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Analysis of the Stochastic Channel Model by Saleh

& Valenzuela via the Theory of Point Processes

Morten Lomholt Jakobsen, Troels Pedersen and Bernard Henri Fleury {mlj,troels,bfl}@es.aau.dk

Section Navigation and Communications, Dept. of Electronic Systems, Aalborg University

Fredrik Bajers Vej 7B, DK-9220 Aalborg East, Denmark

Abstract—In this paper we revisit the classical channel model
by Saleh & Valenzuela via the theory of spatial point processes.
By reformulating this model as a particular point process and by
repeated application of Campbell’s Theorem we provide concise
and elegant access to its overall structure and underlying features,
like the intensity function of the component delays and the delay-
power intensity. The flexibility and clarity of the mathematical
instruments utilized to obtain these results lead us to conjecture
that the theory of spatial point processes provides a unifying
mathematical framework to define, analyze, and compare most
channel models already suggested in literature and that the
powerful tools of this framework have not been fully exploited
in this context yet.

I. INTRODUCTION

Literature regarding channel models for (indoor) radio prop-

agation dates back earlier than 1960, and most commonly the

wireless multipath channel is characterized via its (time and

space varying) impulse response [1]. Two classic and seminal

contributions within channel modeling are those by Turin et al.

[2] and Saleh & Valenzuela [3]. To some extent the (indoor)

model by Saleh & Valenzuela can be seen as a generalization

of the (urban) model by Turin. Specifically, the generalization

aimed at mimicking cluster alike behavior since this effect was

reported to have been observed experimentally.

Ever since the model by Saleh & Valenzuela (for short the

S-V model) was proposed in 1987, many refined or marginally

extended variants have appeared, see e.g. [4] and [5]. Unfortu-

nately, these channel models have not been developed within

any unifying mathematical framework. Instead their treatment

is of rather ad-hoc nature and, as a result, their inherent

features remain essentially veiled and any two different models

are not easily comparable.

Recently the authors of [6] and [7] reformulated and outlined

the S-V model in terms of marked point processes. The S-V

model has also been revisited in [8] by use of shot-noise tools

and point process theory. Among other things the analysis in

[7] and [8] show that the overall intensity of the relative delays

of multipath components grows linearly with the propagation

delay. Unfortunately, the mathematical tools used in [7] to

extract the features of the model are not directly associated

with the general theory of point processes. On the other hand,

the tools used in [8] are rather advanced and the derivations

less transparent. Accordingly, the potential theoretical benefits

arising through these point process reformulations are not

immediately evident.

In this paper we showcase how the general theory of spatial

point processes provides an insightful view upon the inherent

structure and features of the classical S-V model. Like [7] and

[8] we revisit the model and reformulate it as a particular point

process. Aligned with [7] we show that the component delays

consist of the union of a Poisson point process and a Cox

point process and we derive the associated intensity function

as an immediate consequence of Campbell’s Theorem. The

derivation in [7] is similar but with no reference to Campbell’s

Theorem. Furthermore, and in contrast to the involved proofs

relying on shot-noise tools in [8], we obtain the delay-power

intensity in a simple and direct way by invoking once more

Campbell’s Theorem. These results demonstrate the potential

of this well-known theorem from the theory of spatial point

processes in the context of stochastic channel modeling. In

view of this, our conclusion is that the theory of spatial point

processes and its powerful tools have not been fully exploited

yet to analyze the properties of most proposed stochastic

channel models. This theory appears to provide the necessary

unifying framework for which these models can be contrasted

within.

II. POINT PROCESS FRAMEWORK

We assume familiarity with the basics of the theory of spatial

point processes (see [9, Sec. 1.3, Chap. 2] and [10, Sec. 1.5,

6.2] for highly recommendable introductions). Concepts from

abstract measure theory will be kept at a minimum.

A. Locally finiteness and simplicity

Denote by Y a locally finite and simple point process defined

on a d-dimensional space S ⊆ Rd. For intuitive, practical and

mathematical reasons, these two properties are convenient to

impose since several technical aspects can then be disregarded.

A point process is locally finite if the number of points falling

in every bounded Borel set B ⊆ S is almost surely finite.

A point process is simple if, almost surely, no two points

of the process coincide. Accordingly, any realization of the

point process Y can be identified as a countable set of points{
y1,y2,y3, . . .

}
, yi ∈ S, where the index i of yi serves

solely as a dummy label. Thus, the index is used only to

distinguish points and to indicate countability. It does not

indicate any ordering of the points.

