases are inserted, the effect of the azimuth spread (AS), angle of departure (AOD) and angle of arrival (AOA) on the spatial correlation coefficient and channel capacity are investigated. Numerical results show that larger AS generates smaller spatial correlation coefficient amplitude, while larger average AOD or AOA produces larger spatial correlation coefficient amplitude. The average capacity variation is comprehensively dominated by the average AOD, AOA and AS

    A Study of Differences in Calculated Capacity when Using Single-, Mixed- or Multiple-Bounce GSCM Schemes

    Get PDF
    The paper looks for differences in MIMO system capacity when using either single-, mixed-, or multiple-bounce geometry based stochastic channel models (GSCMs). The investigation considers Saleh-Valenzuela temporal indoor model, expanded for angular domain. In the model omnidirectional and idealized sector antennas were used as array elements. The single-bounce assumption, combination of single and multiple bounces, and pure random multiple bounces assumption were compared within “temporally identical” environment regarding the overall MIMO capacity. Assumption of clustered scatterers/reflectors is used in all three cases. The comparison is performed in statistical sense, using a large number of stochastically generated temporal models. The model is two- dimensional, i.e. neither elevation angle nor polarization/ depolarization was considered

    Estimation of the Radio Channel Parameters using the SAGE Algorithm

    Get PDF
    This paper presents the problem of estimating the parameters of a given number of superimposed signals, as is the case of the received signal in wireless communications. Based on the description of the received signal in the frequency domain, one version of the SAGE (Space-Alternating Generalized Expectation-Maximization) algorithm is presented, allowing the estimation, for each impinging ray, the delay, azimuth, elevation and complex amplitude. Ray retrieval results are presented in synthetic channels, using data generated with the extended Saleh Valenzuela (ESV) model, and also in real channels

    Modelling of Path Arrival Rate for In-Room Radio Channels with Directive Antennas

    Get PDF
    We analyze the path arrival rate for an inroom radio channel with directive antennas. The impulse response of this channel exhibits a transition from early separate components followed by a diffuse reverberation tail. Under the assumption that the transmitter's (or receiver's) position and orientation are picked uniformly at random we derive an exact expression of the mean arrival rate for a rectangular room predicted by the mirror source theory. The rate is quadratic in delay, inversely proportional to the room volume, and proportional to the product of beam coverage fractions of the transmitter and receiver antennas. Making use of the exact formula, we characterize the onset of the diffuse tail by defining a "mixing time" as the point in time where the arrival rate exceeds one component per transmit pulse duration. We also give an approximation for the power-delay spectrum. It turns out that the power-delay spectrum is unaffected by the antenna directivity. However, Monte Carlo simulations show that antenna directivity does indeed play an important role for the distribution of instantaneous mean delay and rms delay spreadComment: Submitted to IEEE Trans. Antennas and Propagatio

    The Effects of Neighboring Buildings on the Indoor Wireless Channel at 2.4 and 5.8 GHz

    Get PDF
    The effects of neighboring buildings (NBs) on the indoor wireless channel are examined both in time and space domain at 2.4 GHz and 5.8 GHz band using the computer simulation of radio wave propagation based on ray-tracing technique. The NBs in the apartment environments have a considerable effect on the channel characteristics, such as the exponents of path loss, mean excess delay, rms delay spread time, coherence bandwidth, and angle dispersion of received rays. Also the effects are shown to be different according to the frequency band

    Classification of UWB Multipath Clusters and Its Distortion Effects on Positioning Error

    Get PDF
    Abstract-Quantification of distortion effects on UWB system performances in terms of positioning error is analysed in this research. UWB multipath distorted channels are simulated in each frequency subband, over 2-11 GHz. Its characteristics are modelled corresponding to multipath clusters along the propagation paths. The classification of clusters and physicsbased distortion mechanisms are generalized to be included into the simulation algorithm. Finally, distortion impacts on system performances regarding to frequency dependent characteristics and positioning errors are investigated
    corecore