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Education

A Primer on Learning in Bayesian Networks

for Computational Biology
Chris J. Needham

*
, James R. Bradford, Andrew J. Bulpitt, David R. Westhead

Introduction

Bayesian networks (BNs) provide a neat and compact
representation for expressing joint probability distributions
(JPDs) and for inference. They are becoming increasingly
important in the biological sciences for the tasks of inferring
cellular networks [1], modelling protein signalling pathways
[2], systems biology, data integration [3], classification [4], and
genetic data analysis [5]. The representation and use of
probability theory makes BNs suitable for combining domain
knowledge and data, expressing causal relationships, avoiding
overfitting a model to training data, and learning from
incomplete datasets. The probabilistic formalism provides a
natural treatment for the stochastic nature of biological
systems and measurements. This primer aims to introduce
BNs to the computational biologist, focusing on the concepts
behind methods for learning the parameters and structure of
models, at a time when they are becoming the machine
learning method of choice.

There are many applications in biology where we wish to
classify data; for example, gene function prediction. To solve
such problems, a set of rules are required that can be used for
prediction, but often such knowledge is unavailable, or in
practice there turn out to be many exceptions to the rules or
so many rules that this approach produces poor results.

Machine learning approaches often produce better results,
where a large number of examples (the training set) is used to
adapt the parameters of a model that can then be used for
performing predictions or classifications on data. There are
many different types of models that may be required and
many different approaches to training the models, each with
its pros and cons. An excellent overview of the topic can be
found in [6] and [7]. Neural networks, for example, are often
able to learn a model from training data, but it is often
difficult to extract information about the model, which with
other methods can provide valuable insights into the data or
problem being solved. A common problem in machine
learning is overfitting, where the learned model is too
complex and generalises poorly to unseen data. Increasing
the size of the training dataset may reduce this; however, this
assumes more training data is readily available, which is often
not the case. In addition, often it is important to determine
the uncertainty in the learned model parameters or even in

the choice of model. This primer focuses on the use of BNs,

which offer a solution to these issues. The use of Bayesian

probability theory provides mechanisms for describing

uncertainty and for adapting the number of parameters to

the size of the data. Using a graphical representation provides

a simple way to visualise the structure of a model. Inspection

of models can provide valuable insights into the properties of

the data and allow new models to be produced.

Bayesian Networks

In a graphical model representation, variables are

represented by nodes that are connected together by edges

representing relationships between variables. Figure 1

provides an example of a BN describing a gene regulation

network. The expression of each gene is represented by one

variable of a JPD that describes how the genes are regulated by

each other. Such a JPD may be complex even for just five

variables; however, the graphical representation makes it clear

where the regulatory relationships exist between the genes.

For BNs, the edges of the graph must form a directed acyclic

graph (DAG)—a graph with no cyclic paths (no loops). This

allows for efficient inference and learning. JPDs can be

expressed in a compact way, reducing model size through

exploiting conditional independence relationships—two

variables are conditionally independent if they are

independent given the state of a third variable. A benefit of BNs

is that they may be interpreted as a causal model which

generated the data. Thus, arrows (directed edges) in the DAG

can represent causal relations/dependencies between variables.

However, it must be noted that to learn a causal model from

data needs more than association data, and this is discussed

toward the end of this primer under the heading Causality.
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Bioinformatics applications of BNs have included gene
clustering and the inference of cellular networks [1], since they
are well-suited to modelling stochastic complex biological
systems, and the resulting networks can be easily understood.
An excellent example of combining data and domain
knowledge in the bioinformatics field is the MAGIC BN which
has been designed using expert knowledge for combining
information from diverse heterogeneous data sources for the
classification task of gene function prediction [3].

Conditional probability distributions (model parameters).

