33,596 research outputs found

    DeepMood: Modeling Mobile Phone Typing Dynamics for Mood Detection

    Full text link
    The increasing use of electronic forms of communication presents new opportunities in the study of mental health, including the ability to investigate the manifestations of psychiatric diseases unobtrusively and in the setting of patients' daily lives. A pilot study to explore the possible connections between bipolar affective disorder and mobile phone usage was conducted. In this study, participants were provided a mobile phone to use as their primary phone. This phone was loaded with a custom keyboard that collected metadata consisting of keypress entry time and accelerometer movement. Individual character data with the exceptions of the backspace key and space bar were not collected due to privacy concerns. We propose an end-to-end deep architecture based on late fusion, named DeepMood, to model the multi-view metadata for the prediction of mood scores. Experimental results show that 90.31% prediction accuracy on the depression score can be achieved based on session-level mobile phone typing dynamics which is typically less than one minute. It demonstrates the feasibility of using mobile phone metadata to infer mood disturbance and severity.Comment: KDD 201

    Network destabilization and transition in depression : new methods for studying the dynamics of therapeutic change

    Get PDF
    The science of dynamic systems is the study of pattern formation and system change. Dynamic systems theory can provide a useful framework for understanding the chronicity of depression and its treatment. We propose a working model of therapeutic change with potential to organize findings from psychopathology and treatment research, suggest new ways to study change, facilitate comparisons across studies, and stimulate treatment innovation. We describe a treatment for depression that we developed to apply principles from dynamic systems theory and then present a program of research to examine the utility of this application. Recent methodological and technological developments are also discussed to further advance the search for mechanisms of therapeutic change

    Short-term trajectories of workplace bullying and its impact on strain: A latent class growth modeling approach

    Get PDF
    The aim of this weekly diary study was (a) to identify trajectories of workplace bullying over time and (b) to examine the association of each cluster with strain indicators (i.e., insomnia and anxiety/depression). A sample of 286 employees during 4 weeks of data was used (N occasions = 1,144). Results of latent class growth modeling showed that 3 trajectories could be identified: a nonbullying trajectory, which comprised 90.9% of the sample; an inverted U trajectory; and a delayed increase bullying trajectory; the latter two each had 4.2% of the participants. We found a significant interaction between time and trajectories when predicting insomnia and anxiety/depression, with each strain showing a differential pattern with each trajectory. It seems that the negative effects on insomnia are long-lasting and remain after bullying has already decreased. In the case of anxiety and depression, when bullying decreases strain indicators also decrease. In this study, by examining trajectories of bullying at work over time and their associations with strain, we provide new insights into the temporal dynamics of workplace bullying

    A complex network perspective on clinical science

    Full text link
    Contemporary classification systems for mental disorders assume that abnormal behaviors are expressions of latent disease entities. An alternative to the latent disease model is the complex network approach. Instead of assuming that symptoms arise from an underlying disease entity, the complex network approach holds that disorders exist as systems of interrelated elements of a network. This approach also provides a framework for the understanding of therapeutic change. Depending on the structure of the network, change can occur abruptly once the network reaches a critical threshold (the tipping point). Homogeneous and highly connected networks often recover more slowly from local perturbations when the network approaches the tipping point, potentially making it possible to predict treatment change, relapse, and recovery. In this article, we discuss the complex network approach as an alternative to the latent disease model and its implications for classification, therapy, relapse, and recovery.R34 MH086668 - NIMH NIH HHS; R01 AT007257 - NCCIH NIH HHS; R21 MH101567 - NIMH NIH HHS; R34 MH099311 - NIMH NIH HHS; R21 MH102646 - NIMH NIH HHS; K23 MH100259 - NIMH NIH HHS; R01 MH099021 - NIMH NIH HH
    corecore