B. The intensity function and Campbell’s Theorem

Consider the counting function defined, using a generic

indicator function 1[·] ∈ {0, 1}, as

N
Y
(B) :=

∑

y∈Y

1[y ∈ B],

which equals the random number of points from Y falling in

the set B. For any fixed and bounded B, the count N
Y
(B) is



a non-negative integer-valued random variable. The expected

value of the counting function µ
Y
(B) := E

[
N

Y
(B)

]
defines

a measure on S, the so-called intensity measure of Y . If the

intensity measure can be expressed as

µ
Y
(B) =

∫

B

%
Y
(y)dy, B ⊆ S,

for a locally integrable function %
Y
: S → [0,∞), then %

Y
is

called the intensity function of Y . The case when the intensity

function exists is by far the most important for applications

[11]. The importance of the intensity function is evident from

the following result, often referred to as Campbell’s Theorem.

Campbell’s Theorem. Let Y be a point process on S ⊆ R
d

with intensity function %
Y

. Then for a real or complex-valued

measurable function h : S → R (or C), the random variable∑
y∈Y

h(y) has expected valued

E

[ ∑

y∈Y

h(y)

]
=

∫

S

h(y)%
Y
(y)dy, (1)

provided that the integral on the right exists.

Proofs with varying degrees of detail can be found in [9, Sec.

3.2], [11, Prop. 4.1] and [12, Thm. 2.2]. Often, the theorem is

stated only for non-negative functions h, since the equality in

(1) is then unconditionally true, i.e. the integral is always well-

defined but possibly divergent. When h is real-valued some

care must be taken since the integral at the right hand side of

(1) has no meaning if the positive and the negative part of h
are not integrable. Similar care must be taken for complex h.

C. Poisson and Cox point processes

We now define two classes of point processes which are

particularly important for our treatment in the forthcoming sec-

tion, namely Poisson point processes and Cox point processes.

These definitions can be found in many text books covering

the theory of spatial point processes. Our treatment is directly

inspired by [11] and the interested reader may consult [10]–

[12] for further details.

Definition. A point process Y on S ⊆ Rd is called a Poisson

point process with intensity function %
Y

if:

(i) For any B ⊆ S with µ
Y
(B) =

∫
B
%

Y
(s)ds < ∞ the

count N
Y
(B) is Poisson distributed with mean µ

Y
(B).

(ii) Given that N
Y
(B) = n ∈ N where 0 < µ

Y
(B) < ∞,

the distribution of Y ∩B is the same as that of n points

drawn i.i.d. according to f
B

, where

f
B
(s) :=

%
Y
(s)1[s ∈ B]

µ
Y
(B)

.

We write Y ∼ PoissonPP

(
S, %

Y

)
.

Definition. Let Z(s), s ∈ S, be a non-negative random field

such that, almost surely, every realization of Z is a locally

integrable function on S. If a point process Y , conditioned on

Z , is a Poisson point process with intensity function Z , then

Y is called a Cox point process driven by Z .

Cox point processes (also often referred to as doubly

stochastic Poisson point processes [10]) are flexible models for

clustered point patterns. Specifically, the two-level construction

most commonly entails the Cox class to exhibit so-called over-

dispersion compared to the Poisson class [11, Sec. 5.2].

III. THE MODEL BY SALEH & VALENZUELA

In this section we analyze the impulse response of the classi-

cal S-V model within the framework of spatial point processes.

The main purpose of this effort is to straightforwardly derive

the features of this model through a flexible and powerful

theory. Several relevant aspects of the model are revealed

through this reformulation, e.g. its overall delay intensity, a

concise and clear derivation of the average power gain and, a

simple derivation of the delay-power intensity as well.

A. Classical formulation

Saleh & Valenzuela define the channel impulse response

with cluster and within-cluster delays as [3, Eq. (25)]

h(t) =

∞∑

`=0

∞∑

k=0

βk,` exp(jθk,`)δ
(
t− (T` + τk,`)

)
, (2)

where δ is the Dirac delta and j is the imaginary unit. The

index ` indicates a certain cluster and k is the within-cluster

index. By definition in [3], T0 = 0 and τ0,` = 0 for each

` ∈ N0 := {0} ∪N. Beside these fixed delay components, a

sequence of Poisson point processes are suggested such that

•

{
T`

}
`∈N

∼ PoissonPP

(
R

+
, Λ

)

•

{
τk,`

}
k∈N

∼ PoissonPP

(
R

+
, λ

)
for each ` ∈ N0,

with Λ, λ > 0 being two parameters. Moreover, conditional

second-order moments are modeled such that [3, Eq. (26)]

E
[
β2
k,`

∣∣T`, τk,`
]
= Q exp

(
− T`/Γ

)
exp

(
− τk,`/γ

)
, (3)

with Γ, γ > 0 and Q being the average power gain of the

first component within the first cluster (i.e. corresponding to

the fixed delay T0). Conditioned on all T`’s and all τk,`’s,

the βk,`’s are assumed to be mutually independent random

variables. Specifically, each power gain β2
k,`, conditioned on T`

and τk,`, should follow an exponential distribution with mean

parameter decaying as described by (3). Fig. 1 illustrates the

Poisson point processes involved in the S-V model.

