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CHARGE TRANSFER IN DEOXYRIBONUCLEIC ACID (DNA): STATIC DISORDER, 

DYNAMIC FLUCTUATIONS AND COMPLEX KINETIC.   

 

by 

 

NERANJAN S. EDIRISINGHE PATHIRANNEHELAGE 
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ABSTRACT 

The fact that loosely bonded DNA bases could tolerate large structural fluctuations, form a 

dissipative environment for a charge traveling through the DNA.  Nonlinear stochastic nature of 

structural fluctuations facilitates rich charge dynamics in DNA. We study the complex charge 

dynamics by solving a nonlinear, stochastic, coupled system of differential equations. Charge 

transfer between donor and acceptor in DNA occurs via different mechanisms depending on the 

distance between donor and acceptor. It changes from tunneling regime to a polaron assisted 

hopping regime depending on the donor-acceptor separation. Also we found that charge transport 

strongly depends on the feasibility of polaron formation. Hence it has complex dependence on 



 
 

temperature and charge-vibrations coupling strength. Mismatched base pairs, such as different 

conformations of the G・A mispair, cause only minor structural changes in the host DNA 

molecule, thereby making mispair recognition an arduous task. Electron transport in DNA that 

depends strongly on the hopping transfer integrals between the nearest base pairs, which in turn 

are affected by the presence of a mispair, might be an attractive approach in this regard. I report 

here on our investigations, via the I –V characteristics, of the effect of a mispair on the electrical 

properties of homogeneous and generic DNA molecules. The I –V characteristics of DNA were 

studied numerically within the double-stranded tight-binding model. The parameters of the tight-

binding model, such as the transfer integrals and on-site energies, are determined from first-

principles calculations. The changes in electrical current through the DNA chain due to the 

presence of a mispair depend on the conformation of the G・A mispair and are appreciable for 

DNA consisting of up to 90 base pairs. For homogeneous DNA sequences the current through 

DNA is suppressed and the strongest suppression is realized for the G(anti)・A(syn) 

conformation of the G・A mispair. For inhomogeneous (generic) DNA molecules, the mispair 

result can be either suppression or an enhancement of the current, depending on the type of 

mispairs and actual DNA sequence. 
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hamiltonian, Stochastic differential equations, Polaron, Parallel and 

distributed computing, Tight binding model 

 

 



 
 

 

CHARGE TRANSFER IN DEOXYRIBONUCLEIC ACID (DNA): STATIC DISORDER, 

DYNAMIC FLUCTUATIONS AND COMPLEX KINETIC.   

 

 

 

by 

 

 

NERANJAN S. EDIRISINGHE PATHIRANNEHELAGE 

 

 

 

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of 

Doctor of Philosophy 

in the College of Arts and Sciences 

Georgia State University 

2010 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright by 

Neranjan Suranga Edirisinghe Pathirannehelage 

2010 

 



 
 

CHARGE TRANSFER IN DEOXYRIBONUCLEIC ACID (DNA): STATIC DISORDER, 

DYNAMIC FLUCTUATIONS AND COMPLEX KINETIC. 

 

by 

 

NERANJAN S. EDIRISINGHE PATHIRANNEHELAGE 

 

Committee Chair:              Vadym Apalkov 

 

Committee:     Gennady Cymbalyuk 

 Mukesh Dhamala 

 Brian Thoms 

Donald Hamelberg 

Electronic Version Approved: 

Office of Graduate Studies 

College of Arts and Sciences 

Georgia State University 

December 2010



 

iv 
 

DEDICATION 

To my ever loving parents, wonderful wife Nileesha and my sweet angel Nethni.



 

v 
 

ACKNOWLEDGMENTS 

My gratitude goes to my parents for allowing me to become me. Humble admiration for my first 

teacher who thought me how to distinguish right and wrong, some thirty years ago. Reverence 

for the spiritual leaders who thought to move forward until success irrespective of the obstacles. 

Heartiest appreciation for my advisor Dr. Vadym Apalkov for his guidance, endurance and all 

the support during my time at Georgia State University.  Special thanks to Dr. Jaroslav Klc at 

GSU End User Tools Engineering for his precious support during the technical difficulties and 

Dr. Gennady Cymbalyuk for his constructive advice in intricate periods.  I deeply appreciate the 

graduate committee members, Dr. Gennady Cymbalyuk, Dr. Mukesh Dhamala, Dr. Brian Thoms 

and Dr. Donald Hamelberg. I would also like to thank all of the faculty and staff and friends in 

the Georgia State University Department of Physics & Astronomy who have helped me along 

with my academic career. Finally many thanks to my wife Nileesha and daughter Nethni for their 

patience, support and all the love that one could ever have.  

 

 

 

 

 



vi 
 

TABLE OF CONTENTS 

 

ACKNOWLEDGMENTS…………………………………………………………………..…… v 

LIST OF TABLES ……………………………………………………………………………… ix 

LIST OF FIGURS …………………………………………………………………………..…… x 

Chapter 1. The Fascinating Helical: The Deoxyribonucleic acid ............................................... 1 

Section 1.01 Structure of the DNA ............................................................................................ 2 

Section 1.02 Electronic structure ................................................................................................ 4 

Chapter 2. DNA modeling .......................................................................................................... 8 

Section 2.01 Physical Structure .................................................................................................. 8 

(a) Peyrard & Bishop Model .............................................................................................. 8 

(b) Nonlinear stretching in DNA ...................................................................................... 12 

(c) Beyond Peyrard & Bishop Model ............................................................................... 12 

Section 2.02 Electronic Structure ............................................................................................. 15 

(a) Tight binding model ................................................................................................... 17 

Section 2.03 Towards conducting DNA: .............................................................................. 20 

Chapter 3. I-V Characteristic of DNA ...................................................................................... 22 

Section 3.01 Current through DNA connected to two gold electrodes: .................................... 22 

Section 3.02 Charge transfer integrals ...................................................................................... 23 

Section 3.03 Non-equilibrium green function approach ........................................................... 25 

Section 3.04 A qualitative overview on charge transport through DNA .................................. 28 

Section 3.05 What determines the current through the DNA .................................................... 29 

Section 3.06 Homogeneous poly (G) – poly (C) DNA ............................................................. 32 



 

vii 
 

Section 3.07 Effect of leads on IV characteristic of DNA ........................................................ 33 

Section 3.08 A mismatch base pair: Defect in the DNA ........................................................... 35 

Section 3.09 Inhomogeneous DNA Strands ............................................................................. 43 

Section 3.10 Effect of Temperature on I-V Characteristic of DNA ......................................... 49 

Chapter 4. Charge transport between Donor-Acceptor ............................................................ 54 

Section 4.01 Structural Dynamics and Charge Transport ........................................................ 54 

(a) How does a charge change the DNA .......................................................................... 56 

(b) Donor-Acceptor System ............................................................................................. 58 

(c) Can DNA trap charge? ................................................................................................ 59 

(d) Modeling temperature fluctuations ............................................................................. 63 

(e) Different mechanisms of escape in DNA ................................................................... 66 

(f) Polaron assisted charge hopping ................................................................................. 67 

(g) Effect of charge lattice coupling on charge transfer ................................................... 69 

Chapter 5. Conclusions: ............................................................................................................ 77 

Chapter  6. Future Directions ..................................................................................................... 80 

(a) Charge transport through DNA: Phase incoherent case ............................................. 80 

(b) Environmental influence on charge transport properties in DNA .............................. 80 

(c) Parameters for mean field computations .................................................................... 80 

(d) All atom QM/MM simulations to study polaron formation in DNA .......................... 81 

References. …. ............................................................................................................................ 82 

Appendix A. Stochastic Differential Equations ............................................................................ 91 

Appendix B. Introduction to first principle calculations: ............................................................. 94 

Section B.01 Kohan and Sham Density function theory (DFT) ............................................ 95 



 

viii 
 

Section B.02 Local density approximation (LDA) ................................................................... 97 

Section B.03 Crystal lattice and Bloch Theorem ...................................................................... 97 

Section B.04 Beyond plane waves: Basis functions .................................................................. 98 

Section B.05 Minimum basis set ............................................................................................... 99 

Section B.06 Basis set selection .............................................................................................. 100 

Appendix C. Parameters for tight binding formulism ................................................................ 103 

Section C.01 Fragmental Molecular orbital approach ......................................................... 103 

Section C.02 Transfer integral Computation ....................................................................... 104 

Appendix D. Parallel and Distributed Computing ...................................................................... 106 

(a) Inputs ........................................................................................................................ 106 

(b) Data layout ................................................................................................................ 107 

(c) Parallel Processing .................................................................................................... 109 

(d) Output ....................................................................................................................... 113 

(e) Performance considerations ...................................................................................... 113 

Appendix E. Software ................................................................................................................ 115 

(a) Charge transport through DNA ................................................................................ 115 

(b) IV Characteristic of DNA ......................................................................................... 189 

 

 



ix 
 

LIST OF TABLES  

Table 1 : Charge transfer integrals between DNA regular Watson-Crick base pairs............ 
 

24 

Table 4 : Current change for different inhomogeneous sequences.  
 

47 

Table 3 : Charge transfer integral for homogeneous DNA strand with mispair……………. 
 

38 

Table 4 : Current change for different inhomogeneous sequences........................................ 
 

47 

Table 5 :  Onsite energy for isolated DNA WC base pairs..................................................... 
 

60 

Table 6 : 3-21 G basis set for C…………………………………………………………… 
 

101 

 

 

  



 

x 
 

LIST OF FIGURES 

 

Figure 1: Helical Structure of DNA: ............................................................................................... 3 

Figure 2: Structural arrangement of DNA base pairs: .................................................................... 5 

Figure 3: DNA bases:. ..................................................................................................................... 6 

Figure 4 : Hydrogen bonding between DNA WC bases:. ............................................................... 7 

Figure 5 : Bishop model of DNA: ................................................................................................. 10 

Figure 6 :  the schematic diagram of a DNA. ............................................................................... 15 

Figure 7 : Tight binding formulation:   ......................................................................................... 17 

Figure 8 : Course graining of DNA: ............................................................................................. 19 

Figure 9 : Tight binding formulation for homogenous DNA base pairs. ...................................... 23 

Figure 10 : Another interpretation to transfer integrals ................................................................ 25 

Figure 11 : Schematic diagram of DNA connected to the gold contacts. ..................................... 28 

Figure 12 : I-V characteristic of homogeneous poly(G)-poly(C) DNA molecule. ....................... 30 

Figure 13 : Current through the DNA depends on its Eigen function.. ........................................ 31 

Figure 14 : Dependence of I-V characteristic on the transfer integral : ........................................ 32 

Figure 15 : Schematic of DNA energy band broadening due to coupling to the contact .............. 33 

Figure 16 : Current as a function of the coupling between DNA and leads. ................................ 34 

Figure 17 : Transmission as a function of coupling between DNA and leads. ............................. 35 

Figure 18 : I–V characteristic of homogeneous poly(G)–poly(C) DNA molecule with different 

types of base pairs in the middle of the molecule: ........................................................................ 40 

Figure 19 : The change, ∆I, of the current through DNA as a function of the length of DNA ..... 42 



 

xi 
 

Figure 20 : The relative change of the current , δI =  /I, as a function of the length of DNA 

containing a (a) G(anti)・A(anti) or a (b) G(anti)・A(syn) mispair. ........................................... 43 

Figure 21 : The relative change , δI =  /I , of the current through a homogeneous poly(G)–

poly(C) DNA versus the position of the mispair: ......................................................................... 44 

Figure 22 : Probability distribution of current with mispair: ........................................................ 47 

Figure 23 : effect of the temperature: Homogeneous poly(G)-poly(C) DNA strand .................... 50 

Figure 24: Temperature dependence of the Current: a) Homogenous DNA strands b) 

Inhomogeneous ............................................................................................................................. 51 

Figure 25: Distribution function for inhomogeneous DNA strands with mismatched base pairs. 52 

Figure 26 : the change in the twist angle with the introduction of an electron into the system. ... 58 

Figure 27 : evolution of the electron density with time. ............................................................... 59 

Figure 28 : the y displacement as a function of time.. .................................................................. 60 

Figure 29 : A schematic representation of the energy profile in the short DNA. ......................... 61 

Figure 30 : Charge transport in quantum systems: ....................................................................... 63 

Figure 31 : the finite size effect on the escape time. ..................................................................... 64 

Figure 32 : System dynamics in the phase space.. ........................................................................ 66 

Figure 33 : dependence of escape time as a function of the donor acceptor separation at T= 60 K

 ....................................................................................................................................................... 67 

Figure 34 : Polaron formation and polaron assisted escape of trapped hole ................................. 68 

Figure 35 : Polaron formation and Polaron assisted escape .......................................................... 69 

Figure 36 : Polaron assisted hopping ............................................................................................ 70 

Figure 37 : escapes time as a function of temperature and charge-phonon coupling. .................. 72 

Figure 38 : Change in onsite energy at the donor site due to polaron formation .......................... 73 



 

xii 
 

Figure 39: Average energy change on the bridge due to polaron formation ................................ 74 

Figure 40 : Resultant change in the height of the trap due to changes in the bridge energy and the 

onsite energy due to polaron ......................................................................................................... 75 

Figure 41 : Schematic illustration of a system architecture of a computer memory hierarchy ... 107 

Figure 42 : Array of structures Vs Structure of arrays. ............................................................... 109 

Figure 43 : Data distribution pattern for MPI parallel programming. ......................................... 113 



