13,929 research outputs found

    Modeling hierarchical relationships in epidemiological studies: a Bayesian networks approach

    Get PDF
    Hierarchical relationships between risk factors are seldom taken into account in epidemiological studies though some authors stressed the importance of doing so, and proposed a conceptual framework in which each level of the hierarchy is modeled separately. The objective of this paper was to implement a simple version of their framework, and to propose an alternative procedure based on a Bayesian Network (BN). These approaches were illustrated in modeling the risk of diarrhea infection for 2740 children aged 0 to 59 months in Cameroon. The authors implemented a (naïve) logistic regression, a step-level logistic regression and also a BN. While the first approach is inadequate, the two others approaches both account for the hierarchical structure but to different estimates and interpretations. BN implementation showed that a child in a family in the poorest group has respectively 89%, 40% and 18% probabilities of having poor sanitation, being malnourished and having diarrhea. An advantage of the latter approach is that it enables one to determine the probability that a risk factor (and/or the outcome) is in a given state, given the states of the others. Although the BN considered here is very simple, the method can deal with more complicated models.Bayesian networks; hierarchical model; diarrhea infection; disease determinants; logistic regression

    Causal graphical models in systems genetics: A unified framework for joint inference of causal network and genetic architecture for correlated phenotypes

    Full text link
    Causal inference approaches in systems genetics exploit quantitative trait loci (QTL) genotypes to infer causal relationships among phenotypes. The genetic architecture of each phenotype may be complex, and poorly estimated genetic architectures may compromise the inference of causal relationships among phenotypes. Existing methods assume QTLs are known or inferred without regard to the phenotype network structure. In this paper we develop a QTL-driven phenotype network method (QTLnet) to jointly infer a causal phenotype network and associated genetic architecture for sets of correlated phenotypes. Randomization of alleles during meiosis and the unidirectional influence of genotype on phenotype allow the inference of QTLs causal to phenotypes. Causal relationships among phenotypes can be inferred using these QTL nodes, enabling us to distinguish among phenotype networks that would otherwise be distribution equivalent. We jointly model phenotypes and QTLs using homogeneous conditional Gaussian regression models, and we derive a graphical criterion for distribution equivalence. We validate the QTLnet approach in a simulation study. Finally, we illustrate with simulated data and a real example how QTLnet can be used to infer both direct and indirect effects of QTLs and phenotypes that co-map to a genomic region.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS288 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Application of new probabilistic graphical models in the genetic regulatory networks studies

    Get PDF
    This paper introduces two new probabilistic graphical models for reconstruction of genetic regulatory networks using DNA microarray data. One is an Independence Graph (IG) model with either a forward or a backward search algorithm and the other one is a Gaussian Network (GN) model with a novel greedy search method. The performances of both models were evaluated on four MAPK pathways in yeast and three simulated data sets. Generally, an IG model provides a sparse graph but a GN model produces a dense graph where more information about gene-gene interactions is preserved. Additionally, we found two key limitations in the prediction of genetic regulatory networks using DNA microarray data, the first is the sufficiency of sample size and the second is the complexity of network structures may not be captured without additional data at the protein level. Those limitations are present in all prediction methods which used only DNA microarray data.Comment: 38 pages, 3 figure

    Learning Large-Scale Bayesian Networks with the sparsebn Package

    Get PDF
    Learning graphical models from data is an important problem with wide applications, ranging from genomics to the social sciences. Nowadays datasets often have upwards of thousands---sometimes tens or hundreds of thousands---of variables and far fewer samples. To meet this challenge, we have developed a new R package called sparsebn for learning the structure of large, sparse graphical models with a focus on Bayesian networks. While there are many existing software packages for this task, this package focuses on the unique setting of learning large networks from high-dimensional data, possibly with interventions. As such, the methods provided place a premium on scalability and consistency in a high-dimensional setting. Furthermore, in the presence of interventions, the methods implemented here achieve the goal of learning a causal network from data. Additionally, the sparsebn package is fully compatible with existing software packages for network analysis.Comment: To appear in the Journal of Statistical Software, 39 pages, 7 figure
    • …
    corecore