The relationships between variables are encoded by
conditional probability distributions (CPDs) of the form
p(BjA)—the probability of B given A. For discrete variables,

probability distributions are expressed as conditional
probability tables (CPTs) containing probabilities that are the
model parameters (see Figure 7 and related text for
examples). For each node, the probability that the variable
will be in each possible state given its parents’ states can be
calculated based on the frequency observed in a set of
training data. It is often useful/necessary to use a prior
distribution for the model parameters, as, without a prior, a
possible configuration that was not seen in the training
examples would be incorrectly assigned a zero probability of
ever being observed. (Equally well, these probabilities may be
estimated by an expert and used alongside those learned from
data).

For BNs, which use continuous variables, conditional
probability densities are used in a similar way to CPTs. Figure
2 presents a simple BN which introduces the concept of using

continuous variables. The usual notation is to use squares for

discrete nodes and circles for continuous nodes. A

continuous node, B, with a discrete parent, A, (say, a variable

with k ¼ 3 states) leads to a model of the continuous data

using k Gaussian distributions. Thus, given that A is in state ai,

the likelihood of a value of B may be inferred, or,

alternatively, given a value b for variable B, the probability

that variable A is in state ai may be inferred. Parameters for

the Gaussians (or other distributions) can be learned from

training data. hB is the parameter set that encodes the model

for B in terms of three Gaussians, one for each of the three

possible states of A. A mean li and standard deviation ri are

the parameters for the Gaussian distribution which models

p(bjai).

In a similar way, regression models for CPDs of continuous

variables with continuous parents may be used. In this case,

hB ¼ P(BjA) ; N(c þ ma, r2). i.e., the CPD for B is a Gaussian

distribution with a mean dependent on the value of A ¼ a,

with constants m and c determined by regression of B on A.

Joint probability distributions. It is the JPD over all the

variables that is of great interest. However, the number of

model parameters needed to define the JPD grows rapidly

with the number of variables. Through exploiting conditional

independence between variables, the models may be

represented in a compact manner, with orders of magnitude

fewer parameters.

Relationships between variables are captured in a BN

structure S defined by a DAG (as in the gene regulatory

network example in Figure 1). This enables the JPD to be

expressed in terms of a product of CPDs, describing each

variable in terms of its parents, i.e., those variables it depends

upon. Thus:

pðxjhÞ ¼
Yn
i¼1

pðxijpaðxiÞ; hiÞ ð1Þ

where x¼ f x1, . . . , xn g are the variables (nodes in the BN),

and h¼f h1 , . . . , hn g denotes the model parameters, where hi
is the set of parameters describing the distribution for the ith

variable xi, and pa(xi) denotes the parents of xi. Each

doi:10.1371/journal.pcbi.0030129.g002

Figure 2. Illustration of Model Parameters for Two-Node Bayesian

Network

doi:10.1371/journal.pcbi.0030129.g001

Figure 1. An Example: Gene Regulatory Networks

Gene regulatory networks provide a natural example for BN application.
Genes correspond to nodes in the network, and regulatory relationships
between genes are shown by directed edges. In the simple example
above, gene G1 regulates G2, G3, and G5, gene G2 regulates G4 and G5,
and gene G3 regulates G5. The probability distribution for the expression
levels of each gene is modelled by the BN parameters. Simplification
results from the fact that the probability distribution for a gene depends
only on its regulators (parents) in the network. For instance, the
expression levels of G4 and G5 are related only because they share a
common regulator G2. In mathematical terms, they are conditionally
independent given G2. Such relationships lead to factorisation of the full
JPD into component conditional distributions, where each variable
depends only on its parents in the network.
p(G1, G2, G3, G4, G5)¼ p(G1)p(G2jG1)p(G3jG1)p(G4jG2)p(G5jG1, G2, G3)
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parameter set hi may take a number of forms—commonly a
CPT is used for discrete variables, and CPDs (such as Gaussian
distributions) are used for continuous variables.
Classification/regression models can be used to learn the
parameters for each node in the network.