1 
 

Chapter 1. The Fascinating Helical: The Deoxyribonucleic acid 
 

Mammalian brain, the most fascinating creation existing in nature has attained an unattainable 

computational power at very low power dissipations. In-spite of modern super computers has 

achieved peta-flop processing power; it is far away from achieving the supreme state of the 

human brain. As an example, power consumption and dissipation in such system is a major 

problem. Nano scale electronic has gained tremendous attention in recent years owing to 

increasing demand for the speed and power efficiency of modern electronics. Recent 

developments in medical technologies also demand for the smaller and smaller materials. But 

development of structures of size of one billionth of a meter is a challenging task. On the other 

hand, if some material possesses self assembly, it would be certainly preferred as a candidate for 

nano scale materials. In this prospective Deoxyribonucleic acid (DNA), the signature fingerprint 

which carries genetic code of organisms from generation to generation, has maintained its 

leading candidacy as a material for nano electronic devices. Nevertheless its properties have been 

a subject of wildly debated. Formulation of suitable theoretical model has become an important 

requirement towards development of DNA electronics and in general, to understand the charge 

transport properties of DNA. The structural complexity imposes computational limitation 

towards using highly detail models such as molecular dynamics and abinito methods whereas 

coarse-grained models also needs to be developed in such a way it retains all necessary 

information facilitating realistic description. In this dissertation I address the question of 

developing minimal coarse-grained model which represents highly sophisticated DNA dimmers.  
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Section 1.01 Structure of the DNA 
 

Even a half a century after the discovery of its helical structure by Watson and Crick  

(Watson J.D. and Crick 1953, Wilkins M.H.F. 1953) with the aid of crystallographic images 

made by Franklin and Gosling (Franklin R. and Gosling 1953) and three decades from first 

postulation of electrical conductivity along the chain by Eley and Spivey (Eley and Spivey 

1962), DNA remains a fascinating research subject, due to its highly complex structural 

dynamics and interactions with environments. As illustrated in Figure 1, DNA is a helical 

structure made out of two separate helixes. In principle this structure can be partitioned into two 

main regions, the backbone; the outer skeleton of the DNA, and the inner conducting channel, 

made out of well stacked base-pairs. The backbone of the DNA strand is made from alternating 

phosphate and sugar residues. The sugar in DNA is 2-deoxyribose, which is a five-carbon sugar 

(pentose). Two adjacent sugar residues in a single strand DNA are connected by phosphate 

groups by phosphodiester bonds between the third and fifth carbon atoms of adjacent sugar rings 

(Figure 2). The lone electron pair at the phosphate group makes the DNA a negatively charged 

entity. Each sugar residue is connected to the third residue called DNA bases, which can either 

be Adenine, Cytosine, Guanine or Thymine (Figure 3). These four bases are classified into two 

broad categories based on their structural composition. Adenine and Guanine are composed of 

fused five- and six-member heterocyclic aromatic rings called purines, while Cytosine and 

Thymine are composed of six-member rings called pyrimidine. The complementary arrangement 

in the aromatic ring favors specific self assembly patterns between Cytosine (C), Guanine (G) 

and Adenine (A), Thymine (T).  The strength of the bonding between a given base pair is 

determined by the number of hydrogen bonds present in-between participating bases. Cytosine 
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(C) and Guanine (G) share three hydrogen bonds whereas Adenine (A) and Thymine (T) share 

only two (Figure 4). 

 

 

Figure 1: Helical Structure of DNA: DNA helical consists of two single strands DNA. Two strands are anti parallel 
to each other and have complimentary bases.  Complementary bases are connected to their complements by 

hydrogen bonds. 
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Weak; yet sufficiently strong hydrogen bonds hold two single strand DNAs to form a double 

strand DNA which exists in living organisms. This special arrangement makes double strand 

DNA structure a three dimensional helical with approximately 10 base pairs for complete 

revolution. The thickness of the double strand is around 20 Å, whereas the distance between two 

adjacent base pairs is around 3.4 Å (Barbi, Cocco and Peyrard 1999, Smith, Cui and Bustamante 

1996). Due to the specific directionality of the single strand DNA and the selective 

complementary hydrogen bonds, two stands in the double strand DNA is anti parallel to each 

other.  Unlike solid crystals, the soft skeleton of the DNA is vulnerable to large amplitude 

oscillations due to thermal forces. 

Section 1.02 Electronic structure 
 

The fact, that DNA base pairs are aromatic entities, i.e. organic compounds containing 

planer, unsaturated, benzene type ring structure, shoreup the speculation that DNA might support 

long distance charge transport through well delocalized π orbital. The pz orbital of the DNA base 

pairs, which is perpendicular to the base pair plane, could form rather delocalized π bonding and 

π* anti-bonding molecular orbital. The energy gap between π bonding and π* anti-bonding 

molecular orbitals is around 4 eV (Helgren E. et al. 2001).  However unlike crystalline 

structures, the biological DNA is not a periodic entity. This limits the existence of extended 

bands throughout the DNA. On the other hand largest ionization potential difference between 

two isolated base pairs, which is observed between Guanine and Thymine, is about 0.6 eV. This 

value exceeds the estimated coupling between highest occupied molecular orbital and lowest 

unoccupied molecular orbital of neighboring base pairs, leading to expectation of Anderson 

localization (Anderson 1958) .  
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The strength of the transfer integral is determined by the extent of pz orbital overlap between 

neighboring base pairs.   

 

 

 

Figure 2: Structural arrangement of DNA base pairs: Each base in the single strand DNA is connected to a sugar 
group at 5th carbon atom of the sugar group. The two adjacent sugar groups are connected to each other by 

phosphate groups. 
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The relative positions of the pz orbital are determined by the twist angle and the relative space 

between two adjacent base pairs.   

 

 

 

Figure 3: DNA bases: Adenine and Guanine are categorized as purines whereas Thymine and Cytosine are 
categorized as pyrimidine based on its structural composition. 

The root-mean square displacement of the base pair at room temperature is about 0.3-0.4 Å 

(Matthew A. Young 1997). This is one tenths of the equilibrium distance between base pairs and 

order of magnitude larger than that of the crystals. Thermal fluctuation changes twist angle, on 

average, by as much as 8º (Matthew A. Young 1997). The corresponding change of the transfer 

integral could be as large as 0.1 eV. Such large transfer integral change could introduce time 
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dependent local state into the system which could intern facilitate instantaneous charge transport 

through the DNA.  

 

 

Figure 4 : Hydrogen bonding between DNA WC bases: G-C shares 3 hydrogen bonds, whereas A-T only shares 
two.  

Another important fact that determines the structure of the DNA is the charge neutrality of DNA. 

DNA bases are hydrophobic, whereas negatively charged back-bone prefers interaction with 

cations and water molecules. As a result the stability of the DNA structure is critically influenced 

by the environment. For example at an environment with five to ten water molecules per base 

pair A-DNA structure is preferred whereas if the number of water molecule per base pair 

exceeds thirteen then B-DNA is preferred. 
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Chapter 2. DNA modeling 
 

With recent improvements of computational technologies it is becoming feasible to model large 

molecules using first principles. However using of first principle methods with DNA is still a 

challenging task due to the problem listed below.  A successful utilization of the first principle 

methods on electronic structure calculation relies on the availability of a periodic structure. The 

presence of periodic structure facilitates the use of Bloch theorem. This enables us to perform 

most of the computation in the frequency domain. However a soft molecule like DNA barely 

possesses a periodic structure. For this reason, there still exist severe computational constrains 

for any all atom first principle calculation on DNA.  On the other hand all atom molecular 

dynamic simulations are in general limited by the memory availability. We have found that for 

an accurate description of charge dynamics in the DNA it may be necessary to study a DNA 

strand with at least 512 base pairs. All atom molecular dynamics of 512 base pair is challenging 

as it would account for thousands of atoms. For this reason the development of a good coarse 

grained model is a necessity. In this dissertation I try to develop an accurate coarse grained 

model for DNA and study its properties.  

Section 2.01 Physical Structure  

(a) Peyrard & Bishop Model 
 

As discussed above, the two strands of DNA are held together by weak hydrogen bonds.  

This flexible hydrogen bond facilitates large oscillations of magnitude in the DNA.  In fact under 

normal conditions DNA undergoes complex three dimensional oscillations. However our main 

emphasis in this dissertation is to study the charge transport through the DNA and we try to 

make our model as simple as possible yet providing meaningful results. As a starting point to 
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study charge transport through DNA we adopt a model originally developed by M. Peyrard and 

A.R. Bishop (Maniadis et al. 2003, Kalosakas, Ngai and Flach 2005) to study DNA degradation.  

In this model each base in the DNA WC base pair is treated as a point mass. Each base is 

allowed to oscillate around the center of mass while the center of mass remains stationary. In this 

quasi one dimensional model only transverse motion of the base pair are considered. In general 

the longitudinal displacements are several orders of magnitude smaller than that of transverse 

displacements and hence, as a starting point, longitudinal displacements can be safely omitted 

from the consideration.  

As shown in the Figure 5, in this model each base in the DNA is treated as a point mass. The 

double strand DNA is composed of two one dimensional chains connected by hydrogen bonds 

between complementary base pairs. The neighboring bases in a single strand are coupled to each 

other through sugar phosphate backbone. The vibration along the DNA chain can be considered 

as harmonic.  Even though this could be an over simplification of the system, this treatment had 

produced the essential properties of DNA degradations. However the dynamics along the 

transverse direction cannot be treated using simple harmonic approximation since more than one 

counteracting forces present along the transverse direction. Moreover the hydrogen bonds 

connecting two bases at different strand become extremely stretched when double helix opens up 

locally. This type of extremely large displacement, rather nonlinear, cannot be accounted by the 

harmonic approximation. Peyrard and Bishop, in their treatment of DNA degradation (Maniadis 

et al. 2003), have used Morse potential to describe nonlinear displacement associated with 

hydrogen bond stretching along the transverse direction.  Indeed in the transverse direction there 

are two opposing forces. The attractive bonding force of hydrogen bond and the repulsive forces 

between phosphate groups which is partially screened by the solvent and ions presence in the 
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media (Linak and Dorfman 2010). The Morse potential accounts for the average potential due to 

these two counter forces.  

 

Figure 5 : Bishop model of DNA: each base in the DNA is represented by a point mass. Two bases in a base pair are 
connected by an elastic rod and free to move along the transverse direction. But in this model any other motion is 

prohibited. The light colored circuls reprecents the equilibrium positions where as the dark colored  circuls 
relrecents the displaced position of the bases. 

By denoting the displacement of base pair from its equilibrium position by wn for strand one 

and vn for strand two, where n represents the nth position along a given strand, the Lagrangian for 

the motion of a point masses (DNA WC base) can be written as; 
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Where V is the Morse potential given by; 

 

By introducing new variables  and along the normal 

coordinate this equation can be simplify into; 

 

 

In the above equation pn and qn are the momentum of the particle with respect to the variables xn 

and yn. Here m is the mass of the base.  The advantage of this description is that the Lagrangian 

in equation (3) which depends only on the variable x is now decoupled from the stretching part 

(i.e. Morse potential does not depend on the x variable). This portion of the Lagrange can be 

ignored from further consideration.  

With this assumption the final form of the Lagrangian can be written as; 

 

The influence of structural fluctuation on charge transport properties is mainly caused by the 

changes in onsite energy, which is a function of relative distance between two base pairs. It 

indeed depends on the difference in the stretching of the two bases in the same base pair, i.e. y.    
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(b) Nonlinear stretching in DNA 
  

Later on it has been shown that the stacking interactions between DNA bases are indeed 

functions of not merely single base, but pair of adjacent base pairs. The observation that the 

decrease in stacking interaction with DNA degradation, in the degradation process DNA opens 

up locally, breaking hydrogen bonds between base pair and altering the electron structure of the 

individual bases, suggest that stretching interaction could depend on the interaction between two 

bases rather individual base. The harmonic assumption used in the previous model deficit the 

ability to represent such behavior adequately.  This has been overcome by replacing the 

harmonic potential with an-harmonic potential given by the following equation. 

 

The term  in the new potential extend the stretching interaction into two 

base pairs. When either base pair is stretched this term reduces the effective potential from 

  to  . With this new potential a base pair in the vicinity of an open site has lower 

vibration frequency which reduces the contribution to the free energy.   

(c) Beyond Peyrard & Bishop Model 
 

Even though the model described above sufficiently describes the DNA degradation, we have 

found that it is inadequate to describe the charge transport properties through the DNA. The 

Peyrard & Bishop model only considers the in plane transverse motion. But starting with the 

speculation that twist motion may also play an important role in DNA charge transport as the 

charge transfer integral are very sensitive to the changes in twist angle we added the twist angle 

to the existing model. Due to the symmetry of the problem it will be convenient to work in 
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spherical coordinate system. The coordinate system that we have used is defined as follows. The 

radial distance is measured from the helical axis of the DNA. Azimuth is measured with respect 

to the equilibrium twist angle.  

Similar to the previous model, in the present model each base is also treated as a point mass. 

But now two point masses are allowed to rotate around the helical axis simultaneously. However 

any independent rotations are still forbidden, which means that, always two bases in the base pair 

can be connected by a straight line.  Each neighboring bases in a given strand are considered to 

be connected by an elastic rigid rods. The equilibrium length of this rod is assumed to be 

constant among different base pairs. Longitudinal motion is not considered due to the same 

reasons as in the above model. 

The Lagrangian for the system can then be written in the following form. First term in the 

equation represents the kinetic energy of the particle. The Morse potential in the second term 

represents the hydrogen bond interaction and the repulsion between phosphate backbones. The 

third term account for the rigidity of the rod and the last term is added to the Lagrangian to 

ensure the helical structure of the system.  

 



 

14 
 

We have introduced the dimensionless time as and the dimensionless length 

as . The equation of motion is then computed following the same procedure as given at 

(Barbi et al. 1999). 
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Figure 6 :  the schematic diagram of a DNA. Each base is treated as a point mass. Two adjacent bases in the same 
strand are connected by an elastic rod of length l. The two bases in the same base pair are allowed to vibrate in plane 
transversely.  In addition in this model the DNA is allowed to have angular vibrations. The twist angle is measures 

as the deviation from the equilibrium twist angle. 

 

Section 2.02 Electronic Structure 
 

In order to model electronic structure of the DNA one must investigate the relative 

contribution from the different parts of DNA towards the electrical properties. The two strands of 

double strand DNA winds up each other to form the helical structure. As discussed in the 

previous chapters DNA can be divided into two main parts, the backbone and the base pair 

stacking. The connection between base pairs occurs through the backbone sugar phosphate 

group. However it has been shown that the charge transport through DNA mainly occurs through 

the well stacked π orbital of the bases (Boon and Barton 2002, Murphy et al. 1993, Kelley et al. 

