4,220 research outputs found

    Agent‐based modeling of malware dynamics in heterogeneous environments

    Full text link
    The increasing convergence of power‐law networks such as social networking and peer‐to‐peer applications, web‐delivered applications, and mobile platforms makes today's users highly vulnerable to entirely new generations of malware that exploit vulnerabilities in web applications and mobile platforms for new infections, while using the power‐law connectivity for finding new victims. The traditional epidemic models based on assumptions of homogeneity, average‐degree distributions, and perfect‐mixing are inadequate to model this type of malware propagation. In this paper, we study four aspects crucial to modeling malware propagation: application‐level interactions among users of such networks , local network structure , user mobility , and network coordination of malware such as botnets . Since closed‐form solutions of malware propagation considering these aspects are difficult to obtain, we describe an open‐source, flexible agent‐based emulation framework that can be used by malware researchers for studying today's complex malware. The framework, called Agent‐Based Malware Modeling (AMM), allows different applications, network structure, network coordination, and user mobility in either a geographic or a logical domain to study various infection and propagation scenarios. In addition to traditional worms and viruses, the framework also allows modeling network coordination of malware such as botnets. The majority of the parameters used in the framework can be derived from real‐life network traces collected from a network, and therefore, represent realistic malware propagation and infection scenarios. As representative examples, we examine two well‐known malware spreading mechanisms: (i) a malicious virus such as Cabir spreading among the subscribers of a cellular network using Bluetooth and (ii) a hybrid worm that exploit email and file‐sharing to infect users of a social network. In both cases, we identify the parameters most important to the spread of the epidemic based upon our extensive simulation results. Copyright © 2011 John Wiley & Sons, Ltd. This paper presents a novel agent‐based framework for realistic modeling of malware propagation in heterogeneous networks, applications and platforms. The majority of the parameters used in the framework can be derived from real‐life network traces collected from a network, and therefore, represent realistic malware propagation and infection scenarios for the given network. Two well‐known malware spreading mechanisms in traditional as well as mobile environments were studied using extensive simulations within the framework and the most important spreading parameters were identified.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/101832/1/sec298.pd

    A Monte Carlo method for the spread of mobile malware

    Full text link
    A new model for the spread of mobile malware based on proximity (i.e. Bluetooth, ad-hoc WiFi or NFC) is introduced. The spread of malware is analyzed using a Monte Carlo method and the results of the simulation are compared with those from mean field theory.Comment: 11 pages, 2 figure

    Applications of Temporal Graph Metrics to Real-World Networks

    Get PDF
    Real world networks exhibit rich temporal information: friends are added and removed over time in online social networks; the seasons dictate the predator-prey relationship in food webs; and the propagation of a virus depends on the network of human contacts throughout the day. Recent studies have demonstrated that static network analysis is perhaps unsuitable in the study of real world network since static paths ignore time order, which, in turn, results in static shortest paths overestimating available links and underestimating their true corresponding lengths. Temporal extensions to centrality and efficiency metrics based on temporal shortest paths have also been proposed. Firstly, we analyse the roles of key individuals of a corporate network ranked according to temporal centrality within the context of a bankruptcy scandal; secondly, we present how such temporal metrics can be used to study the robustness of temporal networks in presence of random errors and intelligent attacks; thirdly, we study containment schemes for mobile phone malware which can spread via short range radio, similar to biological viruses; finally, we study how the temporal network structure of human interactions can be exploited to effectively immunise human populations. Through these applications we demonstrate that temporal metrics provide a more accurate and effective analysis of real-world networks compared to their static counterparts.Comment: 25 page
    • 

    corecore