Inference in Bayesian networks. For the known BN
structure (gene regulatory network) in Figure 1 and a CPD for
each node (modelling gene interactions), given evidence
about the expression levels of some genes, inferences about
the likely values of other genes can be made. For example, the
value of G1 may be inferred from the values of the other
genes, i.e., p(G1jG2, G3, G4, G5). More generally, inferences of
the values of a set of variables may be made given evidence of
another set of variables, by marginalising over unknown
variables. (Marginalising means considering all possible values
the unknown variables may take, and averaging over them.)
Simple inference examples are illustrated in the next section.

Conceptually, inference is straightforward, p(xjy) is
calculated as a product of relevant CPDs, using Bayes rule
[p(ajb)¼ p(bja)p(a)/p(b)] to calculate any posterior probabilities.
Computationally, the calculation of inference in this way is
hard and inefficient. A number of methods exist that exploit
the structure of the graph to derive efficient exact inference
algorithms such as the sum–product and max–sum
algorithms. For many problems, however, exact inference is
not feasible, and, therefore, the use of approximation
methods such as variational methods and sampling
approaches are required.

Conditional independence. Two variables are conditionally
independent if they are independent given the state of a third
variable. Mathematically, a and b are conditionally
independent given c if:

pða; bjcÞ ¼ pðajcÞpðbjcÞ ð2Þ

Conditional independence relationships are encoded in
the structure of the network, as illustrated in the three cases
below. Regulation of three genes x, y, and z is taken as an
example. In each case, the situation is described, along with a
BN diagram, an equation for the JPD, and an equation for
inference of p(zjx).

Serial connection. For example, when gene x promotes gene y,
and gene y promotes gene z (Figure 3). In this case, evidence is
transmitted unless the state of the variable in the connection
is known: if the expression level of gene y is unknown, then
evidence of the level of x effects the expected level of z; if y is
known, then the level of z depends only on the expression
level of y. z is conditionally independent from x.

Diverging connection. For example, when a transcription
factor y turns on two genes x and z (Figure 4). As with a serial
connection, evidence is transmitted unless the variable in the
connection is instantiated: if the expression level of y is
unknown, then evidence of the level of x effects the level of z
(since they are co-regulated—if x is highly expressed, then the
likely level of y may be inferred, which in turn would
influence the expression level of z); if y is known, then the
level of z depends only on the expression level of y. z is
conditionally independent from x.

Converging connection. For example, when two genes x and z

both promote gene y (Figure 5). Evidence is transmitted only
if the variable in the connection or one of its children
receives evidence: if y is unknown, then evidence of the

expression level of gene x does not help to infer the
expression level of z—x and z are independent; however, if y is
known, then the level of x does help to infer the expression
level of z. Importantly, at the v-structure in the network, the
CPD for y encodes the dependency of y on both x and z. Note
in this case that p(x,zjy) 6¼ p(xjy)p(zjy).
In the case of a converging connection, it is also worthwhile

noting that when the value of y is known as well as x, then this
evidence helps to infer the value of z, and x and z are no
longer independent variables:

pðzjx; yÞ ¼
pðzÞpðyjx; zÞX
z

pðzÞðyjx; zÞ
6¼ pðzÞ

Thus, the structure of the model captures/encodes the
dependencies between the variables and leads to a different
causal model.
An example: Naı̈ve Bayes classifier for interaction site

prediction. As a simple example, consider the task of
predicting interaction sites on protein surfaces from measures
of conservation and hydrophobicity of surface patches. This
gives three variables: I, whether the patch is an interaction site

doi:10.1371/journal.pcbi.0030129.g003

Figure 3. Serial Connection

doi:10.1371/journal.pcbi.0030129.g004

Figure 4. Diverging Connection

doi:10.1371/journal.pcbi.0030129.g005

Figure 5. Converging Connection
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or not; C, conservation score for the patch; and H, the
hydrophobicity of the patch. I is a discrete class variable. Both C