1999). Due to this reason backbone can be neglected in treating electronic properties of the 

DNA. However backbone of the DNA can influence charge transport properties indirectly 

(Cuniberti et al. 2002, Maciá and Roche 2006). The hydrophobic DNA bases of DNA strand 

reside inside the helix while hydrophilic sugar phosphate backbone faces the solution, usually 

polar water molecule and ions. The electrophilic backbone, due to electro negative phosphate 

group, favors the presence of positively charge ions. The presence of positively charge ions, such 

as Na+ and K+ ions, change the local environment around the DNA due to electrostatic forces 

(Voityuk 2005).  The main outcome of such interactions is the change in the onsite potential of 

the backbone sites. These interactions can lead to new arrangements of the base pairs, as bases of 

the two stands are coupled with weak hydrogen bonds which are free to move.  In the presence 

of external cations and water molecules, DNA sugar group tends to move with respect to the 

base pair and tries to find new conformations which minimize the system energy.  Such 
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movement changes the effective overlap between the electron clouds of base pair and that of 

sugar group altering the charge transfer integral. Therefore in the presence of environment ions 

and the solvent molecules, DNA tries to minimize its energy by altering its conformation. This in 

turn changes the charge transport properties through DNA. Effectively the interaction of sugar 

group with polar water molecules and ions changes the electron cloud at the sugar group which 

in turn can change the electron cloud at the base (Voityuk 2005). This changes the onsite energy 

of the DNA bases. The following onsite energy renormalization (Joe, Lee and Hedin 2010) can 

be used to incorporate the effect of the sugar group into the onsite energy of the bases.  

 

   

In the above equations  represent the onsite energy of the bases. The K can be either G, A, T 

or C. The  is the inter-base coupling constant, is the onsite energy of the sugar group at K 

base,  is the onsite energy of the isolated base,  is the coupling between the base and the 

sugar group. As it can be seen in the Equation (9) the onsite energy of the base is now depends 

on the energy of the electron.  

However in most calculations, for simplicity, it is possible to neglect the effects due to the 

backbone. In such situations the bases in the single strand DNA is assumed to couple through 

electrostatic interaction of stacked π orbital of the bases.  

 

 

 



 

17 
 

(a) Tight binding model 
 

This allows us to model the charge transport through single DNA using tight binding type 

Hamiltonian. The electronic Hamiltonian for  orbitals within a tight binding model with the 

nearest neighbors interactions only is given as 

 

In equation (11) ( ) represents the creation (annihilation) operator for a charge at the site i. 

The represents the onsite energy. The second term represents the coupling between different 

sites.  is the coupling strength between site i and site j.  

    

Figure 7 : Tight binding formulation:  a) potential profile due to nucleus. b) For two nuclei brought closer the 
resultant potential profile can be described by the onsite energy and the coupling between them. c) Potential actually 

experienced by the particle. If overlapping is small then this profile can me modeled by tight binding type 
Hamiltonian. 

 

Within this framework an electron at a given base pair experiences the attraction from all the 

nucleus in the base and the repulsion from all other electrons. The potential due to the resultant 

a) 
b) 

c) 
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interaction determines the behavior of the electron at this particular base. However in tight 

binding model the resultant of all the atoms are replaced by a point and electron is assumed to 

move under the influence of resultant potential Figure 7. If a second WC base pair brought into 

the vicinity of the first WC base pair, then the energy profile experience by the electron at the 

first base pair will change. The magnitude of change depends on the relative coupling of the two 

potential profiles. In general the coupling is determined by how well these two potential profiles 

overlap with each other. If two WC base pairs are very close to each other, the distortion may be 

too strong so that the original energy profiles of individual bases may not describe the new 

energy profile adequately. In such situation it is impossible to utilize tight binding formulation. 

However, in DNA WC base pairs are sufficiently apart from each other, separated by average 

distance of 3.4A, such that it is possible to approximate the resultant energy profile of the DNA 

as a weighted sum the individual energy profiles and tight binding formulation can be justified. 

In the Equation (11) we consider only one energy level. However in a molecule like DNA charge 

transport could occurs through many energy levels. In fact as many as 3000 valence orbitals may 

be needed to account charge transport precisely. Nevertheless a tradeoff has to be made between 

the accuracy needed and the computational complexity of the study. In the current dissertation 

we use different levels of coarse graining, as the objectives in different simulations differ from 

each other.  

Figure 8 illustrate different possibilities of coarse graining. As mentioned above, Equation (11) 

discusses the situation with charge transport through the single strand using only one energy 

band. In the case of double strand DNA, one could take into account only one band per base. i.e. 

as seen in the Figure 8 c) the HOMO and LUMO bands usually reside on different bases in the 

double strand DNA. As an example for poly (G) –poly (C) double strand homogeneous DNA it 



 

19 
 

can be assumed that HOMO level resides on G whereas LUMO resides on C.  This allows one to 

construct a Hamiltonian described in Equation (12) 

 

 

In the Equation (12)  represent creation (annihilation) of an electron with spin 

σ  at site i. The subscript K represents HOMO or LUMO energy levels.   is the 

onsite energy at site i for an electron in either HOMO or LUMO level.  is the transfer integral 

between two nearest neighbor.  is the transfer integral between HOMO and LUMO energy 

levels between the same base pair.  

In a more sophisticated treatment one could include the sugar phosphate backbone into the 

consideration ( Figure 7 ). 

 
 

Figure 8 : Course graining of DNA: DNA contains two helical chains which run anti parallel to each other (a).   The 
most sophisticated level of coarse graining this could be represented by 4 chains. Outer two chains represent the 

sugar phosphate back-bone and inner two chains represent the base pair overlap (b).  The next level would be only to 
consider base pairs, completely neglecting the sugar phosphate backbone as it seldom contribute to the charge 

migration along the DNA (c). The simplest possible coarse graining is to treat DNA as a one dimensional chain by 
treating each base pair with single onsite energy and transfer integral between two adjacent base pairs (d). 

 

a) b) c) d) 
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 The Hamiltonian for such system can be written as 

 

In this Hamiltonian first two terms describes charge dynamics of bases. Where  (  is the 

creation (annihilation) operator of an electron at the DNA base and  represent the onsite energy 

of the base.  

The first term in the Hamiltonian ( ) is given be Equation (12). The second term describes 

the sugar group and the final term describes the coupling between the sugar group and the base 

pair.  (  represents the creation (annihilation) operators for a electron at ith site and  

represent either G or C for G-C base pair.  

Section 2.03 Towards conducting DNA: 
 

Although the first postulation that DNA could conduct charges for a long distance has been made 

as early as 1962, first experimental observation doesn’t happen until 30 years later. The first 

experimental evidence that DNA might support long range charge transport came through an 

experiment conducted by Barton and co-workers in 1993 (Murphy et al. 1993, Ohshiro and 

Umezawa 2006). In this experiment they have reported that charge transport between DNA-

intercalated transient metal complexes. Barton and co-workers have demonstrated that photo 

induced oxidization could travel as far as 40 Å in time short as tenth of a nano second (Hall, 

Holmlin and Barton 1996).  The discovery that known damage to DNA could be healed by a 

photo excited rhodium intercalated molecule situated at 16 base pairs away has further enhanced 

the notion that DNA could support long range charge transport (Dandliker, Holmlin and Barton 

1997) . Furthermore they have shown that electron migrating through DNA could be suppressed 

by causing a damage to the DNA chain (Kelley et al. 1999). But at the Barton’s group almost all 
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observations were made using electrochemical methods. The fact that all these results show weak 

distance dependence (Murphy et al. 1993, Wan et al. 2000) of charge transport eventually leads 

to speculate that DNA could act as a “molecular wire” (Berlin, Burin and Ratner 2000).  

However over the years many contradicting results have been published by the various research 

groups. These experimental results are amazingly different, covering all possible outcomes 

ranging from insulator (de Pablo et al. 2000, Braun et al. 1998, Storm et al. 2001), semiconductor 

(Porath et al. 2000), Ohmic (Fink and Schonenberger 1999, Cai, Tabata and Kawai 2000, Yoo et 

al. 2001), and superconductor(Kasumov et al. 2001).  

As discussed above, in order to investigate charge transport properties through DNA 

researchers around the world used different methods which can be categorized into two broad 

categories. The first branch includes the measurement of IV characteristic of the DNA by 

connecting DNA to two conducting electrodes at the two ends (Fink and Schonenberger 1999, 

Sonmezoglu et al. 2010).  The other branch consists of measuring charge transfer rate between 

donor and acceptor intercalators placed on the DNA strand (Kelley et al. 1999, Joy and Schuster 

2005). These two categories of experiment provide distinct yet useful insight on the mechanism 

of charge transfer through DNA.  Computationally these two experiments can be modeled using 

non-equilibrium Green function methods (Tsukamoto et al. 2009, Edirisinghe et al. 2010) and 

solving time dependent system of equations respectively (Hiroaki and Kazumoto 2010).  In 

Chapter 3 I will formulate the computational framework which can be used to simulate I-V 

characteristic through the DNA.  In Chapter 4 I will discuss the computational aspects of the 

charge transport between donor and acceptors sites using nonlinear stochastic system of 

equations.  
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Chapter 3. I-V Characteristic of DNA 
 

Section 3.01 Current through DNA connected to two gold electrodes: 
 

Most of the transport measurements through DNA are carried out by attaching two electrodes to 

the two ends of the DNA. First step toward the mathematical formulation of such systems is to 

develop a Hamiltonian describing the whole system, i.e. DNA and electrodes. The Hamiltonian 

for a DNA connected to two conducting electrode can be written as (Berlin et al. 2000, Roche 

2003, Zhu, Kaun and Guo 2004); 

 

In the Equation (13)  describes the leads and the last term describes the interaction 

between leads and the DNA whereas  refers to the full Hamiltonian of the DNA. In the 

current discussion, the DNA is modeled using its HOMO and LUMO molecular orbital as shown 

in Figure 9. In such formulation different pathways are available in which charge can move 

through the DNA. For example charge can first jump to the HOMO level from left electrode and 

move along the extended orbital and jump to the right electrode, or else it can first jump to the 

HOMO level at the left electron and then jump to the LUMO levels and move along the extended 

LUMO molecular orbital. In order to model such behavior we have used the Hamiltonian 

presented in Equation (14).  

 

In this Hamiltonian; the operators  ( ) represents the creation (annihilation) of an electron 

with momentum k and spin ± . The first term accounts for the onsite energy. The second 

term describes the charge transfer between neighboring HOMO (LUMO) levels. Where 

K=H(L) , is the charge transfer integral between the HOMO (LUMO) levels of neighboring 
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bases. The third term describes the charge transfer between the HOMO and LUMO levels of the 

same base pairs (Edirisinghe et al. 2010).  

 

 

Figure 9 : Tight binding formulation for homogenous DNA base pairs. As HOMO level is assumed to be resides in 
the G whereas LUMO levels is assumed to be reside in C 

Section 3.02   Charge transfer integrals  
Table 1 presents the charge transfer integrals between different molecular orbital. For example 

charge transfer integral between the HOMO orbital at two adjacent G-C base pairs is -0.133 eV 

whereas the charge transfer integral between LUMO orbital is -0.041 eV, which is significantly 

smaller than HOMO for G-C base pairs. This suggests the charge transport through the adjacent 

G-C base pairs is mainly occurs through the HOMO level rather than LUMO levels. On the other 

hand the charge transfer integrals between the HOMO and LUMO levels of the same base pair is 

rather small. For example charge transfer integral between HOMO and LUMO of G-C base pair 

is -0.005 eV (Table 1).  A different interpretation for transfer integrals can be givens in following 

form.  
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Table 1 : Charge transfer integrals between DNA regular Watson-Crick base pairs.. 

 
,

 
,

 
,

 

 G-C  A-T  G-C  A-T  G-C  A-T  

G-C  -0.133  -0.102  -0.05  -0.063  -0.041  0.067  

A-T  -0.218  -0.011  -0.001  0.054  0.066  -0.075  

 

Say as shown in Figure 10 the two different atomic orbital hybridized to form a molecular orbit. 

This will form a bonding molecular orbital which is lower than the energy of the subscribing 

atomic orbital and anti- bonding orbital which is higher in energy than the subscribing orbital. 

The splitting between the energy of bonding orbital and anti-bonding orbital depends on the 

relative overlap between subscribing orbital. If the subscribing orbital has same energy and the 

orientation match each other then the energy split will be higher. i.e. it will form strong bonding 

orbital and the energy of that bonding orbital will be much less than the original orbital. 

However if the energy of subscribing orbital are different, it will not form good bonding and the 

energy splitting will also small. This energy splitting between bonding and anti bonding orbital 

are equal to two times the transfer integral between the two atomic orbital. Along this line we 

can anticipate that, since HOMO and LUMO energy levels have very different energies the 

coupling between them is very small whereas the transfer integrals between HOMO level of 

neighboring bases are relatively large.  
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Figure 10 : Another interpretation to transfer integrals 

 

Section 3.03 Non-equilibrium green function approach 
 

The transport experiment has shown that in order to produce reproducible results one must need 

to form a chemical bonding between contact and the DNA. (Porath et al. 2000, Yoo et al. 2001, 

Hwang et al. 2002, Xu et al. 2004).  On the other hand if the coupling is too strong one has to 

consider a state which is belonged to DNA-Contact system rather than to the DNA along 

(Emberly and Kirczenow 1998).  But it is generally assumed the coupling between contact and 

DNA to be weak (Endres, Cox and Singh 2004, Porath, Cuniberti and Di Felice 2004, Ratner 

1999) .  

In the weak coupling regime the non equilibrium green functions can be used to model the 

current through the system consists of two weakly coupled electrodes and the DNA. 

