1,376 research outputs found

    A survey on uninhabited underwater vehicles (UUV)

    Get PDF
    ASME Early Career Technical Conference, ASME ECTC, October 2-3, 2009, Tuscaloosa, Alabama, USAThis work presents the initiation of our underwater robotics research which will be focused on underwater vehicle-manipulator systems. Our aim is to build an underwater vehicle with a robotic manipulator which has a robust system and also can compensate itself under the influence of the hydrodynamic effects. In this paper, overview of the existing underwater vehicle systems, thruster designs, their dynamic models and control architectures are given. The purpose and results of the existing methods in underwater robotics are investigated

    The effect of surface treatment on composite interface, tensile properties and water absorption of suger palm fiber/polypropylene composites

    Get PDF
    The rising concern towards environmental issues besides the requirement for more flexible polymer-based material has led to increasing of interest in studying about green composite. Sugar palm fiber (SPF) is a versatile fiber plant employed with wide range of application such as in automotive, packaging and buildings construction. This research was aimed to study the effect of surface treatment on composite interface, tensile properties and water absorption of sugar palm fiber/polypropylene (SPFPP) composite by using different surface treatments such as silane (Si), atmospheric glow discharge plasma (Agd) and maleic anhydride (Ma). Silane treatment was carried out by using immersion method, the Agd plasma was conducted using polymerization and lastly polypropylene grafted maleic anhydride by using melting approach. The SPFPP composite was prepared by using injection moulding with fiber content var­ied from 10-30wt%. The effect of interface enhancement on morphology, mechanical properties and water uptakes of SPFPP composites were then investigated by using FfIR, FESEM, tensile test and water absorption test. Overall, the outcome shows that aJl types of surface treatments had improved the interface of SPFPP composite, thus improving its tensile properties compared to the benchmark untreated SPFPP (Ut­SPFPP) composites and polypropylene. The 30wt% Ma-SPFPP composite shows the highest improvement in tensile properties with 58% and 27% increase in the respective Young's Modulus and tensile strength value compared to Ut-SPFPP composite, while 10wt% Ma-SPFPP composite shows the smallest reduction in elongation compared to Neat PP. On the other hand, the 30wt% Si-SPFPP composite shows the lowest water absorption with 20% reduction respective to Ut-SPFPP composite. In conclusion, the surface treatments have proven succesfull in enhancing the natural fiber-polymer in­terface and improve the tensile properties of SPFPP composite with Ma-SPFPP shows the highest improvement, foJlowed by Agd-SPFPP and Si-SPFPP composites

    The effect of surface treatment on composite interface, tensile properties and water absorption of suger palm fiber/polypropylene composites

    Get PDF
    The rising concern towards environmental issues besides the requirement for more flexible polymer-based material has led to increasing of interest in studying about green composite. Sugar palm fiber (SPF) is a versatile fiber plant employed with wide range of application such as in automotive, packaging and buildings construction. This research was aimed to study the effect of surface treatment on composite interface, tensile properties and water absorption of sugar palm fiber/polypropylene (SPFPP) composite by using different surface treatments such as silane (Si), atmospheric glow discharge plasma (Agd) and maleic anhydride (Ma). Silane treatment was carried out by using immersion method, the Agd plasma was conducted using polymerization and lastly polypropylene grafted maleic anhydride by using melting approach. The SPFPP composite was prepared by using injection moulding with fiber content var­ied from 10-30wt%. The effect of interface enhancement on morphology, mechanical properties and water uptakes of SPFPP composites were then investigated by using FfIR, FESEM, tensile test and water absorption test. Overall, the outcome shows that aJl types of surface treatments had improved the interface of SPFPP composite, thus improving its tensile properties compared to the benchmark untreated SPFPP (Ut­SPFPP) composites and polypropylene. The 30wt% Ma-SPFPP composite shows the highest improvement in tensile properties with 58% and 27% increase in the respective Young's Modulus and tensile strength value compared to Ut-SPFPP composite, while 10wt% Ma-SPFPP composite shows the smallest reduction in elongation compared to Neat PP. On the other hand, the 30wt% Si-SPFPP composite shows the lowest water absorption with 20% reduction respective to Ut-SPFPP composite. In conclusion, the surface treatments have proven succesfull in enhancing the natural fiber-polymer in­terface and improve the tensile properties of SPFPP composite with Ma-SPFPP shows the highest improvement, foJlowed by Agd-SPFPP and Si-SPFPP composites

    Autonomous subsea intervention (SEAVENTION)

    Get PDF
    This paper presents the main results and latest developments in a 4-year project called autonomous subsea intervention (SEAVENTION). In the project we have developed new methods for autonomous inspection, maintenance and repair (IMR) in subsea oil and gas operations with Unmanned Underwater Vehicles (UUVs). The results are also relevant for offshore wind, aquaculture and other industries. We discuss the trends and status for UUV-based IMR in the oil and gas industry and provide an overview of the state of the art in intervention with UUVs. We also present a 3-level taxonomy for UUV autonomy: mission-level, task-level and vehicle-level. To achieve robust 6D underwater pose estimation of objects for UUV intervention, we have developed marker-less approaches with input from 2D and 3D cameras, as well as marker-based approaches with associated uncertainty. We have carried out experiments with varying turbidity to evaluate full 6D pose estimates in challenging conditions. We have also devised a sensor autocalibration method for UUV localization. For intervention, we have developed methods for autonomous underwater grasping and a novel vision-based distance estimator. For high-level task planning, we have evaluated two frameworks for automated planning and acting (AI planning). We have implemented AI planning for subsea inspection scenarios which have been analyzed and formulated in collaboration with the industry partners. One of the frameworks, called T-REX demonstrates a reactive behavior to the dynamic and potentially uncertain nature of subsea operations. We have also presented an architecture for comparing and choosing between mission plans when new mission goals are introduced.publishedVersio