and H are continuous variables (though may be quantised to
form discrete data). Conservation and hydrophobicity are both
reasonably good predictors of interaction sites, and the
information from these independent predictions may be
combined in a naı̈ve Bayes classifier to improve performance.
The structure of themodel for a naı̈ve Bayes classifier has a class
node (the one to be inferred from the other observed variables)
as a parent to all other independent variables and is illustrated
in Figure 7. Such a model structure is excellent for integrating
information, and for maintaining a small model size. [For a set
of n binary variables, a completely connected DAG has 2n� 1
free parameters, an inverted naı̈ve Bayes classifier (where the
class node depends on all other variables) has 2n�1þ nþ 1 free
parameters, whereas a naı̈ve Bayes classifier has only 2nþ1 free
parameters! For a model with 100 binary variables, this is more
than 290 times smaller!]. In the next section of this primer, the
learning of parameters for this simple example is illustrated.
This example is inspired by [4] in which a naı̈ve Bayes classifier
is used within a classification scheme to predict protein–
protein interaction sites using a number of predictive variables.

Parameter Learning

The simplest approach to learn the parameters of a
network is to find the parameter set that maximises the
likelihood that the observed data came from the model.

Likelihood. In essence, a BN is used to model a probability
distribution X. A set of model parameters h may be learned
from the data in such a way that maximises the likelihood that
the data came from X. Given a set of observed training data,
D¼ f x1, . . . , xN g consisting of N examples, it is useful to
consider the likelihood of a model, L(h), as the likelihood of
seeing the data, given a model:

LðhÞ ¼ pðDjhÞ ¼
YN
i¼1

pðxijhÞ ð3Þ

It should be noted here that xi is the ith training example and
that the likelihood of D being generated from model h is the
product of the probabilities of each example, given the model.

Maximum likelihood. The learning paradigm which aims to
maximise L(h) is called maximum likelihood (ML). This
approximates the probability of a new example x given the
training data D as p(xjD) ’ p(xjhML) where hML is the
maximum (log) likelihood model which aims to maximise
ln p(Djh), i.e., hML ¼ arg maxh ln p(Djh). This amounts to
maximising the likelihood of the ‘‘data given model.’’ ML
does not assume any prior. Using negative log likelihood is
equivalent to minimising an error function.

Maximum posterior. In order to consider a prior
distribution, a maximum a posteriori (MAP) model can be used.
This approximates the probability of a new example x given
the training data D as p(xjD) ’ p(xjhMAP) where hMAP is the
MAP probability (likelihood of the ‘‘model given data’’) which
aims to maximise ln p(hjD), i.e., hMAP¼ arg maxh ln p(hjD). This
takes into account the prior, since through Bayes’ theorem:
p(hjD)¼ p(Djh)p(h)/p(D).

Often ML and MAP estimates are good enough for the
application in hand, and produce good predictive models.
The numerical example at the end of this section illustrates
the effects of ML and MAP estimates with different strength

priors and training set sizes. Both ML and MAP produce a
point estimate for h. Point estimates are a single snapshot of
parameters (though confidence intervals on their values can
be calculated).
Marginal likelihood. For a full Bayesian model, the

uncertainty in the values of the parameters is modelled as a
probability distribution over the parameters. The parameters
are considered to be latent variables, and the key idea is to
marginalise over these unknown parameters, rather than to
make point estimates. This is known as marginal likelihood.
The computation of a full posterior distribution, or model
averaging, avoids severe overfitting and allows direct model
comparison. In [8], Eddy introduces Bayesian statistics with a
simple example, and integrates over all possible parameter
values, illustrating a more rigorous approach to handling
uncertainty. Formulating Bayesian learning as an inference
problem, the training examples in D can be considered as N
independent observations of the distribution X. Figure 6
shows a graphical model where the shaded nodes xi represent
the observed independent training data and x the incomplete
example observation for which the missing values are to be
inferred, all of which are dependent upon the model h.
The joint probability of the training data, the model, and a

new observation x is:

pðD; h; xÞ ¼ pðxjhÞpðDjhÞpðhÞ ð4Þ

where p(h) is the prior. Applying the sum rule [p(a)¼
R
p(a,b)db]:

pðx;DÞ ¼

Z
pðD; h; xÞdh ð5Þ

Applying the product rule [p(a,b) ¼ p(ajb)p(b)] to the left-
hand side, and substituting (4) for the joint probability on the
right-hand side, then dividing both sides by p(D), gives the
predictive distribution for x:

pðxjDÞ ¼
1

pðDÞ

Z
pðxjhÞpðDjhÞpðhÞdh ð6Þ

¼

Z
pðxjhÞpðhjDÞdh ð7Þ

pðexamplejdataÞ ¼ pðexamplejmodelÞ3 pðmodeljdataÞ

over all models

This is computing a full Bayesian posterior. In order to do
this, a prior distribution, p(h), for the model parameters

doi:10.1371/journal.pcbi.0030129.g006

Figure 6. Graphical Model Illustrating Bayesian Inference
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needs to be specified. There are many types of priors that may
be used, and there is much debate about the choice of prior
[9]. Often the calculation of the full posterior is intractable,
and approximate methods must be used, such as point
estimates or sampling techniques. Marginal likelihood fully
takes into account uncertainty by averaging over all possible
values.

Learning from incomplete data. The parameters for BNs
may be learned even when the training dataset is incomplete,
i.e., the values of some variables in some cases are unknown.
Commonly, the Expectation–Maximisation (EM) algorithm is
used, which estimates the missing values by computing the
expected values and updating parameters using these
expected values as if they were observed values.

EM is used to find local maxima for MAP or ML
configurations. EM begins with a particular parameter
configuration ĥ (possibly random) and iteratively applies the
expectation and maximisation steps, until convergence.

E-step. The expected values of the missing data are inferred
to form DC—the most likely complete dataset given the
current model parameter configuration.

M-step. The configuration of ĥ which maximises p(ĥjDC) is
found (for MAP).

Using EM to find a point estimate for the model parameters
can be efficient to calculate and gives good results when
learning from incomplete data or for network structures with
hidden nodes (those for which there is no observed data).With
large sample sizes, the effect of the prior p(h) becomes small,
and ML is often used instead of MAP in order to simplify the
calculation. More sophisticated (and computationally
expensive) sampling methods such as those mentioned below
may also be applied to incomplete data. One advantage of
these methods is that they avoid one of the possible
drawbacks of EM—becoming trapped in local optima.

There may be cases of hidden nodes in gene regulatory
networks, where the network is known, but experiments have
not provided expression levels for all genes in the network—
model parameters can still be learned. The ability to handle
incomplete data is an important one, particularly when
considering that expression data may come from different
laboratories, each looking at different parts of a gene
regulatory network, with overlap of some genes whilst others
are missing. In this case, all the collected data can be used.

Sampling methods. A number of sampling methods have
been used to estimate the (full) posterior distribution of the
model parameters p(hjD). Monte Carlo methods, such as Gibbs
sampling, are extremely accurate, but computationally
expensive, often taking a long time to converge, and become
intractable as the sample size grows. Gaussian approximation is
often accurate for relatively large samples, and is more
efficient than Monte Carlo methods. It is based on the fact
that the posterior distribution p(hjD) which is proportional to
p(Djh)3 p(h) can often be approximated as a Gaussian
distribution. With more training data, the Gaussian peak
becomes sharper, and tends to the MAP configuration hMAP.