The stationary current at left electrode can be as;  

 

In this equation (  represents the creation (annihilation) operators for a charge at electrode 

with momentum k whereas  represents creation (annihilation) operators for electron at 

2t 

σu 

σg 

2t 

σu 

σg 
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the site n of the DNA. The coupling of a DNA chain to the leads is introduced through hopping 

between the HOMO and LUMO states of the first base pair of DNA and the left contact and 

between the HOMO and LUMO states of the Nth base pair and the right contact.  and  

(see Equation 15) are the hoping integrals between right electrode and first base pair and left 

electrode and N base pair respectively. In general a little is known about the strength of the 

coupling constant. 

Using the definition of the Green function, i.e.  , Equation (15) can be 

transformed into; 

 

By writing Dysons equation for  and  current can be written in terms of the 

properties of the lead.  

 

 

Where; 

 

 

Finally; using the definitions of advance and retarded Green functions this expression can 

conveniently be written as; 
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It should be noted that in Eq. (21) current is expressed in terms of local properties of DNA 

strand, by means of retarded and advanced green functions, and distribution functions of the 

leads.  Similar expression can be obtained for the right leads also. Using Eq. (17) - Eq. (22) 

current can be simplify into Eq. (23) 

 

 

Finally using Equation (24) and Equation (25) current through the DNA connected to two 

electrodes can be written as Equation (26); 

 

Where, has similar definition. Note that and  and  

are 2N*2N level-width matrices, determining the coupling of the DNA states through the 

continuous states of the right and left contacts, respectively. Tr{} correspond to the trace over the 

matrix. fL(ε) and fR(ε) are the Fermi–Dirac distribution functions for the left and right contacts, 

respectively;  

The retarded Gr and advanced Ga Green functions of electrons in the DNA chains computed 

using equation of motion approach. 

 

In the matrix for the Hamiltonian describing the system can be written as Equation (22) 
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As described above the Green function method can be used to shrink the infinite dimensional 

system into a finite dimensional system (System becomes infinite as the contact is a conductor.). 

In this formulation the Hamiltonian for the system we study can be illustrate by the Figure 11.  

As can be seen the effect of the leads is now included in the onsite energy term at the two 

contacting sites (Anantram, Lundstrom and Nikonov 2008).  

Section 3.04  A qualitative overview on charge transport through DNA 
 

Figure 11 provide a qualitative description of the system. As seen in the Figure 11 the 

molecular orbital of each base pair hybridized to form extended minibands across the whole 

molecule. The overall energy of the minibands is determined by energy of the participating 

molecular orbital. And the width of the mini band is determined by the energy split cased by the 

effective overlapping of these molecular orbital, in other words by the transfer integrals between 

molecular fragments. 

 

Figure 11 : Schematic diagram of DNA connected to the gold contacts. The well localized molecular orbital form 
extended energy minibands which facilitate long range charge transport through DNA. 

In a molecule like DNA, a large number of base pairs contribute to form the extended bands. 

The width of this band depends on the relative energy match and the overlap between the 

contributing molecular orbital. If the contributing orbital are at same energy and the effective 

overlap is large, the resulting bands will have larger band width whereas if it has different 

energies and poor overlap then the resulting bans will have small band width. In this respect one 
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would imagine that DNA bands would have large band width since the contributing  orbitals 

are stacked in such a way that facilitate good overlapping. However in the case of DNA, the 

distances between two bases are relatively large. In the direction of the helical axis this distance 

is around 3.4 Å .  This results in significantly reduce the overlap between the  and result in 

thin bands 

Section 3.05 What determines the current through the DNA 
 In the direction of the helical axis this distance is around 3.4 Å whereas in the direction 

perpendicular to the helical axis this distance is around 10 Å. On the other hand the energy 

difference between base pairs along the direction perpendicular to the axis is also large. Since 

base pair consist of different types of bases. This results in relatively small intra strand transfer 

integral. On the other hand along the helical axis, the distance between base pairs are relatively 

small and there can be same type of bases adjacent to each other since the connection comes 

through the sugar phosphate backbone. Due to this reason the inter strand transfer integral are 

significantly large compared to that of intra strand. However the charge transfer integrals 

between the base pairs are in the range of meV.  This results in relatively thin energy bands. 

These thin energy bands are highly sensitive to the energy profile of the DNA and the changes in 

transfer integrals. For this reason charge transport through DNA is subject to the effects due to 

surrounding media, defects such as mispair, temperature of the sample etc…  The strength of 

charge transport through the DNA connected to two leads mainly determines by the shape of the 

equilibrium Eigen functions of the DNA. As DNA is at the equilibrium before connecting to the 

leads and the coupling to the contact is assumed to be weak, the deviation of non equilibrium 

wave function from the equilibrium Eigen function can assumed to be small. This allows us to 

use Eigen function of the system to gain qualitative insight into the system at its non equilibrium 

situations. As shown in the Figure 13 a) if the Eigen function of the system is well delocalized 
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across the whole DNA, and then the charge density at the edge is significantly large. In such 

situation there is finite probability that a charge at the contact move to the DNA and move across 

the DNA through the state defined by the wave function. However if the wave function of the 

system is localized as shown in the Figure 13 b), then the charge density at the edge of the DNA 

is small. This leads to small current through the system. In summary the current through DNA 

depends on different factors. In principle the existence of well delocalized molecular orbital is 

requires to have good charge conductance through DNA. 

 

Figure 12 : I-V characteristic of homogeneous poly(G)-poly(C) DNA molecule. The steps represent the current 
through different mini bands. Energy profile determines the positions of the steps. 
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Figure 13 : Current through the DNA depends on its Eigen function. Is Eigen function of the system is well 
delocalized as shown in figure a) the finite charge density at the edge of the wave function makes finite overlap 
between the charge density of the contact. Which intern facilitates high current. On the other hand if the wave 

function if localize the small charge density at the edges will give rise to poor overlap between the charge density of 
the contact resulting poor current. 
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Section 3.06 Homogeneous poly (G) – poly (C) DNA 
 

The Figure 12 illustrates the I-V characteristic of poly(G) –ploy(C) homogeneous DNA 

sequence. For homogeneous DNA sequence energy levels of each base pair align each other 

forming good energy band which span from one end to other. The homogeneity will also allow 

good orbital overlap. This facilitates relatively wide energy band width facilitating large current.    

The prominent two steps represent the current through HOMO and LUMO mini bands 

(Edirisinghe et al. 2010, Hodzic and Newcomb 2007, Xu, Endres and Arakawa 2007).  The wave 

function for such system has properties of free particle wave function.   

 

Figure 14 : Dependence of I-V characteristic on the transfer integral : as coupling increasers the current through the 
DNA also increases. This can be attributed to the widening of the energy bands due to increasing transfer integrals.  
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Figure 15 : Schematic of DNA energy band broadening due to coupling to the contact 

Figure 14 shows the dependence of current through DNA on the value of the transfer integral 

increases between neighboring base pairs. The increase in current can be attributing to the 

increase in molecular orbit overlap between adjacent base pairs. On the other hand if the overlap 

between adjacent molecular orbital decreases one would expect to see a reduction in current.   

Section 3.07 Effect of leads on IV characteristic of DNA   
 

As shown in the Figure 15, the DNA in our discussion is connected to the two contacts at the 

end. The exact nature of the bonding at the contacts is still illusive (Heim, Deresmes and 

Vuillaume 2004). In the current investigation we have used 10 meV as the coupling parameters 

between the contact and the DNA. However as shown in the Figure 16, current through the DNA 

decreases with the increase in the coupling between DNA and the contacts (Zhu et al. 2004).  As 

coupling between DNA and contact increases it changes the effective splitting between the 

energy levels at the end bases. However the energy levels of the bases in poly(G)- ploy (C) are 

already matched each other and has formed an extended mini band as show in Figure 15. The 

additional split introduced by the contact coupling changes the effective energy level match 

between the end base pairs and the rest of the molecule. If the additional splitting due to the 

contact is large then the mismatch between end base pairs and the rest of the molecule could 

effectively cause the net current to diminish. The Figure 16 shows the current change as a 

function of coupling between leads and the DNA and Figure 17 shows the change in 

transmission at different energies as a function of coupling between leads and the DNA. Note 
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that in the Figure 16 and Figure 17 the color corresponds to the current and transmission 

respectively. The color values are in log scale. This destroys the strep nature of the Figure 16. In 

fact all I-V curves show steps due to the presence of discrete energy levels.  In summary the 

transmission is maximized if the coupling between DNA and contact is roughly equal to the 

transfer integral between adjacent base pairs of the DNA.  

 

 

Figure 16 : Current as a function of the coupling between DNA and leads. 
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Figure 17 : Transmission as a function of coupling between DNA and leads. 

 

Section 3.08 A mismatch base pair: Defect in the DNA 
 

Base pairs of DNA have self assembly property. Almost all the time Cytosine (C) and 

Guanine (G) pairs each other forming G-C base pair whereas Adenine (A) and Thymine (T) 

forms A-T base pair. But on rare occasions this naturally favored ordering can be broken, result 

in a mismatched base pair. A mismatched base pair such as Guanine (G) and Adenine (A) or 

Cytosine (C) and Thymine (T) base pair could result in structural distortion in the DNA strand 

and hence change the effective overlap between adjacent molecular orbital. Even though this 
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could results in strain hence higher energy; the highly flexible helical structure of DNA permits 

for formation of relatively stable defects (Zhang et al. 2002, Fixe et al. 2005). The identification 

of such defects is mainly carried out by repair enzymes based on structural abnormalities. But the 

defects form by the mismatch base pair, Guanine – Adenine (G-A), resembles the least structural 

changes among the all other mismatched base pairs and difficult to identify by means of 

structural factors. One of the alternative ways that a mispair could be indentified is through the 

measurement of current through the DNA segment containing mispair. This mechanism is 

postulated as the one of the main mechanism that repairs enzymes used to detect defects in the 

live cells. A sender and receiver are assumed to be moving along the DNA and measure the 

current through it. Though it could be very slow process on a two meter long DNA in a cell, 

compareed to the time scale of cell division it may be sufficiently fast mechanism. In order to get 

an insight of this process we have investigated the I-V characteristic of DNA strands containing 

mismatched G-A based pairs.  

First step toward this procedure was to compute the transfer integral between G-A mismatched 

base pair. The optimal structure for the DNA sequence without mismatched base pair is readily 

available in the literature. The command starting point is to use the structure of the B-DNA 

(Drew et al. 1981).  A mispair is introduced into the optimized B-DNA structure using suitable 

molecular modeling program. Throughout the current work the molecular modeling and 

structural optimizations was performed with in CHARMM molecular modeling program. During 

the optimization procedure, adopted basis Newton–Raphson minimization procedure was used to 

find global minima of the energy surface.  

The optimized structure is then used to compute the charge transfer integral between mismatched 

base pair and the regular Watson-Crick base pairs. As can be seen from Table 1, for some DNA 
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sequences the replacing of the G–C base pair by mispair increases the overlap of the π orbital of 

the nearest-neighbor nucleobases, i.e. increases the intrastrand hopping integral. The magnitude 

of the intrastrand charge transfer integrals depends on the distance and the twist angle between 

nucleobases (Marra and Schär 1999). It was shown in (Marra and Schär 1999) that even small 

fluctuations of the twist angle by 5◦ can change the charge transfer integral by 0.1 eV. As a 

G・A mispair induces only local changes in DNA structure, it mainly changes the equilibrium 

twist angle. Thus the G・A mispair can result in both enhancement and suppression. 

Table 2 Charge transfer integral for homogeneous poly(A)-poly(T) DNA strand with mispair 

5’–A–X1–A–3’ 
3’–T–X2–T–5’ 

(X1–X2)     ┴  ┴  ┴  

A-T 0.011 0.011 -0.075 -0.075 0.054 0.054 0.054 
G(anti).A(anti) -0.002 -0.055 -0.079 -0.117 0.054 0.131 0.054 
G(anti).A(syn) 0.027 0.207 -0.092 −0.011 0.054 -0.161 0.053 
 

For the homogeneous chains, such as (G–C)3 and (A–T)3 sequences, the interstrand hopping 

integrals are identical for all base pairs, while for sequences containing a mispair in the middle 

of a chain (Edirisinghe et al. 2010), the interstrand hopping integral,  , corresponding to the 

mispair differs from  and . A similar tendency was observed for the intrastrand integrals  

and  , where the presence of a mispair changes the hopping integrals. Therefore, incorporation 

of a mispair into the (G–C)3 or (A–T)3 DNA sequence leads to a change of sign and the 

magnitude of the interstrand and intrastrand transfer integrals, which should affect the transport 

characteristics of the DNA. However, in addition to alteration of the charge transfer integrals in 

the presence of a mispair, modification of the energetic profile within the DNA chain containing 

a mispair occurs, which would also significantly influence the charge transfer within DNA. 
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Table 3 : Charge transfer integral for homogeneous DNA strand with mispair 

5’–G–X1–G–3’ 
3’–C–X2–C–5’ 

(X1–X2)     ┴  ┴  ┴  

G-C −0.133 −0.133 −0.041 −0.041 −0.050 −0.050 −0.050 
A-T −0.218 −0.102 0.066 0.067 −0.001 −0.063 −0.001 

G(anti).A(anti) −0.213 0.146 −0.072 −0.071 0.024 0.020 −0.025 
G(anti).A(syn) 0.254 −0.136 −0.153 −0.073 0.024 0.091 −0.025 
 
As explained earlier, for homogeneous poly(G)–poly(C) DNA the coupling between the nearest-

neighbor base pairs results in the formation of HOMO and LUMO minibands. The widths of 

these minibands are determined by the intrastrand hopping integrals. Introduction of a mispair in 

such a homogeneous DNA results in scattering of otherwise ‘freely’ propagating charges. This 

scattering suppresses the current through the DNA. Figure 18, the current through DNA is shown 

as a function of the applied bias voltage for a poly(G)– poly(C) DNA without and with a mispair. 

The typical I – V characteristic has a step-like behavior, where transitions between the steps 

occur when the chemical potentials of the contacts cross the HOMO or LUMO energy bands. 

