2,238 research outputs found

    Towards Dynamic Vehicular Clouds

    Get PDF
    Motivated by the success of the conventional cloud computing, Vehicular Clouds were introduced as a group of vehicles whose corporate computing, sensing, communication, and physical resources can be coordinated and dynamically allocated to authorized users. One of the attributes that set Vehicular Clouds apart from conventional clouds is resource volatility. As vehicles enter and leave the cloud, new computing resources become available while others depart, creating a volatile environment where the task of reasoning about fundamental performance metrics becomes very challenging. The goal of this thesis is to design an architecture and model for a dynamic Vehicular Cloud built on top of moving vehicles on highways. We present our envisioned architecture for dynamic Vehicular Cloud, consisting of vehicles moving on the highways and multiple communication stations installed along the highway, and investigate the feasibility of such systems. The dynamic Vehicular Cloud is based on two-way communications between vehicles and the stations. We provide a communication protocol for vehicle-to-infrastructure communications enabling a dynamic Vehicular Cloud. We explain the structure of the proposed protocol in detail and then provide analytical predictions and simulation results to investigate the accuracy of our design and predictions. Just as in conventional clouds, job completion time ranks high among the fundamental quantitative performance figures of merit. In general, predicting job completion time requires full knowledge of the probability distributions of the intervening random variables. More often than not, however, the data center manager does not know these distribution functions. Instead, using accumulated empirical data, she may be able to estimate the first moments of these random variables. Yet, getting a handle on the expected job completion time is a very important problem that must be addressed. With this in mind, another contribution of this thesis is to offer easy-to-compute approximations of job completion time in a dynamic Vehicular Cloud involving vehicles on a highway. We assume estimates of the first moment of the time it takes the job to execute without any overhead attributable to the working of the Vehicular Cloud. A comprehensive set of simulations have shown that our approximations are very accurate. As mentioned, a major difference between the conventional cloud and the Vehicular Cloud is the availability of the computational nodes. The vehicles, which are the Vehicular Cloud\u27s computational resources, arrive and depart at random times, and as a result, this characteristic may cause failure in executing jobs and interruptions in the ongoing services. To handle these interruptions, once a vehicle is ready to leave the Vehicular Cloud, if the vehicle is running a job, the job and all intermediate data stored by the departing vehicle must be migrated to an available vehicle in the Vehicular Cloud

    A Survey on platoon-based vehicular cyber-physical systems

    Get PDF
    Vehicles on the road with some common interests can cooperatively form a platoon-based driving pattern, in which a vehicle follows another one and maintains a small and nearly constant distance to the preceding vehicle. It has been proved that, compared to driving individually, such a platoon-based driving pattern can significantly improve the road capacity and energy efficiency. Moreover, with the emerging vehicular adhoc network (VANET), the performance of platoon in terms of road capacity, safety and energy efficiency, etc., can be further improved. On the other hand, the physical dynamics of vehicles inside the platoon can also affect the performance of VANET. Such a complex system can be considered as a platoon-based vehicular cyber-physical system (VCPS), which has attracted significant attention recently. In this paper, we present a comprehensive survey on platoon-based VCPS. We first review the related work of platoon-based VCPS. We then introduce two elementary techniques involved in platoon-based VCPS: the vehicular networking architecture and standards, and traffic dynamics, respectively. We further discuss the fundamental issues in platoon-based VCPS, including vehicle platooning/clustering, cooperative adaptive cruise control (CACC), platoon-based vehicular communications, etc., and all of which are characterized by the tight coupled relationship between traffic dynamics and VANET behaviors. Since system verification is critical to VCPS development, we also give an overview of VCPS simulation tools. Finally, we share our view on some open issues that may lead to new research directions

    Connected Vehicles: Solutions and Challenges

    Get PDF
    Abstract-Providing various wireless connectivities for vehicles enables the communication between vehicles and their internal and external environments. Such a connected vehicle solution is expected to be the next frontier for automotive revolution and the key to the evolution to next generation intelligent transportation systems (ITSs). Moreover, connected vehicles are also the building blocks of emerging Internet of Vehicles (IoV). Extensive research activities and numerous industrial initiatives have paved the way for the coming era of connected vehicles. In this paper, we focus on wireless technologies and potential challenges to provide vehicle-to-x connectivity. In particular, we discuss the challenges and review the state-of-the-art wireless solutions for vehicle-to-sensor, vehicleto-vehicle, vehicle-to-Internet, and vehicle-to-road infrastructure connectivities. We also identify future research issues for building connected vehicles