Parameter learning numerical example. In this numerical
example, we illustrate the approaches described in the text
for learning Bayesian network parameters, using the simple
example of a naı̈ve Bayes classifier to predict protein
interaction sites (I) using information on conservation (C)
and hydrophobicity (H). Each variable has two possible values:
I ¼ yes/no; H ¼ high/low and C ¼ high/low. The conditional

probability tables defining the network are shown in Figure 7,
and the learning problem is to determine values for the
associated probabilities p1–5.
To illustrate the different methods, we will focus on

parameter p2, the probability that conservation is high (C ¼
high), given that this is a protein interaction site (I¼ yes). The
value of p2 is to be estimated from count data; in this case, we
assume that for N interaction sites, n have high conservation
and N � n have low conservation.
Figure 8 describes a number of possible scenarios. In the

Figure 8A–8D graphs, the red dashed line shows the
likelihood, p(datajmodel). In this case, it is derived from the
binomial distribution, and represents the probability of
observing n high conservation sites in N trials, as a function of
the binomial parameter p2. The other graph curves are the
prior p(model) (dotted green curve), giving a prior distribution
for the value of p2, and the posterior p(modeljdata) (solid blue
curve). Here we have used the beta distribution as the prior.
This is a very flexible distribution on the interval [0,1]; it has
two parameters B(n,m), with B(1,1) representing the uniform
distribution and other shapes being obtained with larger and
different values of n and m. An advantage of the beta
distribution in this case is that when used as a prior with the
binomial it yields a posterior that is also a beta distribution
(but with different parameters). The beta distribution is the
conjugate prior of the binomial. In fact, the n and m

parameters of the beta distribution can be viewed as
pseudocounts, which are added to the observed counts to
reflect prior knowledge.
The Bayesian approach of calculating marginal likelihood

does not involve making a point estimate of the parameter;
instead, the posterior distribution is averaged over in order
to fully take into account the uncertainty in the data.

Structure Learning

Particularly in the domain of biology, the inference of
network structures is the most interesting aspect; for
example, the elucidation of regulatory and signalling
networks from data. This involves identifying real
dependencies between measured variables; distinguishing
them from simple correlations. The learning of model
structures, and particularly causal models, is difficult, and
often requires careful experimental design, but can lead to
the learning of unknown relationships and excellent
predictive models.
Full Bayesian posterior. So far, only the learning of

parameters of a BN of known structure has been considered.

doi:10.1371/journal.pcbi.0030129.g007

Figure 7. Naı̈ve Bayes Classifier with Model Parameters in the Form of

CPTs
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Sometimes the structure of the network may be unknown and

this may also be learned from data. The equation describing

the marginal likelihood over structure hypotheses Sh as well as

model parameters is an extension of Equation 7; the

predictive distribution is:

pðxjDÞ ¼
X
Sh

pðShjDÞ

Z
pðxjhs; S

hÞpðhsjD; S
hÞdhs ð8Þ

However, the computation of a full posterior distribution

over the parameter space and the model structure space is

intractable for all practical applications (those with more

than a handful of variables).

Sampling methods. Even for a relatively small number of

variables, there are an enormous number of possible network

structures, and the computation of a full posterior

probability distribution is difficult. There are several

approaches to this problem, including Markov chain Monte

Carlo (MCMC) methods (such as the Metropolis–Hastings

algorithm), which are used to obtain a set of ‘‘good’’ sample

networks from the posterior distribution p(Sh,hSjD), where Sh

is a possible model structure. This is particularly useful in the

doi:10.1371/journal.pcbi.0030129.g008

Figure 8. The Effects of Different Strength Priors and Training Set Sizes

(A) In this case, the observed data is ten interaction sites, of which five have high conservation, five low. As expected, in this case the likelihood peaks at
p2¼0.5. The prior is B(7,3), indicating prior knowledge that high conservation is found in interaction sites; it corresponds to adding seven pseudocounts
to the C¼high category, and three to C¼ low, and produces a prior peaked above p2¼0.5. The posterior is also shown, along with the MAP estimate of
p2. The influence of the prior information in this case where the observed counts are low is clear.
(B) Learning from 100 training examples (75 high, 25 low). Here the weak B(7,3) prior has little influence over the posterior distribution, and with a large
training set the ML and MAP estimates are similar (p2 ; 0.75). The posterior distribution for p2 is narrower—some of the uncertainty about its value has
been removed given the evidence (training examples).
(C) Using a stronger prior B(70,30) still indicates that the most likely value for p2 is 0.7; however, note that the prior is narrower—a lot of evidence would
be needed to be convinced that p2 was less than 0.6, say. Small samples are more susceptible to noise than larger samples. For a training set with five
high and five low conservation scores, the ML estimate (p2¼ 0.5) is quite different from the MAP estimate of about 0.7, which takes into account the
prior. Hopefully, this illustrates why priors are useful, but also cautions against choosing the wrong prior (or too strong/weak a prior)!
(D) This final example has a B(70,30) prior and shows ML and MAP estimates from training data with 75 high and 25 low conservation scores. This
combination of a good prior and a larger training set is the example here with the least uncertainty about the value of p2.
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bioinformatics domain, where data D may be sparse and the
posterior distribution p(Sh,hSjD) diffuse, and therefore much
better represented as averaged over a set of model structures
than through choosing a single model structure.