The steps are clearly visible in Figure 18 for DNA without and with a mispair. The actual 

positions of the steps depend on the gate voltage, while the widths of the steps are determined by 

the HOMO–LUMO energy gaps. The width of the transition region between the steps is 

determined by the width of the HOMO and LUMO minibands, i.e. by the values of the hopping 

integrals, and the temperature. In what follows, we study the saturated value of the current 

through the DNA. In Figure 18, this saturated value corresponds, for example, to the bias voltage 

of −4 eV. At this bias voltage both the HOMO and LUMO states contribute to the current 

through the molecule. The saturated value of the current also has a weak dependence on the 

temperature of the system.  

As already mentioned above, we consider below only two types of mispair: the G・A mispair in 

two of its conformations: G(anti)・A(syn) and G(anti)・A(anti) (Brown et al. 1989). Within the 
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tight-binding model the differences between these two conformations are the values of the 

hopping integrals between the mispair and the nearest-neighbor canonical base pairs. For both 

types of conformations, the on-site energies are the same. Figure 18 clearly illustrates that for 

both types of mispair the current through the DNA is suppressed with the introduction of a 

mispair. The stronger suppression of the current is caused by the G(anti)・A(syn) mispair. For a 

homogeneous DNA sequence a mispair can be considered as the defect which breaks the 

periodicity of the tight-binding model. Such a defect results in additional scattering and finally 

suppresses the current through DNA. 

There are two modifications the mispair introduces into the homogeneous system: a mispair 

changes the on-site energy and a mispair changes locally the hopping integrals. Both of these 

effects result in suppression of the transport through the chain, although the transport is more 

sensitive to the changes in the intrastrand hopping integrals. Comparing the hopping integrals for 

G(anti)・A(syn) and G(anti)・A(anti) mispair (see Table 1), we can conclude that the changes in 

the hopping integrals for the G(anti)・A(syn) mispair is larger than for the G(anti)・A(anti) 

mispair. As a result suppression of current through a DNA chain is larger for a G(anti)・A(syn) 

mispair, which can be seen in Figure 18. A similar suppression of the charge transport through 

homogeneous DNA should be expected if the G・C base pair is replaced by a canonical A・T 

base pair. In this case we also see the suppression of the current, which is shown in Figure 18. 

The saturated values of the current through DNA molecules with a A・T base pair and a 

G(anti)・A(anti) mispair are close, which can be explained by similar values of the hopping 

integrals for a A・T base pair and a G(anti)・A(anti) mispair (see Table 1). 
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To describe the effect of a mispair on the electrical current through DNA, we introduce two 

characteristics. The first one is the change of the saturated value of the current through DNA at a 

large bias voltage, Vb = −4 eV.  

 

  
Figure 18 : I–V characteristic of homogeneous poly(G)–poly(C) DNA molecule with different types of base pairs in 
the middle of the molecule: regular poly(G)–poly(C) molecule without any (dashed–double dotted line); poly(G)–

poly(C) molecule with G(anti)・A(anti) mispair (solid line); poly(G)–poly(C) molecule with G(anti)・A(syn) 
mispair (dashed–dotted line). 

 

This change is calculated as the difference between the current through the DNA without a 

mispair and that when a mispair is present in the DNA: equation (26). 
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Another characteristic is the relative change of the current, which is defined by the following 

expression: 

 

The relative change of current is a more appropriate characteristic of the effect of a mispair, 

especially when the dependence on the length of the DNA is considered. 

Since the mispair modifies the structure of DNA only locally, which means that the parameters 

of the tight-binding model are changed only near the mispair, the changes in the current due to 

the presence of the mispair should be suppressed with increasing length of the DNA wire. 

In Figure 19 the change of the current through DNA due to the introduction of a G(anti)・A(syn) 

or a G(anti)・A(anti) mispair is shown as a function of the length of the DNA. For all values of 

the DNA length the suppression of the current is stronger for the G(anti)・A(syn) mispair. 

The results shown in Figure 19 illustrate that the suppression of current through DNA with a 

mispair is discernible even for a long DNA with up to 90 base pairs. Although the decrease of  

with increasing DNA length is clearly seen in Figure 19, the current, I without mispair, itself is 

also suppressed. As a result, the relative changes δI of the current, shown in Figure 20, remains 

almost the same. For the G(anti)・A(anti) mispair the relative change is δI ≈ 0.22, while for the 

G(anti)・A(syn) mispair it is δ ≈ 0.55. In both cases, δI has a weak dependence on the length of 

DNA. The reason for such a weak dependence is the homogeneous sequence of DNA without a 

mispair. For such a sequence the corresponding wave functions have the form of propagating 

waves, , extended over the entire DNA. As a result, each of the electron wave functions 

becomes sensitive to the presence of a mispair and the effect of the mispair on the wave function 

is appreciable even at large distances. The effect of a mispair on the current through DNA 
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depends also on the actual position of the mispair within the molecule. In the above analysis we 

assumed that the mispair is placed exactly in the middle of the DNA chain. In Figure 21 the 

relative change, δI , of the current through DNA is shown as a function of the position of the 

mispair. 

 

Figure 19 : The change, ∆I, of the current through DNA as a function of the length of DNA  (the number of base 
pairs in DNA). The change of the current is defined as the difference between the current through the DNA without 

a mispair and that for the DNA containing a mispair: G(anti)・A(syn) (solid line) or G (anti) ・ A(anti) (dashed 
line). The mispair is placed in the middle of the homogeneous poly(G)–poly(C) DNA. 

For both types of mispair the maximum changes in the current occur when the mispair is close to 

the middle of the molecule, although the dependence on the position of the mispair is weak. 

There is also some irregularity in the dependence of δI on the position of the mispair. This 

irregularity is due to the extended nature of the wave functions of charge carriers in the 
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homogeneous DNA. For a homogeneous DNA sequence, all electron wave functions 

corresponding to the tight-binding model are extended and occupy the whole DNA molecule. 

Therefore, all electron states are sensitive to the presence of a mispair which results in strong 

changes, δI , in the current through the DNA and also in the dependence of these changes on the 

position of the mispair. 

 

Figure 20 : The relative change of the current , δI =  /I, as a function of the length of DNA containing a (a) 
G(anti)・A(anti) or a (b) G(anti)・A(syn) mispair. The mispair is placed in the middle of homogeneous poly(G)–

poly(C) DNA. 

Section 3.09 Inhomogeneous DNA Strands 
 

For an inhomogeneous DNA sequence the situation is different. The electron states for such a 

DNA become more localized and the mispair modify only a few of them. In order to study the 

properties of an inhomogeneous DNA sequence, we consider a random sequence of DNA with a 
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G–C canonical base pair or one of the mispair, G(anti)・A(syn) or (G(anti)・A(anti)), in the 

middle of the molecule. 

 

For each of such random sequences we calculate the relative change of current when the 

Watson–Crick G–C base pair is replaced by the mispair. The corresponding changes in the 

current are calculated for 500 different random realizations of DNA sequences. We present the 

results of our calculations in terms of the probability density function of the relative change of 

the current through DNA, P(δI ).  

 

 Figure 21 : The relative change , δI =  /I , of the current through a homogeneous poly(G)–poly(C) DNA versus 
the position of the mispair: G(anti)・A(syn) (dashed line) and G(anti)・A(anti) (solid line). The DNA consists of 45 

base pairs. 
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In Figure 22 the probability density function is shown for the G(anti)・A(syn) and 

G(anti)・A(anti) mispair and for DNA molecules consisting of 10 and 15 base pairs. For both 

types of mispair the probability distribution function has a sharp maximum at δI close to 1. The 

value of δI =1 means that the current through DNA with a mispair is zero, i.e. it is much smaller 

than the current through DNA without a mispair. Therefore, for the corresponding DNA 

sequence, introduction of a mispair strongly suppresses the current through DNA (δI ≈ 1). 

This strong suppression is more pronounced in the case of the G(anti)・A(syn) mispair, for 

which the corresponding peak of the probability density function is narrow with a maximum at δI 

≈ 0.9 and a width of ≈0.2. For the G(anti)・A(anti) mispair the peak is broader with a maximum 

at δI ≈ 0.8 and a width of ≈0.4. The stronger suppression of the current for DNA with a 

G(anti)・A(syn) mispair can be related to the larger changes in the intrastrand hopping integrals 

due to the presence of a mispair compared to DNA with a G(anti)・A(anti) mispair, see the 

values of tH(1) and tL in Table 1. Therefore the G(anti)・A(syn) mispair results in stronger 

modification of the tight-binding parameters of the DNA chain. 

From the distribution functions shown in Figure 22 we can infer that for many (about 78%) 

generic (random) DNA sequences, introduction of a G(anti)・A(anti) mispair results in a 

suppression of the current through DNA, i.e. for such DNA molecules δI > 0. There is also a 

very broad region with negative values of δI , which corresponds to an enhancement of the 

current through DNA. For a short DNA (10 base pairs in Figure 22 (d)) there is also a local peak 

at δI = 0, which disappears for longer DNA (Figure 22 (b)). Here δI = 0 means that the current 
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through DNA does not change with introduction of a mispair. A small peak at δ ≈ −6 is due to 

the finite size effect and disappears at larger lengths of DNA. 

For the G(anti)・A(syn) mispair we have a different behavior (see Figure 22 (a) and (c)). Similar 

to the case of G(anti)・A(anti), there is a large number of different DNA sequences for which 

the current through DNA is suppressed with the introduction of a G(anti)・A(syn) mispair (δI > 

0), but this number depends on the length of DNA. For example, for a DNA with 10 base pairs 

there are 78% of generic DNA sequences for which the current through DNA is suppressed. 

For a DNA with 15 base pairs it is 66%. Hence with increasing length of DNA the number of 

different DNA sequences with δI > 0 decreases. For a G(anti)・A(syn) mispair there is also a 

pronounced peak near δI = 0. This peak disappears when the length of the DNA is increased. For 

negative values of δI we have an enhancement of the current through the DNA. 
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Figure 22 : Probability distribution of current with mispair: a) and b) probability distribution for DNA sequence of 
15 base pairs with G(anti)-A(anti) and G(anti)-A(syn) mispair. c) & d) for DNA sequence with 10 base pairs. 

 

Table 4 : Current change for different inhomogeneous sequences.  
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Although a mispair can be considered as a defect in a DNA chain, the effect of a mispair on the 

charge transport through the molecule can be different for different DNA sequences. If the 

current through DNA without a mispair is large, i.e. there are well-connected transport paths 

through the DNA molecule, then the mispair in such a system become a real defect which 

suppresses the transport. In this case we observe suppression of the current through DNA. If the 

current through DNA without a mispair is originally small, introduction of a mispair in such a 

system can open additional transport channels, which can increase the current through the 

molecule. 

Although the enhancement of the current through DNA exists for both types of mispair, the more 

pronounced enhancement is visible for a G(anti)・A(syn) mispair. This can be related to stronger 

modifications of the intrastrand hopping integrals by a G(anti)・A(syn) mispair. In table 3 a few 

random DNA sequences corresponding to the peaks in Figure 22 are shown with the 

corresponding values of δI for different conformations of the G・A mispair. There is some 

correlation between the values of δI for the G(anti)・A(syn) and G(anti)・A(anti) mispair, that 

is, δI is either positive or negative for both types of mispair. 

This confirms the general tendency, that enhancement or suppression of the current is 

determined by the DNA sequence. That is, if the current through DNA without a mispair is small 

then we should expect enhancement of the transport, and if the initial current is large then the 

mispair suppresses the transport. Such a tendency is valid for both conformations of G・A 

mispair. 
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Section 3.10  Effect of Temperature on I-V Characteristic of DNA 

 
In this section we will investigate the temperature effects on the I-V characteristic of the DNA. 

Loosely bonded DNA bases are subject to large oscillations. Among various oscillations present 

in the DNA, twist motion is the most important in terms of charge transport properties. Twist 

motion changes the twist angle between adjacent base pairs from its equilibrium value of 360.  

Marra and Schär (Marra and Schär 1999) has showed that even 50 change in twist angle can leads 

to significant changes in transfer integrals as much as 0.1eV. Such large, yet local, changes in 

transfer integrals could leads to very different conductance properties through the DNA.  

In this section we take advantage of the data already published by Kubar� et al. (Kubar� et al. 

2008). In this article authors formulate angle dependence on transfer integrals using first 

principle computations. However angular dependence on charge transfer integral for GA 

mismatched base pair is unknown. In the present work we have assumed a liner dependence of 

charge transfer integrals for small angles.  

Steady state current was calculated using Equation (26). However in the present problem transfer 

matrix elements are position dependent. Finite temperature effects were added by means of 

random, temperature dependent distribution of the angle. The most important vibration amount 

all possible motions in view of charge transport properties is twist motion between two adjacent 

base pairs. Twist motion in turn changes the relative overlap between two adjacent base pairs 

alternating the charge transfer integral between them. We have introduced the twist angle 

perturbations by introducing random deviations from the equilibrium twist angle. Each initial 

random angles were assigned form the normal distribution with zero mean and standard 

deviation ′
′

′. Where kB is the Boltzmann constant, I is the moment of 

inertia of the DNA base pair, is the damping constant. T is the temperature.  
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The additional energy gained by the twist motion is expressed by the second term in the Equation 

6. We have performed a ensemble average using a partition function as; 

⁄

⁄   

 

Figure 23 : effect of the temperature: Homogeneous poly(G)-poly(C) DNA strand Blue , green and red 
curves represents 0K,5K and 300K respectively.  

Typical IV characteristic for the homogenous DNA stand at three different temperatures is 

shown in Figure 23.  In the Figure 23, the blue curve represents the current at 0K whereas green 

and red curves correspond to the current at 5K and 300K respectively. As discussed in the 

previous sections, homogeneous DNA strand exhibits good conductance due to possibility of 

having continuous mini bands. However structural fluctuations introduced by temperature can 
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change the transfer integral from its equilibrium value. As mentioned in the previous sections, 

transfer integral determines the width of the minibands.  