    Opportunistic Spectrum Utilization for Vehicular Communication Networks

    Get PDF
    Recently, vehicular networks (VANETs), has become the key technology of the next-generation intelligent transportation systems (ITS). By incorporating wireless communication and networking capabilities into automobiles, information can be efficiently and reliably disseminated among vehicles, road side units, and infrastructure, which enables a number of novel applications enhancing the road safety and providing the drivers/passengers with an information-rich environment. With the development of mobile Internet, people want to enjoy the Internet access in vehicles just as anywhere else. This fact, along with the soaring number of connected vehicles and the emerging data-craving applications and services, has led to a problem of spectrum scarcity, as the current spectrum bands for VANETs are difficult to accommodate the increasing mobile data demands. In this thesis, we aim to solve this problem by utilizing extra spectrum bands, which are not originally allocated for vehicular communications. In this case, the spectrum usage is based on an opportunistic manner, where the spectrum is not available if the primary system is active, or the vehicle is outside the service coverage due to the high mobility. We will analyze the features of such opportunistic spectrum, and design efficient protocols to utilize the spectrum for VANETs. Firstly, the application of cognitive radio technologies in VANETs, termed CR-VANETs, is proposed and analyzed. In CR-VANETs, the channel availability is severely affected by the street patterns and the mobility features of vehicles. Therefore, we theoretically analyze the channel availability in urban scenario, and obtain its statistics. Based on the knowledge of channel availability, an efficient channel access scheme for CR-VANETs is then designed and evaluated. Secondly, using WiFi to deliver mobile data, named WiFi offloading, is employed to deliver the mobile data on the road, in order to relieve the burden of the cellular networks, and provide vehicular users with a cost-effective data pipe. Using queueing theory, we analyze the offloading performance with respect to the vehicle mobility model and the users' QoS preferences. Thirdly, we employ device-to-device (D2D) communications in VANETs to further improve the spectrum efficiency. In a vehicular D2D (V-D2D) underlaying cellular network, proximate vehicles can directly communicate with each other with a relatively small transmit power, rather than traversing the base station. Therefore, many current transmissions can co-exist on one spectrum resource block. By utilizing the spatial diversity, the spectrum utilization is greatly enhanced. We study the performance of the V-D2D underlaying cellular network, considering the vehicle mobility and the street pattern. We also investigate the impact of the preference of D2D/cellular mode on the interference and network throughput, and obtain the theoretical results. In summary, the analysis and schemes developed in this thesis are useful to understand the future VANETs with heterogeneous access technologies, and provide important guidelines for designing and deploying such networks

    The End of Traffic and the Future of Access: A Roadmap to the New Transport Landscape

    Get PDF
    In most industrialized countries, car travel per person has peaked and the automobile regime is showing considering signs of instability. As cities across the globe venture to find the best ways to allow people to get around amidst technological and other changes, many forces are taking hold — all of which suggest a new transport landscape. Our roadmap describes why this landscape is taking shape and prescribes policies informed by contextual awareness, clear thinking, and flexibility

    Toward a Bio-Inspired System Architecting Framework: Simulation of the Integration of Autonomous Bus Fleets & Alternative Fuel Infrastructures in Closed Sociotechnical Environments

    Get PDF
    Cities are set to become highly interconnected and coordinated environments composed of emerging technologies meant to alleviate or resolve some of the daunting issues of the 21st century such as rapid urbanization, resource scarcity, and excessive population demand in urban centers. These cybernetically-enabled built environments are expected to solve these complex problems through the use of technologies that incorporate sensors and other data collection means to fuse and understand large sums of data/information generated from other technologies and its human population. Many of these technologies will be pivotal assets in supporting and managing capabilities in various city sectors ranging from energy to healthcare. However, among these sectors, a significant amount of attention within the recent decade has been in the transportation sector due to the flood of new technological growth and cultivation, which is currently seeing extensive research, development, and even implementation of emerging technologies such as autonomous vehicles (AVs), the Internet of Things (IoT), alternative xxxvi fueling sources, clean propulsion technologies, cloud/edge computing, and many other technologies. Within the current body of knowledge, it is fairly well known how many of these emerging technologies will perform in isolation as stand-alone entities, but little is known about their performance when integrated into a transportation system with other emerging technologies and humans within the system organization. This merging of new age technologies and humans can make analyzing next generation transportation systems extremely complex to understand. Additionally, with new and alternative forms of technologies expected to come in the near-future, one can say that the quantity of technologies, especially in the smart city context, will consist of a continuously expanding array of technologies whose capabilities will increase with technological advancements, which can change the performance of a given system architecture. Therefore, the objective of this research is to understand the system architecture implications of integrating different alternative fueling infrastructures with autonomous bus (AB) fleets in the transportation system within a closed sociotechnical environment. By being able to understand the system architecture implications of alternative fueling infrastructures and AB fleets, this could provide performance-based input into a more sophisticated approach or framework which is proposed as a future work of this research