Variational methods. A faster alternative to MCMC is to use
variational methods for certain classes of model. By
approximating parameters’ posterior distributions (which are
difficult to sample from) by simpler ones, a lower bound on
the marginal likelihood can be found which can then be used
for model selection.

Structure learning algorithms. The two key components of
a structure learning algorithm are searching for ‘‘good’’
structures and scoring these structures. Since the number of
model structures is large (super-exponential), a search
method is needed to decide which structures to score. Even
with few nodes, there are too many possible networks to
exhaustively score each one. Efficient structure learning
algorithm design is an active research area. A greedy searchmay
be done by starting with an initial network (possibly with no
(or full) connectivity) and iteratively adding, deleting, or
reversing an edge, measuring the accuracy of the resulting
network at each stage, until a local maxima is found.
Alternatively, a method such as simulated annealing should
guide the search to the global maximum.

There are two common approaches used to decide on a
‘‘good’’ structure. The first is to test whether the conditional
independence assertions implied by the structure of the
network are satisfied by the data. The second approach is to
assess the degree to which the resulting structure explains the
data (as described for learning the parameters of the
network). This is done using a score function. Ideally, the full
posterior distribution of the parameters for the model
structure is computed (marginal likelihood); however,
approximations such as the Laplace approximation or the
Bayesian Information Criterion (BIC) score functions are often
used, as they are more efficient (though approximate, and
therefore less accurate). The BIC score approximates
ln p(DjSh) as ln pðDjĥs; S

hÞ � d
2 lnN , where ĥs is an estimate of

the model parameters for the structure, d is the number of
model parameters, and N is the size of the dataset. For large
N, the learned model often has parameters like hML. The BIC
score has a measure of how well the model fits the data, and a
penalty term to penalise model complexity. This is an
example of Occam’s Razor in action; preferring the simplest of
equally good models. ML is not used as a score function here,
as without a penalty function it would produce a completely
connected network, implying no simplification of the factors.

In the case of gene regulatory networks, these structure
learning algorithms may be used to identify the most
probable structure to give an influence diagram for a gene
regulatory network learned from data. Imoto et al. [10] derive
gene networks based on BNs from microarray gene
expression data, and use biological knowledge such as
protein–protein interaction data, binding site information,
and existing literature to effectively limit the number of
structures considered to be the most biologically relevant.
The fitness of each model to the microarray data is first
measured using marginal likelihood, then biological
knowledge is input in the form of a prior probability for
structures. The posterior probability for the proposed gene
network is then simply the product of the marginal likelihood
of the parameters and the prior probability of the structure.