    Task-space dynamic control of underwater robots

    Get PDF
    This thesis is concerned with the control aspects for underwater tasks performed by marine robots. The mathematical models of an underwater vehicle and an underwater vehicle with an onboard manipulator are discussed together with their associated properties. The task-space regulation problem for an underwater vehicle is addressed where the desired target is commonly specified as a point. A new control technique is proposed where the multiple targets are defined as sub-regions. A fuzzy technique is used to handle these multiple sub-region criteria effectively. Due to the unknown gravitational and buoyancy forces, an adaptive term is adopted in the proposed controller. An extension to a region boundary-based control law is then proposed for an underwater vehicle to illustrate the flexibility of the region reaching concept. In this novel controller, a desired target is defined as a boundary instead of a point or region. For a mapping of the uncertain restoring forces, a least-squares estimation algorithm and the inverse Jacobian matrix are utilised in the adaptive control law. To realise a new tracking control concept for a kinematically redundant robot, subregion tracking control schemes with a sub-tasks objective are developed for a UVMS. In this concept, the desired objective is specified as a moving sub-region instead of a trajectory. In addition, due to the system being kinematically redundant, the controller also enables the use of self-motion of the system to perform sub-tasks (drag minimisation, obstacle avoidance, manipulability and avoidance of mechanical joint limits)

    Review on auto-depth control system for an unmanned underwater remotely operated vehicle (ROV) using intelligent controller

    Get PDF
    This paper presents a review of auto-depth control system for an Unmanned Underwater Remotely operated Vehicle (ROV), focusing on the Artificial Intelligent Controller Techniques. Specifically, Fuzzy Logic Controller (FLC) is utilized in auto-depth control system for the ROV. This review covered recently published documents for auto-depth control of an Unmanned Underwater Vehicle (UUV). This paper also describes the control issues in UUV especially for the ROV, which has inspired the authors to develop a new technique for auto-depth control of the ROV, called the SIFLC. This technique was the outcome of an investigation and tuning of two parameters, namely the break point and slope for the piecewise linear or slope for the linear approximation. Hardware comparison of the same concepts of ROV design was also discussed. The ROV design is for smallscale, open frame and lower speed. The review on auto-depth control system for ROV, provides insights for readers to design new techniques and algorithms for auto-depth control

    Hydrodynamic Modelling for a Transportation System of Two Unmanned Underwater Vehicles: Semi-Empirical, Numerical and Experimental Analyses

    Get PDF
    Underwater transportation is an essential approach for scientific exploration, maritime construction and military operations. Determining the hydrodynamic coefficients for a complex underwater transportation system comprising multiple vehicles is challenging. Here, the suitability of a quick and less costly semi-empirical approach to obtain the hydrodynamic coefficients for a complex transportation system comprising two Unmanned Underwater Vehicles (UUVs) is investigated, where the interaction effects between UUVs are assumed to be negligible. The drag results were verified by Computational Fluid Dynamics (CFD) analysis at the steady state. The semi-empirical results agree with CFD in heave and sway; however, they were overpredicted in surge due to ignoring the wake effects. Furthermore, experiments were performed for the validation of the time-domain motion simulations with semi-empirical and CFD results. The simulations which were performed with the CFD drags were close to the experiments. The semi-empirical approach could be relied on once a correction parameter is included to account for the interactive effect between multiple UUVs. Overall, this work makes a contribution by deriving a semi-empirical approach for the dynamic and controlling system of dual UUVs, with CFD and experiments applied to ascertain its accuracy and potential improvement

    A Frequency-Limited Adaptive Controller for Underwater Vehicle-Manipulator Systems under Large Wave Disturbances

    Full text link
    © 2018 IEEE. Standard adaptive control approaches may not be able to sufficiently stabilize underwater vehicle-manipulator systems (UVMSs) when wave disturbances are large, leading to high-frequency oscillations of large amplitude in its dynamic model parameters. Such parameters bring about undesired oscillations in the vehicle body control and state. This paper extends a frequency-limited adaptive control approach to the vehicle body. An auxiliary model is obtained from the approximated model through a low-pass filter and is used to reduce the problematic oscillations. The resultant stable vehicle body is a necessary premise for successful end-effector tracking. In addition, this paper proposes a sufficient condition of the control gains for guaranteed asymptotical stability of the controlled robotic system. Numerical simulations have demonstrated the effectiveness of the presented approach, compared to the standard adaptive control

    3D locomotion biomimetic robot fish with haptic feedback

    Full text link
    This thesis developed a biomimetic robot fish and built a novel haptic robot fish system based on the kinematic modelling and three-dimentional computational fluid dynamic (CFD) hydrodynamic analysis. The most important contribution is the successful CFD simulation of the robot fish, supporting users in understanding the hydrodynamic properties around it
    corecore