3 research outputs found

    Electrical Characterization and Detection of Blood Cells and Stones in Urine

    Get PDF
    Urine contains an immense amount of information related to its physical, chemical, and biological components; hence, it is a promising tool in detecting various diseases. Available methods for detecting hematuria (blood in the urine) are not accurate. Results are influenced by many factors, such as, health and vitals of the patients, settings of the equipment and laboratories, which leads to false positive or false negative outputs. This necessitates the development of new, accurate, and easy-access methods that save time and effort. This study demonstrates a label-free and accurate method for detecting the presence of red and white blood cells (RBCs and WBCs) in urine by measuring the changes in the dielectric properties of urine upon increasing concentrations of both cell types. The current method could detect changes in the electrical properties of fresh urine over a short time interval, making this method suitable for detecting changes that cannot be recognized by conventional methods. Correcting these changes enabled the detection of a minimum cell concentration of 10² RBCs per ml which is not possible by conventional methods used in the labs except for the semi-quantitative method that can detect 50 RBCs per ml, but it is a lengthy and involved procedure, not suitable for high volume labs. This ability to detect a very small amount of both types of cells makes the proposed technique an attractive tool for detecting hematuria, the presence of which is indicative of problems in the excretory system. Furthermore, urolithiasis is also a very common problem worldwide, affecting adults, kids, and even animals. Calcium oxalate is the major constituent of urinary tract stones in individuals, primarily due to the consumption of high oxalate foods. The occurrence of urinary oxalate occurs by endogenous synthesis, especially in the upper urinary tract. In a normal, healthy individual, the excretion of oxalate ranges from 10 to 45 mg/day, depending on the age and gender, but the risk of stone formation starts at 25 mg/day depending on the health history of the individual. This study also addresses the detection of the presence of calcium oxalate in urine following the same label-free approach. This can be done by measuring the changes in the dielectric properties of urine with increasing concentrations of calcium oxalate hydrate (CaC₂O₄.H₂O). The current method could detect dynamic changes in the electrical properties of urine over a time interval in samples containing calcium oxalate hydrate even at a concentration as low as 10 μg/mL of urine, making this method suitable for detecting changes that cannot be recognized by conventional methods. The ability to detect a very small amount of stones makes it an attractive tool for detecting and quantifying stones in kidneys. Using a non-invasive method which also works as a precautionary measure for early detection of some severe ailments, holds a good scope. It forms the basis of the cytological examinations and molecular assays for the diagnosis of several diseases. This method can be considered a point-of-care test because the results can be instantaneously shared with the members of the medical team. Based on these results, it is anticipated that the present approach to be a starting point towards establishing the foundation for label-free electrical-based identification and quantification of an unlimited number of nano-sized particles

    Charge Transfer in Deoxyribonucleic Acid (DNA): Static Disorder, Dynamic Fluctuations and Complex Kinetic.

    Get PDF
    The fact that loosely bonded DNA bases could tolerate large structural fluctuations, form a dissipative environment for a charge traveling through the DNA. Nonlinear stochastic nature of structural fluctuations facilitates rich charge dynamics in DNA. We study the complex charge dynamics by solving a nonlinear, stochastic, coupled system of differential equations. Charge transfer between donor and acceptor in DNA occurs via different mechanisms depending on the distance between donor and acceptor. It changes from tunneling regime to a polaron assisted hopping regime depending on the donor-acceptor separation. Also we found that charge transport strongly depends on the feasibility of polaron formation. Hence it has complex dependence on temperature and charge-vibrations coupling strength. Mismatched base pairs, such as different conformations of the G・A mispair, cause only minor structural changes in the host DNA molecule, thereby making mispair recognition an arduous task. Electron transport in DNA that depends strongly on the hopping transfer integrals between the nearest base pairs, which in turn are affected by the presence of a mispair, might be an attractive approach in this regard. I report here on our investigations, via the I –V characteristics, of the effect of a mispair on the electrical properties of homogeneous and generic DNA molecules. The I –V characteristics of DNA were studied numerically within the double-stranded tight-binding model. The parameters of the tight-binding model, such as the transfer integrals and on-site energies, are determined from first-principles calculations. The changes in electrical current through the DNA chain due to the presence of a mispair depend on the conformation of the G・A mispair and are appreciable for DNA consisting of up to 90 base pairs. For homogeneous DNA sequences the current through DNA is suppressed and the strongest suppression is realized for the G(anti)・A(syn) conformation of the G・A mispair. For inhomogeneous (generic) DNA molecules, the mispair result can be either suppression or an enhancement of the current, depending on the type of mispairs and actual DNA sequence

    Modeling of the Electrical Conductivity of DNA

    No full text
    corecore