As a result, local change in transfer integral could adversely affect the formation of continuous 

minibands across the DNA. The decrease in current in the Figure 23, with increase in 

temperature, could be attributed to the loss of continuous minibands.  

 

 

Figure 24: Temperature dependence of the Current: a) Homogenous DNA strands b) Inhomogeneous  

DNA strand solid curve is for homogenious DNA strand. Dotted curve is for G(anti).A(syn) mispair 
whereas dash curve is for G(anti).A(anti) mispair 

However in the case of inhomogeneous DNA, current is inherently small. This is attributed to the 

mismatch between different energy levels. Transfer integrals determine the energy level splitting 

as two bases brought closer. Higher transfer integral results in higher energy level splitting. As 

mentioned above changes made in to the twist angle by thermal fluctuations can change the 
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magnitude of the transfer integral. This in turn can change the width of the energy band locally. 

Perhaps this can leads to increase of the formations of extended energy band facilitating larger 

current. In Figure 24 b) value of saturated current increase with rise of the temperature. It should 

be noted that the relative change in current is a function of particular DNA sequence. For 

example, in Figure 24 a) shows the saturation current through homogenous DNA which 

decreases with increase in temperature.  This results from the destruction of the continuous 

minibands due to transfer integral fluctuations. Depending on the specific energy profile, 

temperature can induce reduction in current or increase in current.  

 

Figure 25: Distribution function for inhomogeneous DNA strands with mismatched base pairs. 

Figure 25 illustrates the temperature dependence of the distribution function for the change in 

current (ΔI) Equation (29). The change (ΔI) is measured with respect to the DNA strand without 
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mispair. It should be noted that Figure 22 corresponds to 0 K situations. In the Figure 25 the 

solid curves represents the current at 5K dash curves represent and dotted curves represent 

current at 25K and 300K, respectively.  As one can see from the figure temperature suppresses 

the effects due to the mispair.  
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Chapter 4. Charge transport between Donor-Acceptor 

Section 4.01 Structural Dynamics and Charge Transport 
 

As mentioned in the introductory chapters, the soft skeleton of the DNA permits anomalous 

vibration amplitudes.  A charge transport through DNA can be significantly altered by these 

abnormal structural fluctuations. It should be noted although all atom quantum mechanics 

molecular mechanic (QM/MM) study could provide more detailed description into the charge 

transport properties through DNA, the computational complexity and computational cost hinders 

the utilizations of QM/MM techniques on DNA. The absence of periodic structure requires using 

large DNA segments, which limits the use of all atom computations. Moreover DNA is highly 

subject to external perturbations such as solvation effects and the action of external ions. These 

demands for use of significantly large water box in any MM computations. However mean field 

continuum approaches will also provide some valuable depiction. Within limitations of mean 

field approach, in order to investigate the influence of lattice vibrations on charge transport we 

have performed semi classical- Quantum mechanical simulations on coarse grained DNA model 

using the system of equations described in the Section 2.01(c) . Since realistic systems are 

subject to thermal fluctuations due to temperature, temperature effects are included into the 

system of equations by means of random force. This makes each process a stochastic process. 

The random force has the following properties,  
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Where  is the Boltzmann constant, T is the temperature, m is the mass of subunit (base pair) 

and γ is the damping constant. 

The initial velocities used in the simulations were found from the Maxwell-Boltzmann 

distribution. Statistically, at longer time scale this procedure mimics the temperature effects.  In 

order to realistically represent the system, we have included a dispersion term into the Equation 

(7) in the form of  . This term represents the energy loss due to the interaction with 

thermal bath. Charges were captured at the acceptor site by adding a decay term  into the 

electron Hamiltonian (11). Finally coupling between charge Hamiltonian and skeleton Lagrange 

(hereafter will be called lattice) was introduce by adding a Hostiln type term  (Kalosakas, 

Aubry and Tsironis 1998, Maniadis et al. 2003, Komineas, Kalosakas and Bishop 2002), which 

signifies the interaction with charge with optical lattice, into the Equations  (11) and (7). 

represents the charge-phonon coupling constant. This implies the onsite energy of the tight 

binding model linearly depends on the displacement of the site n as   The angular 

dependence of charge transfer integral should be found from the first principle computations 

(Edirisinghe et al. 2010, Song, Elstner and Cuniberti 2008) as discussed in the previous section. 

However in the present treatment we model the twist angle dependent of the transfer integral by 

using Slater-Koster modeling (Slater and Koster 1954). In what follows we assume that each 

base pair posseses resultant p like orbital which contribute to the formation of  orbitals. In the 

current model we only consider twist motion and in plane vibration, thus only pz orbital 

contributes to form molecular orbital. In other words there is no mixing of the pz with px py 

orbitals which lies in the plane of vibration. In this formulation the transfer integrals can be 

approximate as 
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Finally, with all modifications mentioned above, system equation can be written as; 

 

 

 

Here the first two equations (34), (35) describe semi classical dynamics of the DNA, while the 

last equation characterizes the quantum transport of the charge within DNA molecule. Below we 

solve the system of equations (34)-(36) with the random force (30)-(31) numerically.  

(a) How does a charge change the DNA 
 

 Time evolution of the solution of the system of equations (34)-(36) is illustrated in the 

Figure 26 to Figure 28. Figure 26 represents the time evolution of the twist angle whereas Figure 

27 and Figure 28 represent the time evolution of the electron density and the transverse 

stretching between the base pairs, respectively.  Entire system is initially relaxed about 300ps 
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and an electron is then added to the system. As shown in Figure 26 to Figure 28 the newly 

introduced electron introduces changes in the structural dynamics of the system. For example, 

the Figure 26 shows the change in the twist angle. As seen on the Figure 26 the additional energy 

introduced by the electron is relaxed across the flexible DNA structure. In order to accurately 

represent the structural dynamics of DNA a sufficiently long DNA strand is needed. We have 

found that a DNA strand with at least 512 base pairs are needed to minimize the edge effect in 

the computations. Figure 27 illustrate the evolution of the charge density. As seen in the Figure a 

hole is introduced into the system at around 300ps.  The magnitude of the charge density is 

represented by the color. It should be noted that the scale of the color axis is in log scale. The 

donor and acceptor are separated by four base pairs. As seen in the Figure 27 small fraction of 

the charge density leaks out across the DNA even though significant fraction is trapped at the GC 

donor site. Figure 28 illustrate the dynamics of base pair stretching. Similar to the Figure 26 the 

introduction of an electron introduces structural changes into the system. These structural 

changes then propagate along the DNA change. 
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Figure 26 : the change in the twist angle with the introduction of an electron into the system. Initially system is at 
thermal equilibrium. As seen in the figure during the time0-300 ps DNA posses slow vibrations. At 300ps an 

electron is introduced into the system. The excess energy introduced by the electron then relaxes access the DNA 
slowly. 

(b) Donor-Acceptor System  
 

The system we study is illustration in Figure 29. The energy levels between A-T and G-C base 

pairs are shifted by about 0.4 eV. For example the HOMO energy level of G-A WC base pair is 

around 9.4 eV, whereas the HOMO energy level of the A-T WC base pair is around 9.7 eV.  

Table 5 lists onsite energies for different WC bases.  Within the system shown in the Figure 29 a 

hole transport is usually considered.  



 

59 
 

 

Figure 27 : evolution of the electron density with time. The color scale is in log scale. As seen from the figure even 
with 512 base pair fast moving electron has reflection at the boundary. But the density is comparatively small and 

we have safely omitted it from our consideration. 

Normally, due to special energy profile of the HOMO energy levels the G-C base pair plays a 

role of a trap for a hole. Then the hole is added to one of the G-C base pair, the donor site, and 

the transfer of the hole to the other G-C base pair, the acceptor site, is studied. Our simulation 

consists of two G-C WC base pairs separated by variable length A-T bridges. Such system can 

be treated as a two quantum traps separated by a distance which is equal to the number of base 

pairs times 3.4 A.  

(c) Can DNA trap charge? 
 

In the present section we study the escape rate of a charge initially trapped at one of  the G-C 

WC base pairs as a function of system parameters. The charge trapped at a GC site in a DNA 

differs from a pure quantum mechanical two quantum trap system due to the structural 
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fluctuations of the DNA skeleton.  The relatively significant coupling between charge and the 

lattice vibration makes the present system a dissipative quantum mechanical system (Konno et 

al. 2007) . The energy of the electron can be transform into the lattice energy and vice versa.  

However the depth of the quantum trap is higher than the transfer integrals along the DNA chain. 

Hence we speculate the possibility of Anderson localization (Anderson 1958)   in the DNA 

strands.

 

Figure 28 : the y displacement as a function of time. As shown in the figure a polaron is formed around the electron 
relatively soon after the electron is introduce to the system. 

 

 
Table 5 :  Onsite energy for isolated DNA WC base pairs. 

 

 G C A T 
HOMO -9.4 -10.27 -9.79 -10.46 
LUMO -5.37 -5.9 -5.85 -6.56 
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Figure 29 : A schematic representation of the energy profile in the short DNA. A) Ionization potential for G-C base 
pairs is differ from A-T base pairs as much as 0.4 eV. A Hole easily can localized on the G-C cite. b) Such system 
can be treated as two quantum trapsystems. But due to structural fluctuation system is not pure quantum system, 

rather a dissipative quantum system. 

However due to the flexible nature of the DNA strand there exists a possibility of  long range 

correlation between base pair fluctuations along the DNA strand. Such fluctuation inturn can 

introduce a long range correlation of the onsite energy disorder, facilitating electron 

delocalization (de Moura and Lyra 1998, Santos et al. 2006) .  The DNA tight binding 

Hamiltonian for a charge is defined by two parameters: onsite energy and the charge transfer 

integral between the neighboring sites. The escape rate of trapped charge at one GC site (donor) 

depends on the depth of the quantum trap. For example, higher quantum trap makes it difficult 

for a charge to escape. However due to small dimension of the system, quantum properties are 

also plays an important part. If two quantum traps, i.e. G-C base pairs,  are sufficiently close to 

each other, the charge can tunnel through the inter-trap barrier instead of completely escaping to 

the bridge. On the other hand DNA structural fluctuation introduces additional changes to the 

energy profile of the system. Depending upon the dynamics of the energy profile of the system, 

escape rate can increase or decrease. In this study we try to understand the importance of the 

structural fluctuations in order to gain realistic account on charge transport properties through 

DNA.  
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As shown in the Figure 26 - Figure 28 introduction of an electron into the system changes the 

system dynamics.  As seen in the Figure 26 with introduction of an electron, the local distortion 

caused by the charge lattice interaction starts to move across the DNA in a form of a traveling 

wave. If DNA is not long enough these waves can reflect back or enter at the other side of the 

DNA, as we utilize a periodic boundary conditions. With time, relatively high amplitude 

resonance can develop, due to the formation of standing waves. Such high resonance could 

change the energy profile and significantly alter the charge escape rate. In order to study this 

effect we have varied the length of the DNA. As seen in Figure 31 the DNA strand with at least 

512 base pairs are needed to accurately describe charge transport properties throughout the entire 

coupling regime that we have studied.  In the Figure 31 escape time for a charge trapped in a 

donor GC site, which is separated from an acceptor GC site by four bases pairs apart was 

studied.  It can be seen in the Figure 31 that for DNA length larger than 512 base pairs the escape 

time become independent of system dimensions. It should be noted that for smaller system size 

the charge escapes very rapidly see Figure 31. This is due to large structural fluctuations formed 

by formation on standing waves, which help in fast escape.  

The results described hereafter are for a DNA strand with 512 base pairs. Each base pair is 

described by six variables:  The complex wave function, displacement of the base pair from it 

equilibrium position, displacement of the twist angle from its equilibrium value, linear velocity 

of the bases along the transverse direction, and the angular velocity of the base pairs along the 

twist motion.  The system of equations describing the system now consists of 3072 variables. We 

have solved this system using stochastic Runge-Kutta fourth order algorithms. The detailed 

description of the algorithm and the programming are given in the appendixes.  As it was 
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mentioned above the effect of the temperature is taken into the account by introducing a random 

force.  

 

Figure 30 : Charge transport in quantum systems: a) A charge (hole) located at a quantum trap needs to gain enough 
energy in order to overcome the energy barrier and jump into the nearest site.  b) However if two quantum traps are 
sufficiently close to each other then charge can take a shortcut. It can tunnel through the barrier and reach the other 

quantum trap. This phenomenon has quantum mechanical nature. c) the structural fluctuation introduces an 
additional disorder into the energy profile of the system. Depending on the new energy profile the charge escape rate 

can be either enhanced or suppressed. 

 

 

(d) Modeling temperature fluctuations  
 

We have performed 60 different realizations for each data point. For example when we studied 

charge lattice interaction for given charge lattice coupling parameter, say, charge lattice coupling 

constant is 1.2, we have perform 60 different realizations for that particular set of values.  

However we have pre-prepared the initial condition of the state variable, such as velocities and 
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displacements, at each temperature, by performing separate sets of simulations where system of 

equations given in Equation (34)-(35) was advanced in time with time step of 10-4 ps without any 

hole, i.e. without Equation (36).   

 

Figure 31 : the finite size effect on the escape time. The lattice charge coupling constant is 1.2 eVA-1. Temperature is 
160 K, and the separation between donor and acceptor site is 4 base pairs. 

For this pre-run velocities were selected from Maxwell-Boltzmann distribution where as 

displacements were selected from normal distribution. Then we slowly heat up the system to 

different temperatures. During this heating process small damping, the γ value, was used as it 

helps the system to reach equilibrium more quickly. Each simulation last about 400ps in 

simulation time. For example at 10K we allow system to equilibrate for 400ps. Then we save the 
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final values of the state variables for future use. At this point temperature of the system is rise to 

the next value, say, 20K and allows simulation to run another 400ps. By this way we generate 60 

different initial sets of state variables at each temperature which are then used as initial values for 

subsequent simulations.  