Finally, it was mentioned in [3] that practically the doubly-

infinite sum in (2) should ”stop” whenever each of the ex-

ponentially decaying terms in (3) had become small enough.

Through the insight gained via the forthcoming reformulation

of this classical channel model we are able to motivate a less

heuristic ”stopping criterion”.

B. Point process formulation

Naturally, we select the space S = R
+

and let T0 = 0 as

above. In addition, we introduce the point processes:

C :=
{
T`

}
`∈N

(
all cluster delays except T0

)

W` :=
{
T` + τk,`

}
k∈N

(
delays within the `’th cluster

)

W :=

∞⋃

`=0

W`

(
all within-cluster delays

)

Y := C ∪W
(
all propagation delays except T0

)
.
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Figure 1. Realization of Poisson point processes corresponding to the S-V
model. Circle points indicate fixed delay components. The top process occurs
with rate Λ while each of the lower processes occurs with rate λ. A new point
process is initialized whenever a new point emerges from the top process.

Notice that C is the Poisson point process specified at first

in the previous paragraph. Its intensity function has a simple

form, namely %
C
(t) = Λ for all t ∈ S. By conditioning, we

immediately identify a sequence of Poisson point processes

W`

∣∣T` ∼ PoissonPP

(
R

+
, λ1

[
t > T`

])
, ` ∈ N0,

and since the Poisson class is stable with respect to countable

superpositions [11, Prop. 3.6], we see that

W
∣∣C ∼ PoissonPP

(
R

+
, %̃

W

)
,

with the staircase-alike intensity function

%̃
W
(t) = λ+ λ

∑

c∈C

1
[
t > c

]
, t ∈ S. (4)

Accordingly, we identify that the point process W , without

conditioning on C, is a Cox point process driven by a

stochastic process Z having the same functional form as %̃
W

in (4) but with C being random. The intensity function of the

Cox point process W is %
W
(t) = E

[
Z(t)

]
[11, Sec. 5.2], and

by direct application of Campbell’s Theorem we get

%
W
(t) = λ+ λE

[
∑

c∈C

1
[
t > c

]
]
= λ+ λΛt, t ∈ S.

Since Y = C ∪W is a union of almost surely disjoint point

processes, its associated intensity function reads [10, Sec. 6.2.3]

%
Y
(t) = %

C
(t) + %

W
(t) = Λ + λ+ λΛt, t ∈ S.

It is interesting to notice that the entire set of propagation

delays (excluding the first component T0) is the union of a

Poisson point process and a Cox point process. Of course,

the realization of W depends upon the realization of C, i.e.

these two point processes are not independent. In [7] this

interpretation was inherently adopted, without being explicitly

mentioned. Another interesting yet expected observation is that

the intensity function %
Y

rises linearly with propagation delay,

see Fig. 2. The jump of height Λ + λ at T0 = 0 in the graph

of %
Y

appears due to the cluster delays and the delays within

the very first cluster. The term λΛt result from the fact that,

on average, a total of Λt additional clusters emerge during

the interval [0, t], with each and every one of them spawning

further delay components at rate λ.
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Figure 2. Intensity functions associated with the S-V model.

C. Multipath power gain

Analogous to the approach in [3], we consider the following

non-negative random variable

G :=

∞∑

`=0

∞∑

k=0

β2
k,`, (5)

referred to as the total multipath power gain [3]. By splitting

G into three terms corresponding to T0 and arrivals in C and

W , its expectation can be calculated as

E
[
G
]
= E

[
β2
0,0

]
+ E

[
∞∑

`=1

β2
0,`

︸ ︷︷ ︸
(?)

]
+ E

[
∞∑

`=0

∞∑

k=1

β2
k,`

︸ ︷︷ ︸
(�)

]
.

As in [3] we write β
(
T`, τk,`

)
in substitute for βk,` to facilitate

a comprehensible notation in the following. For additional

clarity we introduce the function

f
(
t, t̃

)
:= Q exp

(
− t/Γ− t̃/γ

)
, t, t̃ ∈ S.

Notice that f
(
T`, τk,`

)
= f

(
T`, (T` + τk,`) − T`

)
coincides

with the expression in (3). Then, by intermediate conditioning

on C, we calculate the expectation of the term (?) as

E
[
(?)