    Scaling Laws for Vehicular Networks

    Get PDF
    Equipping automobiles with wireless communications and networking capabilities is becoming the frontier in the evolution to the next generation intelligent transportation systems (ITS). By means of vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications, information generated by the vehicle-borne computer, vehicle control system, on-board sensors, or roadside infrastructure, can be effectively disseminated among vehicles/infrastructure in proximity or to vehicles/infrastructure multiple hops away, known as vehicular networks (VANETs), to enhance the situational awareness of vehicles and provide motorist/passengers with an information-rich travel environment. Scaling law for throughput capacity and delay in wireless networks has been considered as one of the most fundamental issues, which characterizes the trend of throughput/delay behavior when the network size increases. The study of scaling laws can lead to a better understanding of intrinsic properties of wireless networks and theoretical guidance on network design and deployment. Moreover, the results could also be applied to predict network performance, especially for the large-scale vehicular networks. However, map-restricted mobility and spatio-temporal dynamics of vehicle density dramatically complicate scaling laws studies for VANETs. As an effort to lay a scientific foundation of vehicular networking, my thesis investigates capacity scaling laws for vehicular networks with and without infrastructure, respectively. Firstly, the thesis studies scaling law of throughput capacity and end-to-end delay for a social-proximity vehicular network, where each vehicle has a restricted mobility region around a specific social spot and services are delivered in a store-carry-and-forward paradigm. It has been shown that although the throughput and delay may degrade in a high vehicle density area, it is still possible to achieve almost constant scaling for per vehicle throughput and end-to-end delay. Secondly, in addition to pure ad hoc vehicular networks, the thesis derives the capacity scaling laws for networks with wireless infrastructure, where services are delivered uniformly from infrastructure to all vehicles in the network. The V2V communication is also required to relay the downlink traffic to the vehicles outside the coverage of infrastructure. Three kinds of infrastructures have been considered, i.e., cellular base stations, wireless mesh backbones (a network of mesh nodes, including one mesh gateway), and roadside access points. The downlink capacity scaling is derived for each kind of infrastructure. Considering that the deployment/operation costs of different infrastructure are highly variable, the capacity-cost tradeoffs of different deployments are examined. The results from the thesis demonstrate the feasibility of deploying non-cellular infrastructure for supporting high-bandwidth vehicular applications. Thirdly, the fundamental impact of traffic signals at road intersection on drive-thru Internet access is particularly studied. The thesis analyzes the time-average throughput capacity of a typical vehicle driving through randomly deployed roadside Wi-Fi networks. Interestingly, we show a significant throughput gain for vehicles stopping at intersections due to red signals. The results provide a quick and efficient way of determining the Wi-Fi deployment scale according to required quality of services. In summary, the analysis developed and the scaling laws derived in the thesis provide should be very useful for understanding the fundamental performance of vehicular networks

    Performance Analysis of Drive-thru Internet Access

    Get PDF
    Drive-thru Internet is considered to be an important solution to provide Internet access for vehicles. By deploying cost-effective and high bandwidth roadside WiFi networks, a vehicle can upload/download considerable data when drive through the coverage area, whereby a myriad of automotive applications can be employed, such as intelligent transportation system, infotainment applications like video/audio streaming, webpage browsing, etc. However, the high mobility of vehicles leads to the intermittent connection between a vehicle and roadside Access Points (APs), which would cause the Internet access delay and throughput degradation. In this thesis, we propose comprehensive modeling and analysis for the drive-thru Internet access performance considering the overhead of the access procedure, which includes the steps of network detection, user authentication and network parameters assignment. We also consider the situation that a vehicle drives through multiple roadside APs' coverage areas and evaluate the performance of traffic offloading from cellular networks to roadside WiFi networks. In specific, firstly, we develop an analytical model to study the dependency of the drive-thru Internet access delay with different factors, i.e., the wireless channel conditions, the number of co-associated WiFi clients, and the employed authentication mechanism, such as the WiFi Protected Access II (WPA2)-Pre-Shared Key (PSK) and the WPA2-802.1X modes. The access procedure is modeled as a discrete Markov chain to calculate the time to exchange all management frames and to evaluate the Internet access delay. The accuracy of the analytical model is studied via computer simulations, as well as experimental testing using Commercial Off-The-Shelf (COTS) WiFi products, together with a channel emulator that emulates the wireless channel conditions in a vehicular environment. Simulation and experiment results validate the accuracy of the proposed analytical model which provides useful guidelines for future selection/development of suitable WiFi network access schemes in a vehicular environment. Secondly, we take a further step to analyze the throughput performance of the drive-thru Internet access. The mobility of the vehicle is modeled as the transition of a series of zones in the coverage area, which is defined based on the relationship between the WiFi link rate and the distance of the AP and the vehicle. A three dimensional (3D) Markov model is proposed to combine the zone transition process and the transmission of the management frames and calculate the average throughput under conditions of different numbers of co-associated WiFi clients, channel qualities and different access protocols. Thirdly, we consider that when the vehicle drives through multiple roadside WiFi networks, and employ the Vehicle-to-Vehicle (V2V) assisted WiFi offloading mechanism, where nearby vehicles that associated to different APs can use their idle WiFi resource to offload part of peer's data traffic. The offloading performance is calculated by modeling the intermittent WiFi transmission as an M/G/1/K queueing process, and the performance gain of the V2V assistance is also analyzed. In summary, the research works in this thesis should provide guidelines for future research and development of drive-thru Internet
    • …
    corecore