Causality. Often the really interesting problems involve the
learning of causal relationships [11], such as protein
signalling networks [2] and gene regulatory interactions. In
order to discover the underlying causal model, more than just
structure learning is needed, because the available data may
be insufficient to distinguish different network structures
that imply the same conditional independences (Markov
equivalence) and have the same score. One way to determine
the directionality of the causal relations is to use intervention
data, where the value of one variable is held fixed. Consider
two correlated variables, X and Y, subjected to interventions
(these may be expression levels of two genes, and
interventions are gene knockouts). If inhibiting X leads to a
limited range of observed values of Y, whereas inhibiting Y
leads to a full range of X values, then it can be determined
that X influences Y, but Y doesn’t influence X. This implies
there is a causal relationship X ! Y.
Sachs et al. [2] model a protein signalling network from

flow cytometry data. Simultaneous observations of multiple
signalling molecules in many thousands of cells in the
presence of stimulatory cues and inhibitory interventions
(perturbations) and careful experimental design allow for
identifying causal networks, which are potentially useful for
understanding complex drug actions and dysfunctional
signalling in diseased cells.
Dynamic Bayesian networks. An essential feature of many

biological systems is feedback. BNs are perfectly suited to
modelling time series and feedback loops. When BNs are used
to model time series and feedback loops, the variables are
indexed by time and replicated in the BN—such networks are
known as dynamic Bayesian networks (DBNs) [12] and include as
special cases hidden Markov models (HMMs) and linear
dynamical systems. The creation of experimental time series
measurements is particularly important for modelling
biological networks.
As an example, if in the earlier gene regulatory network

example, gene G5 regulated G1, then a feedback loop (cyclic
graph) would be formed. In order to perform efficient
inference, BNs require a DAG to define joint probabilities in
terms of the product of conditional probabilities. For
probabilistic graphical models with loops, as described, either
iterative methods such as loopy belief propagation must be
used, or the cyclic graph must be transformed into a DAG.
Assuming a (first-order) Markov process governs gene
regulation, the network may be rolled out in time, to create a
DBN. Generally, DBNs contain two time slices, with an
instance of each variable in each time slice (t and t þ Dt).
Directed edges are added from nodes at time t to the nodes
they influence at t þ Dt. HMMs are a special case of DBNs,
where there is a hidden set of nodes (normally discrete states),
a set of observed variables, and the slices need not be time;
often HMMs are used for sequence analysis and t is the
transition from one base to the next. DBNs have been used
for inferring genetic regulatory interactions from microarray
data. Data from a few dozen time points during a cell cycle is
a very small amount of data on which to train a DBN.
Husmeier has recently used MCMC on simulated data of
microarray experiments in order to access the network
inference performance with different training set size, priors,
and sampling strategies [13]. Variational Bayesian methods
have been used to approximate the marginal likelihood for
gene regulatory network model selection with hidden factors
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from gene expression time series data. The hidden factors
capture the effects that cannot be directly measured, such as
genes missing from the microarray, the levels of regulatory
proteins present, and the effects of mRNA, etc. [14].

Conclusion

Many applications in computational biology have taken
advantage of BNs or, more generally, probabilistic graphical
models. These include: protein modelling, systems biology;
gene expression analysis, biological data integration; protein–
protein interaction and functional annotation; DNA
sequence analysis; and genetics and phylogeny linkage
analysis. However, perhaps the most interesting application
of BNs in the biological domain has been the modelling of
networks and pathways. These analyses combine all the
features of BNs: the ability to learn from incomplete noisy
data, the ability to combine both expert knowledge and data
to derive a suitable network structure, and the ability to
express causal relationships. Recent application of DBNs has
allowed more sophisticated relationships to be modeled; for
example, systems which incorporate feedback. Furthermore,
the marriage of improved experimental design with new data
acquisition techniques promises to be a very powerful
approach in which causal relations of complex interactions
may be elucidated.

Additional Reading

Heckerman has written an excellentmathematical tutorial on
learning with BNs [9], whose notation has been adopted here.
This is the suggested text to consult for statistical details and
discussion of the concepts introduced in this primer. Murphy’s
introduction [15], alongwith the guide to the softwareBayesNet
Toolkit for Matlab, BNT [16], provides an overview of
algorithms for learning. Tipping’s tutorial [17] contains good
illustrations of marginal likelihood, and Ghahramani’s tutorial
[18] contains a clear overview introducing structure learning
and approximation methods. Husmeier’s bioinformatics text
[13] is also an excellent resource.
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