11,888 research outputs found

    Ontological Foundations for Geographic Information Science

    Get PDF
    We propose as a UCGIS research priority the topic of “Ontological Foundations for Geographic Information.” Under this umbrella we unify several interrelated research subfields, each of which deals with different perspectives on geospatial ontologies and their roles in geographic information science. While each of these subfields could be addressed separately, we believe it is important to address ontological research in a unitary, systematic fashion, embracing conceptual issues concerning what would be required to establish an exhaustive ontology of the geospatial domain, issues relating to the choice of appropriate methods for formalizing ontologies, and considerations regarding the design of ontology-driven information systems. This integrated approach is necessary, because there is a strong dependency between the methods used to specify an ontology, and the conceptual richness, robustness and tractability of the ontology itself. Likewise, information system implementations are needed as testbeds of the usefulness of every aspect of an exhaustive ontology of the geospatial domain. None of the current UCGIS research priorities provides such an integrative perspective, and therefore the topic of “Ontological Foundations for Geographic Information Science” is unique

    Towards automated knowledge-based mapping between individual conceptualisations to empower personalisation of Geospatial Semantic Web

    No full text
    Geospatial domain is characterised by vagueness, especially in the semantic disambiguation of the concepts in the domain, which makes defining universally accepted geo- ontology an onerous task. This is compounded by the lack of appropriate methods and techniques where the individual semantic conceptualisations can be captured and compared to each other. With multiple user conceptualisations, efforts towards a reliable Geospatial Semantic Web, therefore, require personalisation where user diversity can be incorporated. The work presented in this paper is part of our ongoing research on applying commonsense reasoning to elicit and maintain models that represent users' conceptualisations. Such user models will enable taking into account the users' perspective of the real world and will empower personalisation algorithms for the Semantic Web. Intelligent information processing over the Semantic Web can be achieved if different conceptualisations can be integrated in a semantic environment and mismatches between different conceptualisations can be outlined. In this paper, a formal approach for detecting mismatches between a user's and an expert's conceptual model is outlined. The formalisation is used as the basis to develop algorithms to compare models defined in OWL. The algorithms are illustrated in a geographical domain using concepts from the SPACE ontology developed as part of the SWEET suite of ontologies for the Semantic Web by NASA, and are evaluated by comparing test cases of possible user misconceptions

    A unified framework for building ontological theories with application and testing in the field of clinical trials

    Get PDF
    The objective of this research programme is to contribute to the establishment of the emerging science of Formal Ontology in Information Systems via a collaborative project involving researchers from a range of disciplines including philosophy, logic, computer science, linguistics, and the medical sciences. The re­searchers will work together on the construction of a unified formal ontology, which means: a general framework for the construction of ontological theories in specific domains. The framework will be constructed using the axiomatic-deductive method of modern formal ontology. It will be tested via a series of applications relating to on-going work in Leipzig on medical taxonomies and data dictionaries in the context of clinical trials. This will lead to the production of a domain-specific ontology which is designed to serve as a basis for applications in the medical field

    A semantic and language-based representation of an environmental scene

    Get PDF
    The modeling of a landscape environment is a cognitive activity that requires appropriate spatial representations. The research presented in this paper introduces a structural and semantic categorization of a landscape view based on panoramic photographs that act as a substitute of a given natural environment. Verbal descriptions of a landscape scene provide themodeling input of our approach. This structure-based model identifies the spatial, relational, and semantic constructs that emerge from these descriptions. Concepts in the environment are qualified according to a semantic classification, their proximity and direction to the observer, and the spatial relations that qualify them. The resulting model is represented in a way that constitutes a modeling support for the study of environmental scenes, and a contribution for further research oriented to the mapping of a verbal description onto a geographical information system-based representation

    UK utility data integration: overcoming schematic heterogeneity

    Get PDF
    In this paper we discuss syntactic, semantic and schematic issues which inhibit the integration of utility data in the UK. We then focus on the techniques employed within the VISTA project to overcome schematic heterogeneity. A Global Schema based architecture is employed. Although automated approaches to Global Schema definition were attempted the heterogeneities of the sector were too great. A manual approach to Global Schema definition was employed. The techniques used to define and subsequently map source utility data models to this schema are discussed in detail. In order to ensure a coherent integrated model, sub and cross domain validation issues are then highlighted. Finally the proposed framework and data flow for schematic integration is introduced

    Modeling emergency management data by UML as an extension of geographic data sharing model: AST approach

    Get PDF
    Applying GIS functionality provides a powerful decision support in various application areas and the basis to integrate policies directed to citizens, business, and governments. The focus is changing toward integrating these functions to find optimal solutions to complex problems. As an integral part of this approach, geographic data sharing model for Turkey were developed as a new approach that enables using the data corporately and effectively. General features of this model are object-oriented model, based on ISO/TC211 standards and INSPIRE Data Specifications, describing nationwide unique object identifiers, and defining a mechanism to manage object changes through time. The model is fully described with Unified Modeling Language (UML) class diagram. This can be a starting point for geographic data providers in Turkey to create sector models like Emergency Management that has importance because of the increasing number of natural and man-made disasters. In emergency management, this sector model can provide the most appropriate data to many "Actors" that behave as emergency response organizations such as fire and medical departments. Actors work in "Sectors" such as fire department and urban security. Each sector is responsible for "Activities" such as traffic control, fighting dire, emission, and so on. "Tasks" such as registering incident, fire response, and evacuating area are performed by actors and part of activity. These tasks produce information for emergency response and require information based on the base data model. By this way, geographic data models of emergency response are designed and discussed with "Actor-Sector-Activity-Task" classes as an extension of the base model with some cases from Turkey
    • …
    corecore