]
=E

[
∑

c∈C

β2(c, 0)

]
=E

[
∑

c∈C

E

[
β2(c, 0)

∣∣C
]

︸ ︷︷ ︸
f(c,0)

]
=QΛΓ,

where the final step follows by application of Campbell’s

Theorem. Next, by defining C0 := {T0}∪C and with a similar

sequence of manipulations involving intermediate conditioning

and Campbell’s Theorem, we find the expected value of (�)
to be1

E
[
(�)

]
= E

[
∑

c∈C0

∑

w∈Wc

β2(c, w − c)

]
(6)

= E

[
∑

c∈C0

E

[ ∑

w∈Wc

E

[
β2(c, w − c)

∣∣c, w
︸ ︷︷ ︸

f(c,w−c)

]]]
= Q

(
1 + ΛΓ

)
λγ.

Accordingly, the average total power gain is given by

E
[
G
]
= E

[
β2
0,0

]
+ E

[
(?)

]
+ E

[
(�)

]

= Q + QΛΓ + Q
(
1 + ΛΓ

)
λγ

= Q
(
1 + λγ

)(
1 + ΛΓ

)
, (7)

1Note that in (6) we abuse notation since the collections Wc are not
explicitly defined. We only defined these as W` via the counting index `.



as was also reported in a footnote in [3]. Yet, the original

sequence of arguments used to obtain this result may appear

less instructive, see [3, Eq. (27), (31)] for comparison. Notice

that, depending on how we choose to write out the product

in (7), we end up with different interpretations of individual

average power contributions.

D. Delay-power intensity

Motivated by the definition of G in (5) together with the

relationship in (7), we consider

p(t) :=

∞∑

`=0

∞∑

k=0

β2
k,`δ

(
t− (T` + τk,`)

)
.

We wish to calculate how the average power gains are dis-

tributed across delay. From (7) we already know the mean total

power gain, yet we seek to obtain further insight. The above

definition of p(t) is motivated by the fact that
∫
∞

0 p(t)dt = G,

and since E[G] is finite, the non-negative random variable G
is itself finite almost surely. Accordingly, we define

P (t) := E
[
p(t)

]
, t ∈ S,

and we refer to this function as the delay-power intensity. By

similar manipulations as in the previous paragraph (condition-

ing, Campbell’s Theorem, etc.) we find

P (t)

Q
= δ(t) +





k1exp

(
− 1

Γ t
)
+ k2exp

(
− 1

γ
t
)
, Γ 6= γ

%
Y
(t) exp

(
− 1

γ
t
)

, Γ = γ

where we have conveniently introduced the two constants

k1 := Λ
(
1 + λ

Γγ

Γ−γ

)
and k2 := λ

(
1− Λ

Γγ

Γ−γ

)
.

The same expression for P (t) is obtained in [8, Chap. 2,3]

using rather involved shot-noise tools with weighty notational

overhead. Notice the particular relationship

E[G] = E

[ ∫
∞

0

p(t)dt

]
=

∫
∞

0

E
[
p(t)

]
dt =

∫
∞

0

P (t)dt.

The delay-power intensity of the S-V model is depicted in Fig.

3. Notice that P (t) is not exponentially decaying, not even

when Γ = γ since %
Y

rises linearly (compare with the dotted

line in Fig. 3).

Finally, as mentioned in the beginning of this section,

we are now able to motivate a simple ”stopping criterion”

suitable, e.g. for simulation purposes. Specifically, select a

delay threshold t
max
(α) such that

∫ tmax (α)

0

P (t)dt = αE[G],

for a relevant choice of α ∈ (0, 1), e.g. α = 0.99.

IV. CONCLUSION

In this contribution we have revisited the radio channel

model by Saleh & Valenzuela (the S-V model) within the

framework of spatial point processes. We have shown that

the component delays in the S-V model emerge from the

union of a Poisson point process and a Cox point process.

Furthermore, we have demonstrated that the intensity function

of the component delays and the delay-power intensity can

 100 200 300
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Figure 3. Delay-power intensity of the S-V model (solid line). The parameter
values of Λ, λ,Γ, γ correspond to the estimates reported in [3]. The dashed
curve correspond to the selection Γ = γ = 40ns. For comparison, the dotted
curve provides a purely exponential decay.

be derived in a straightforward and rigorous manner as an

immediate consequence of Campbell’s Theorem.

The above results indicate that the theory of spatial point

processes yields a natural, unifying theoretical framework for

dealing with stochastic channel models. This applies in par-

ticular to most channel models already suggested in literature,

including the models by Turin et al. [2], Spencer et al. [4],

and Chong et al. [5]. Our results also reveal that the powerful

tools available in this framework, like Campbell’s Theorem,

have not been exploited to their full extent in this context

yet. Overall the considered application to the S-V model and

to some extent the work in [6]–[8] show that the resulting

mathematical treatments inherit clarity and conciseness, in

addition to rigorousness, in contrast to the traditionally used

ad-hoc and heuristic arguments.
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