During the production run time step is set 10-6ps. We allow system to relax another 100 ps before 

adding a hole into the system. By this way we make sure that, at the time a hole was added into 

the system, each realization has its distinct initial values. After the hole is introduced at the donor 

site the escape is characterized by the particle density at the donor site. If the particle density at 

the donor site reaches 33% of the initial density, the particle is assumed to be escaped from the 

donor site.  

Figure 32 illustrates the phase space plot of the escape. It can be seen from the figure that the 

system dynamics of the system a certain escape plane. i.e. it is seen in the figure that the 

trajectory tries to leave from one side while on the other side it attracts to an attractor. The 

dynamics of the system in the phase space requires further investigation. The mechanism of 

escape is poorly understood. In fact the stochastic nature of the process allows different 

trajectories to take different path even for same initial conditions. The complex dynamics of the 

state variables defines the escape, while the correlation between them yet to be defined. However 

this interesting problem is not addressed in the present work.  
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Figure 32 : System dynamics in the phase space. The trajectory diverges at the corner while converge at the other 
corner. Trajectory finally escapes at the divergent corner. 

(a) Different mechanisms of escape in DNA 
 

Several escape mechanisms are possible depending on the donor acceptor separation. When 

donor and acceptor are separated by relatively small distance the escape mainly happens through 

tunneling. Figure 33 shows the dependence of escape time with distance.  The sharp exponential 

increase between first two data points represents the tunneling nature of the escape mechanism. 

However as distance between donor and acceptor increase further the system becomes 

dissipative due to the onsite energy disorder introduced by the dynamical fluctuations. For donor 

acceptor distance of 4 to 6 base pairs, the polaron assisted hopping also contribute to the particle 
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escape along with the tunneling. The escape time now shows power low dependence, see Figure 

33. Finally beyond donor acceptor distance of six base pairs, the polaron assistant hoping 

becomes dominant. At this point the escape is almost independent of the donor-acceptor 

separation. The escape time now depends only on the energy depth of the trap. After escape from 

the donor site the particle travels across the DNA as a polaron hopping.   

 

Figure 33 : dependence of escape time as a function of the donor acceptor separation at T= 60 K 

 

(b) Polaron assisted charge hopping  

 
In Figure 34 and Figure 35 the polaron assisted escape it illustrated. In these figures the DNA is 

relaxed for about 100 ps. Then at around 100 ps a particle (a hole) is introduced into the system. 
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As seen in the figures, introduction of a hole followed by polaron formation. This fact is clearly 

visible in each figure as large structural fluctuations around the donor site. However it should be 

noted that the two figures are different realizations of an identical system. Both figures represent 

a system with donor acceptor separation of 16 base pairs. It should be noted that donor site is 

located in the middle of the strand whereas the acceptor site is located to the left from the donor 

site, at 240th base pair. Charge lattice coupling constant is 1.8 . 

Figure 34 : Polaron formation and polaron assisted escape of trapped hole 

 

As it was illustrated earlier, due to the stochastic nature of the system dynamics, even with the 

same initial conditions the system can evolve through different paths.  The escapes in Figure 34 

Base pair positions Base pair positions 
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and Figure 35 are very distinct from each other. In Figure 34 the polaron moves across the DNA 

relatively fast compared to the Figure 35. Also it should be noted that the polaron motion is now 

distance independent. The hole could travel as much as 200 base pairs with the aid of polaron. 

Moreover the time scale of such motion is also diverse. In the Figure 34 polaron travels about 84 

base pairs within 260 ps. The speed is about 1.1 Åps-1.  Whereas in the Figure 35 polaron travels 

about 150 base pairs within 1.62 ns. This corresponds to the speed of 0.314 Åps-1.  

 

Figure 35 : Polaron formation and Polaron assisted escape 

(g) Effect of charge lattice coupling on charge transfer 
 

Even though individual realizations of a stochastic process can take different paths, an ensemble 

average still could yield a useful insight into the dynamics of the system. Figure 37 illustrate the 
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escape time as a function of temperature and the lattice charge coupling. In general the escape 

time depends on the two factors, which are depth of the trap which determines the height of the 

barrier between the donor and acceptor, and the transfer integral between the nearest neighbor 

base pairs, which determines the charge hopping and correspondingly the rate of tunneling 

through the barrier. Fluctuations in the DNA skeleton could change each of these parameters.  

The onsite energy of a charge can change with variation of the local hydrogen bond stretching 

along the transverse direction. Once a polaron is formed this could lead to a reduction of energy 

of the charge. Such reduction tends to trap the charge at the site where polaron is formed. 

However as shown in the Figure 36, if charge is sufficiently large, the influence of the charge on 

the lattice could extend to the neighboring sites of the donor. i.e. a large polaron could form. This 

intern could change the energy profile of the system facilitating charge escape through polaron 

assisted hopping, in which polaron can move across the DNA. On the other hand the effective 

overlaps between electron clouds of adjacent bases are determined by the relative angle between 

them. 

 

Figure 36 : Polaron assisted hopping in the figure a) GC trap is shown. b) Increase in trap depth due to formation of 
small polaron. c) Formation of large polaron results in the reduction of effective trap height. 

a) b) c) ε2 
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The transfer integral between adjacent bases is a function of effective overlap between 

corresponding electron clouds, i.e. molecular orbital.  Depending on the state, i.e. dynamics of 

the system, different transfer integrals and trap depths are possible.  As shown in the Figure 37 

the escape time is a complex function of temperature and charge phonon coupling. The length of 

the DNA is fixed at 512 base pairs. The final escape time was calculated as average over 60 

different realizations of the system Each realization was realized by assigning initial values 

which was generated by a separate run. Each realization was carried out using the protocol 

mentioned in the Chapter IV.Section B.01(d).  

As we have observed in our investigation, polaron formation (Kalosakas et al. 1998, Maniadis et 

al. 2003) in the DNA is a complex function of temperature and the phonon charge coupling 

constant. Tendency to polaron formation increases monotonically with the increase of phonon 

charge coupling. However the type of the polaron formed depends on the temperature of the 

system. As an example the average strength of vibrations increases with temperature. This 

facilitates formation of large polaron (width of the polaron is large). However if the temperature 

of the system is low, then the polaron is relatively small. As mentioned previously the onsite 

energy of the system is a liner function of the of the displacement of the site n as  . 

Due to this relationship, different types of polaron contribute differently to the energy profile of 

the DNA strand (Maniadis et al. 2003). As an example if large polaron is formed it will affect the 

onsite energy of the neighboring sites too. This can reduce effective height of the trap. As a 

result charge can escape easily compared to the small polaron situation.  In case of small polaron 

it only changes the energy profile locally. This introduces an additional height to the trap, 

causing an additional trapping of the charge.    
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As seen in the Figure 37, for extremely large charge phonon-coupling (phonon charge coupling 

value of 1.8eVÅ-1) escape time is relatively small. This suggests that due to significantly large 

coupling constant, large polaron are formed at all the temperatures. This changes the 

characteristic of the barrier between donor and acceptor. Essentially it reduces the barrier height. 

There for charge can easily escape from the trap.  However it should be noted that even for large 

phonon-charge couplings, temperature increases the width of the polaron and as a result escape 

time reduces.   

 

Figure 37 : escapes time as a function of temperature and charge-phonon coupling. 

 

(eV/Å) 
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However at low charge phonon-coupling values there is interplay between depth of the trap and 

the effective width of the trap 

 

Figure 38 : Change in onsite energy at the donor site due to polaron formation 

.  Energy profile of the DNA consisted of an energy trap (donor site) due to the lower onsite 

energy of the GC WC base pair compared to the AT base pair. Polaron changes this energy trap 

by changing onsite energy. When a charge is introduced into the lattice it polarizes the media 

which stabilized the charge. This in turn reduces the energy of the charge. But now induced 

polarization also moves with charge creating a polaron. In order to investigate the temperature 

dependence on polaron formation we have computed average polaron width as,  

 

(eV/Å) 
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Where k=0..10 and  is characteristic time to identify the polaron. is the time at which 

charge escapes from the donor site and N is the length of the DNA. The k value for which above 

quantity is minimized is assumed to be the width of the polaron. 

  

 

Figure 39: Average energy change on the bridge due to polaron formation 

When polaron is formed it reduces the onsite energy of the system. This fact is used as a measure 

of polaron formations. In order to have energy drop we should have a negative y values and by 

calculating minimum of the above quantity the polaron width can be roughly estimated. However 

due to stochastic nature of the process, large number of realizations are needed in order to obtain 

an accurate value. But at the present time, such attempt is restricted due to computational cost 

associated with generating large number of realizations. Moreover charge transport experiments 

(eV/Å) 
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on DNA are carried out at single molecular level. Due to this reason, it may not worthwhile to 

study ensemble averages. As already mentioned in the earlier discussions, due to the stochastic 

nature of the process even for the same initial conditions, system can evolve in different paths.  

 

 

 

Figure 40 : Resultant change in the height of the trap due to changes in the bridge energy and the onsite energy due 
to polaron 

Figure 38 shows the change in onsite energy due to the formation of polaron. This value 

corresponds to the ε1 in the Figure 36.  Figure 39 shows change in the well height introduced by 

the polaron. This corresponds to the energy ε2 in the Figure 36. It could be noted that the energy  

ε2 is the average energy drop due to the polaron formation. A charge trapped at the donor site 

experience different barrier height depending on the values of energy ε1 and energy  ε2. As an 

 

 (eV/Å) 
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example, as illustrated in the Figure 40 the effective barrier height is reduced significantly due to 

polaron formation. As seen in the Figure 40 at high phonon charge coupling limit effective 

barrier height can be changed by around 0.3 eV. It should be noted that the barrier introduced by 

the GC trap is only 0.4 eV. At high phonon charge coupling limit with high temperature, a 

charge trapped at the donor site experience a barrier around 0.1 eV, whereas at low phonon 

charge coupling with low temperature region barrier almost unchanged resulting a charge 

trapped at a donor site to experience about 0.4 eV barrier height. It should be noted that at low 

phonon charge coupling limit temperature effects are not monotonic. Correspondingly the escape 

time is also shows non monotonic behavior. In summary effect of temperature on the charge 

transport properties shows very complex pattern. There are two main effects which determine the 

escape rate of a charge trapped at a donor site. In general, different realizations of the DNA form 

different type of polaron. The shape of the polaron formed is important because it changes the 

energy profile. For example is the small polaron if formed then it only introduce additional 

trapping due to increase in the height of the trap. However if a large polaron is formed it changes 

the effective height of the trap so that charge can move to neighboring site easily. But moving 

charge takes its polarization along with it, hence effectively polaron itself moves.   
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Chapter 5. Conclusions:  

 

We have studied the charge transport though DNA.  I-V characteristic was studied using non 

equilibrium Green function method. Whereas charge transfer between donor and acceptor sites 

was studied solving a stochastic nonlinearly coupled differential equations system which 

describes the dynamics of DNA. We have found the relatively small charge transfer integrals 

with large energy band gap results in thin energy bands. These thin energy bands are highly 

vulnerable to the structural fluctuations, structural defects, environmental effect and coupling to 

the external objects such as leads. Furthermore our investigation reveal that in order to have good 

conductance through DNA, the coupling between DNA and contacts needs to be roughly equal 

to the charge transfer integrals between DNA bases. Both higher coupling and lower coupling 

results in poor conductance through DNA. 

Mismatch base pair can act as defects in a DNA strand.  We focused our attention on G-A 

mismatch base pair as it only form very little structural changes. This introduces difficulties in 

order to identifying G-A mismatch base pairs by rapier enzyme which relies on structural 

abnormalities.  We have studied the effect of the G-A mismatch base pair on I-V characteristic 

and discovered that the presence of a mispair always reduces the current through homogeneous 

DNA strands. However due to the thin energy bands, G-A mismatched base pair results in either 

increase or decrease in current in the case of inhomogeneous DNA strand. Moreover we have 

found out that even though G-A mismatched base pair only introduces small structural changes it 

indeed changes the electronic properties of DNA for long distance. As an example we have 

found out that the effect of G-A mispair could be seen as far as 90 base pairs for a homogeneous 

DNA.  Even though this value is significantly smaller in the case of inhomogeneous DNA, G-A 

mispair changes the electrical properties of DNA significantly. We have found out some 
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characteristic peaks in the probability density functions which could be used to identify the 

presence of mismatched base pair. In summary, current voltage characteristic could be used to 

identify the DNA strands with mismatched base pairs.  At finite temperature DNA undergoes 

relatively large magnitude fluctuations. Especially these fluctuation changes the twist angel 

between DNA bases. Changes in twist angle directly impact on the current voltage characteristic 

of the DNA as charge transfer integrals are function of twist angle. We found a reduction in 

current as thermal fluctuations are introduced into the system. More over thermal fluctuations 

suppress the effects introduced by structural abnormalities, such as defects.  

The fact that DNA bases are loosely bounded by either through sugar phosphate backbone or 

through hydrogen bonds, make DNA is vulnerable to large structural fluctuations. This highly 

flexible nature of the DNA support extremely long range, in fact sometimes fast, charge transport 

via polaron assisted hoping.  We found out polaron formed in the DNA could propagate as long 

as 180 base pairs. However the formation of a polaron itself is a complex process. We found that 

due to stochastic nature of the system, not all realizations formed polarons even with same initial 

conditions.  

We have found very complex dependence of charge transport properties on charge lattice 

coupling strength and the temperature. These complex dependencies along with the fact that 

DNA charge transport is a stochastic process give rise to highly diverse outcomes of DNA 

charge transport experiments. In fact experimental researches have reported counterintuitive 

results on DNA charge transport in the literature. As most of the time these experiments are 

performed in a single molecule level, the diversity of these results could be attribute to the 

stochastic nature and the complex structural dynamics of the DNA.  We have performed 

systematic study to investigate charge escape from GC site as a function of temperature and 
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phonon charge coupling constant. The exact value of phonon charge coupling constant is 

unknown. In fact this value depends on the nature of the environment at which electron is 

introduced. For soft molecule like DNA structure factors like atomic distance can be changed 

significantly by introducing strain into the DNA. In such case phonon charge coupling could be 

varied which inturn facilitate different charge dynamics.  
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Chapter  6.    Future Directions 
 

(a)  Charge transport through DNA: Phase incoherent case 
In the present investigation we have only considered I-V characteristic of the DNA under phase 

coherence limit. We have assumed that a charge moving through the DNA doesn’t interact with 

any other electrons nor with lattice vibrations (phonons).  However this assumption is weak 

within the framework of the DNA as DNA undergoes high structural fluctuations and is subject 

to various phonon modes. On the other hand phase incoherence treatment is possible within non 

equilibrium green function method (Anantram et al. 2008). As an extension to the current study I 

would like to perform IV characteristic in phase incurrence limit.  

