4 research outputs found

    Robotic control based on the human nervous system

    Get PDF
    This article presents a model of robotic control system inspired by the human neuroregulatory system. This model allows the application of functional and organizational principles of biological systems to robotic systems. It also proposes appropriate technologies to implement this proposal, in particular the services. To illustrate the proposal, we implemented a control system for mobile robots in dynamic open environments, demonstrating the viability of both the model and the technologies chosen for implementation

    An Integration Solution of a Simulator Implemented in Software and a Component Synthesized in Reconfigurable Hardware for a Neuroregulator System

    Get PDF
    Los trabajos para el desarrollo de un sistema artificial que aporte al mejoramiento de disfunciones del Tracto Urinario Inferior (LUT-Lower Urinary Tract) fundamentados en un marco formal y que emplea sistemas multiagentes para el modelado del sistema neurorregulador y diseños particulares se inscriben en los esfuerzos de aplicar soluciones de hardware como tendencia a desarrollar dispositivos implantables en humanos. Para ello, ha sido necesario diseñar y construir herramientas de software representativas de un modelo teórico-matemático con funcionalidades para simular el comportamiento del tracto urinario inferior y, al mismo tiempo, diseñar prototipos de centros neurorreguladores que se alojen en hardware reconfigurable (FPGA, Field Programmable Gate Array) en una especie de plataforma híbrida para la experimentación sobre diferentes soluciones y arquitecturas candidatas. Esta investigación parte de un modelo teórico-matemático, que conlleva a un simulador en software, al diseño de componentes particulares que implementan funciones de determinados centros neurorreguladores en hardware reconfigurable y que conduce a la necesidad de desarrollar por la vía de la integración una plataforma híbrida software-hardware. En este trabajo se expone una aproximación que diseña e implementa el proceso de integración y que se constituye en una solución imprescindible en este contexto.The work for the development of an artificial system that contributes to the improvement of lower urinary tract dysfunctions (LUT-Lower Urinary Tract) based on a formal framework and that uses multiagent systems for the modeling of the neuroregulatory system and particular designs are part of the efforts to apply hardware solutions as a tendency to develop implantable devices in humans. For this, it has been necessary to design and build software tools representative of a theoretical-mathematical model with functionalities to simulate the behavior of the lower urinary tract and, at the same time, design prototypes of neuroregulatory centers that are housed in reconfigurable hardware (FPGA-Field Programmable Gate Array) in a kind of hybrid platform for experimentation on different solutions and candidate architectures. This research is based on a theoretical-mathematical model, which involves a software simulator, the design of particular components that implement functions of certain neuroregulatory centers in reconfigurable hardware and that leads to the need to develop a hybrid platform through integration. software-hardware. This paper presents an approach that designs and implements the integration process and constitutes an essential solution in this context

    System on chip design of the nerve centres of the human neuroregulatory system

    Get PDF
    Introducción: El sistema neurorregulador humano es un sistema nervioso complejo compuesto por un grupo heterogéneo de centros nerviosos distribuidos a lo largo de la médula espinal. Estos centros actúan de forma autónoma, se comunican mediante interconexiones nerviosas y gobiernan y regulan el comportamiento de órganos en los seres humanos. Por más de 20 años se viene estudiando el sistema neurorregulador del tracto urinario inferior, responsable de los órganos y sistemas que intervienen en el proceso de micción. El objetivo de la investigación ha sido comprender el papel individual de cada centro para crear un modelo general del sistema neurorregulador capaz de operar a nivel de centro nervioso. Métodos: El modelo creado se ha formalizado mediante la teoría de sistemas multiagente de forma que cada agente modele el comportamiento de un centro nervioso. Su granularidad ha abierto la posibilidad de actuar a nivel de centro, lo cual ha sido especialmente interesante en el tratamiento de disfunciones. Resultados y discusión: En este trabajo se enriqueció este modelo teórico con un modelo arquitectural que lo hiciera adecuado para su implementación en hardware. A partir del nuevo modelo, se propuso el diseño system on chip de un procesador específico capaz de desempeñar las funciones de un centro nervioso. En conclusión, la investigación supuso un enfoque original con el objetivo final de crear un chip parametrizable, capaz de desarrollar cualquier función neurorreguladora, que pudiera ser implantable en el cuerpo y con capacidad para trabajar de forma coordinada con el sistema neurorregulador biológico.Introduction: The human neuroregulatory system is a complex nervous system composed of a heterogeneous group of nerve centres distributed along the spinal cord. These centres act autonomously, communicate through neural interconnections, and govern and regulate the behavior of organs in humans. For more than twenty years, the neuroregulatory system of the lower urinary tract has been studied, which controls the organs and systems involved in the urination process. Based on the study of the behavior and composition of the lower urinary tract, we have succeeded in isolating the centres involved in its functioning. The goal has been to understand the individual role played by each centre to create a general model of the neuroregulatory system capable of operating at the level of the nerve centre. Methods: The model has been created and formalized based on Multi-Agent Systems theory: each agent thus models the behaviour of a nerve centre. Its granularity opens up the possibility of acting at the level of the centre, of particular interest to treat dysfunctions. Results and discussion: The present study enriches this theoretical model with an architectural model that makes it suitable to implement in hardware. Based on this new model, we propose a System on Chip (SoC) design of a specific processor capable of performing a nerve centre’s functions. Although this processor can be entirely configured and programmed to adjust to the functioning of the different centres, the present work aimed at facilitating the understanding and validation of the proposal. We thus focused on the cortical-diencephalic centre, responsible for voluntary micturition. As conclusions, the research adopted an original approach with the aim of creating a configurable chip, capable of developing any neuroregulatory function, implantable in the body and being able to function in a coordinated way with the biological neuroregulatory system

    System-on-chip design of the cortical-diencephalic centre of the lower urinary tract

    Get PDF
    This article presents the design of a field programmable gate array (FPGA)-based prototype of a system on chip (SoC) capable of behaving as one of the nerve centres comprising the neuroregulatory system in humans: the cortical-diencephalic nerve centre. The neuroregulatory system is a complex nerve system consisting of a heterogeneous group of nerve centres. These centres are distributed throughout the length of the spinal cord, are autonomous, communicate via interneurons, and govern and regulate the behaviour of multiple organs and systems in the human body. As a result of years of study of the functioning and composition of the neuroregulatory system of the lower urinary tract (LUT), the centres that regulate this system have been isolated. The objective of this study is to understand the individual functioning of each centre in order to create a general model of the neuroregulatory system that is capable of operating at the level of the actual nerve centre. This model represents an advancement of the current black box models that do not allow for isolated or independent treatment of system dysfunction. In this study, we re-visit our research into the viability of the hardware design of one of these centres—the cortical-diencephalic centre. We describe this hardware because functioning of the centre is completely configurable and programmable, which validates the design for other centres that comprise the neuroregulatory system. In this document, we succinctly present the formal model of the centre, propose a hardware design and an FPGA-based prototype, construct a testing and simulation environment to evaluate it and, lastly, analyse and contrast the results using data obtained from real patients, verifying that the functional behaviour fits that observed in humans.This work has been supported by grant University of Alicante projects GRE14-02 and Smart University
    corecore