 

(b) Environmental influence on charge transport properties in DNA 
As mentioned in the introductory chapter environmental effects can influence charge transport 

properties via changing onsite energies of the DNA. Even though this problem requires all atom 

molecular dynamic simulations, an insight into the problem can be gained via mean field 

continuum approach described in the Chapter IV.Section 2.02. Now, in order to find the Eigen 

values of the system we have to solve nonlinear Eigen value equations where it’s Hamiltonian 

itself depends on the energy of the system.  

(c) Parameters for mean field computations 
Parameters for the coarse grained models need to be computed using first principle 

computations. In the present investigation we have used parameters reported by different 

research groups. However parameters are not available for mismatched base pairs such as G-A 

mispair. specially, dependence of charge transfer integral on the twist angle is not available for 

mispair. I would like to compute these parameters which can be used with tight binding.  
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(d) All atom QM/MM simulations to study polaron formation in DNA 
In order accurately describe the polaron formation in DNA at first principle level; one may need 

to utilize Quantum Mechanics - Molecular Mechanics (QM/MM) hybrid approach (Kamerlin, 

Haranczyk and Warshel 2008, Warshel and Levitt 1976). Particularly such treatment is 

inherently difficult due to extended size of the molecule. However it has been shown that, within 

the continuum mean field approach, a motion of a polaron be could controlled by an external 

potential (Zheng et al. 2006). It would be interesting to investigate such problem at the first 

principle level. 
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Appendix A. Stochastic Differential Equations 
Almost each and every process exposit in the nature are vulnerable to the noise.  Often 

assumptions are made in order to simplify the problems and system equations are generated 

without takeing the noise into the account.  However in the study of the DNA, both because the 

system dimension and the flexibility of the DNA the thermal noise becomes a significant factor 

which may not be safely disregard.  We have studied the thermal effects on DNA by introducing 

the temperature depended random force into the system equations. This additional small term 

now change the solution and related technique significantly in many prospective. A deterministic 

ordinary differential equation will produce an accurate solution for a given initial conditions. 

This solution will be unique for a given initial conditions. However when a stochastic process is 

present solution can evolve in different path even for a given initial conditions (Rößler 2009).   

This has an important consequence. For a deterministic ODE the accuracy of the solution can be 

improved by using higher order algorithms. In general a Runge-Kutta order four algorithm is 

considered as a standard algorithm for ODE. But for stochastic ordinary differential equation 

solvers the use of higher order algorithms may not be effective as the initial conditions itself are 

chosen from a random distribution.  Generally order two stochastic ODE solvers are believed to 

be sufficient. However for the system equation describing DNA it is necessary to use higher 

order ODE solves as in general the system tend to destabilized even with small error. For this 

reason we have used Runge-Kutta order four stochastic ODE solvers (Debrabant and Rößler 

2009, Kasdin 1995b, Kasdin 1995a).  

The common example for a stochastic process is the typical diffusion process. During the 

diffusion process a particle undergoes a random motion called Brownian motion. This is given 

by;  
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The first term is a deterministic term whereas the second term is a stochastic term.  Notice that 

the in the above equation, SDE has given as a differential form. This is because many stochastic 

processes are non differentiable, though continuous.  

A process such as Brownian motion could be mathematically characterized by the Wiener 

process. A Wiener process has following properties. 

1. Wt N(0,t) 

2. For each , the normal random variable  is independent of the random 

variables Wt  

3. Wiener process can be represented by a continuous path 

The starting point in solving an SDE is to define a chain rule for a stochastic differential, 

which is given by; 

 

Here  is a stochastic process. This is called Ito formula.  

 

 

First step toward the development of a solution method is to use Euler’s method.  The SDE 

analogy to the to the Euler’s method is called Euler’s-Maruyama  method (Maruyama 1955). 

For a SDE given by equation 1 the Euler’s-Maruyama method can be defined as; 
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The Euler’s-Maruyama method is order 0.5 method (Gikhman I. 1972) with respect to 

stochastic process. Due to this reason it lacks in accuracy. Even though higher order methods 

such as Milstein method can be generated from stochastic Taylor expansion this methods are 

seldom used in practice due to the necessity to provide partial derivatives explicitly. The 

common alternative used in ODE is Runge-Kutta methods. The order 1 Runge-Kutta 

methods are presented in equation 1 (Rumelin 1982). 

 

 

The random variables  can compute as; 

 

Where is chosen from N (0, 1). 
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Appendix B. Introduction to first principle calculations: 
 

The material properties of an atomic ensemble, a crystal or molecule such as a DNA base, is 

mainly determined by the behavior of valence electrons of the system. Valence electrons are the 

outermost electrons which are energetically active compares to inter electrons, called core 

electrons. Core electrons, in general, are paired and occupy filled orbital. During normal, low 

energy circumstances, only valence electrons contribute to the charge transport through many 

particle systems.  

Neutral material composes of equal amount of positive charge particles (nuclei) and negative 

charge particles (electrons). But proton mass is almost 1000 times larger than that of electrons. 

Since both these particles carry same charge, forces acting on them are same. Any nuclear 

movement is then followed by the electron instantaneously. This enables us to treat the nuclear 

coordinate in adiabatic limit and facilitates the separation of electronic coordinate from the 

nuclear coordinate. This adiabatic principle, called Born-Oppenheimer principle (Oppenheimer 

1927), enables treating the dynamics of the electron in frozen nuclear coordinate system.    

In general a Hamiltonian for many body systems can be written as; 

 

 

 

First term in the Hamiltonian  in equation (49) represents the kinetic energy of the moving 

electron whereas second term V ( ) represent the external position dependent potential. This 

potential is generated mainly by the different atoms of the system. The last term accounts for the 
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interaction between different electrons in the system. The electron-electron interaction energy 

operator  and kinetic energy operator are universal operators whereas external potential 

energy operator  is system dependent. In order to obtain the ground state energy of the 

system, one has to solve the Schrödinger equation given in the equation (50). But due to the 

many particle interaction term , the Hamiltonians is not separable and direct solution is 

highly computationally expensive. The presence of the last term makes finding solution for this 

system a formidable task.  

Section B.01 Kohan and Sham Density function theory (DFT) 
In 1965, Hohenberg Kohan and Sham have proposed an elegant method in order to overcome 

this difficulty (Kohn and Sham 1965, Hohenberg and Kohn 1964). In their proposal, all electron 

interaction had been replaced by an effective nonlocal potential. Furthermore they have proven 

that the total energy of the system is completely determined by the electron density. This has an 

important consequence; if one minimizes the total energy function of the system, the minimum 

value of the total energy is exactly equal to the ground state energy of the system (Jones and 

Gunnarsson 1989). In other words the density at which, the total energy minimize is exactly 

equal to the ground state particle density. The total energy of many particle systems can be 

represented by equation (51); 
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Where m is the mass of the electron and e is the charge. In the above representation the electron 
density is given by; 

 

 

This formulation produced set of n equations where n is equal to the number of particles in the 

system. Each particle is then subject to effective potential due to all other particles. In order to 

obtain ground state of a system, one must solve Schrödinger equations (53) self consistently. In 

this scheme one should first solve the equation (53) for a given initial set of wave functions. 

Then the resulted charge density yields new set of potentials, as potentials are function of particle 

density. New equation then again solve for wave functions. This process is repeated until a 

predetermined tolerance criteria is met.   

 

In this equation VH(r) is called Hatree potential (Almbladh and et al. 1983), which describes the 

interaction between two electrons at points in space r and r’. 

 

The VXC  represents the exchange correlation potential  .  

 

This exchange correlation energy function, EXC, in equation (55) is not known exactly (Uday and 

Rajagopal 1980, MacDonald and et al. 1980, Almbladh and Pedroza 1984). Hence it is necessary 

to utilize an approximate method in generating starting exchange correlation energies.  
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Section B.02       Local density approximation (LDA) 
One method to generate exchange correlation energy is to assume that exchange correlation 

energy at a given point r is that of homogeneous electronic gas with same density at point r 

(Wigner 1938, Kohn and Sham 1965, Hedin and Lundqvist 1971, Vosko and et al. 1980). This 

approximation, first prediction by Hohenberg Kohan, is the most widely used simplest 

assumption known as local density approximation (LDA) (Kohn and Sham 1965, Langreth and 

et al. 1981, Langreth and et al. 1983). This is given by equation (A.8).  

 

 

With LDA εXC is approximated with its homogeneous counterpart as; 

 

Even with these implications obtaining a solution for Kohan Sharm equation remains a 

formidable task. The main difficulties remain with the choice of suitable set of wave functions.  

Section B.03        Crystal lattice and Bloch Theorem 
The easy and obvious first choice is to use plane waves as a basis functions. But this choice 

introduces an additional difficulty. In order to describe an infinite number of atoms in continuous 

space requires infinite number of wave functions. This difficulty is then overcome by the use of 

Bloch theorem (Bloch 1929). Bloch theorem state that the properties of a wave function for a 

periodic lattice can be captured into a product of cell-periodic part, which captures all essential 

properties of the lattice, and continuous wave like part (Stoddart and Hanks 1978, Hanks and 

Stoddart 1979). Then the continues basis set can be substituted by a discrete set of plane wave 

basis set whose wave vectors are equal to the reciprocal lattice vector of the lattice. Resultant 

wave function can be written as in equation (59): 
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The use of plane wave with the Bloch theorem requires the periodicity. But for a molecule, such 

as a DNA base pair, it is difficult to define a periodic lattice. Continuous basis set is then 

required to deal with such systems. This difficulty can be somewhat overcome by using a large 

super cell which enclose the molecule and sufficiently large vacuum (Gollisch and Fritsche 

1981). This approach assumes that the super cell (Norman 1986, Mohn and Schwarz 1993, 

Krompiewski 1998) is so large that molecule in the neighboring cell does not feel each other.   

Section B.04        Beyond plane waves: Basis functions  
Even with such methods, the treatment of molecules remains questioning. More elegant way of 

dealing this is to use a basis set which closely resembles the atoms present in the system. For 

example Hydrogen atom only has a one “s” orbital whereas carbon atom has “s” and “p” orbital. 

On the other hand, if one only treats valence electrons in the computation then all first and 

second row elements share somewhat same configuration (Davidson and Feller 1986). Then one 

can define a set of basis function for each row in the periodic table. The advantage of such 

treatment is that the problem could be easily converged to the desired state as it now resembles 

the properties of the system.   

 

The most primitive type used is the Slater type functions (Slater 1930, Hehre, Stewart and Pople 

1969) . These functions correspond to a set of functions which decayed exponentially with 

distance from the nuclei. The computational cost associated with Slater type functions is 

tremendously high.   
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This difficulty comes with the monotonic dependence in r in the exponent. By using Gaussian 

type functions, where r has quadratic dependence in the exponent, computational cost can be 

reduced significantly, as now product of two Gaussian functions again produces a Gaussian 

function. The price we have to pay is the accuracy. But due to the computational ease, at present, 

Gaussian type functions (Hehre et al. 1969, Newton et al. 1969) are excessively in use. Slater 

functions could be approximated by the linear combination of Gaussian functions. By adding 

more exponents to the basis function it is possible to approximate Slater type closely.  

Section B.05       Minimum basis set 
The minimum basis set composes of a minimum number of basis function required to perform all 

atom computation. Commonly the basis set, STO-nG is used as a minimum basis set for 

molecules containing lighter atoms. (Newton et al. 1969) Where n represents number of 

Gaussian primitives use to construct the basis functions. Often minimum basis set is not 

sufficient for accurate results. The accuracy of the results can be increased by accurately 

selecting the basis set. There are two possible improvements. polarization functions (Hariharan 

and Pople 1973) and diffuse functions could be added to the valence orbital basis functions. This 

could add an additional flexibility to the basis set and it will help the accuracy of estimation of 

the complex electron distribution in a molecule.  As an example, in the minimal basis set 

hydrogen atom only contains s orbital. But when hydrogen atoms make bonds with some other 

atoms, the bond may not resemble correctly by only having s orbital due to lack of flexibility of 

the basis set. By adding an additional p orbital to the basis set of hydrogen atom would provide 

the needed flexibility and it would help to produce accurate bonding characterization. Another 

weakness of the minimum basis set is that it does not accurately represent the slowly decaying 

tail portion of the atomic orbital. This can be overcome by adding a shallow Gaussian orbital to 

the basis set. A * sign is used to indicate that polarization functions are added to the basis set 
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whereas a + sign is used to indicate that diffuse functions are added to the basis set. And 

additional * or + indicate that the light atoms also contain polarization function and diffuse 

functions respectively.  

Section B.06      Basis set selection 
Most commonly used basis set compose of more than one function to describe the valence 

electrons of the system. These basis sets are called split-valence basis sets commonly has the  

X-YZg format. X represents the number of Gaussian primitives in each core basis functions. The 

Y and Z indicate that each valence orbital composes of two basis functions and first function has 

Y number of Gaussian primitives and second function has Z number of Gaussian primitives. As 

an example the most commonly use basis function in DNA computations ,6-31G* (Davidson and 

Feller 1986, Moran et al. 2006) has six primitive Gaussians for  each core orbital and all its 

valence orbital are represent by two sets of functions. First function has 3 Gaussian primitives 

and the other has only one Gaussian primitive. Move over a polarization functions is also present 

in this basis set.  

As an example listing (1) illustrate the output of EMSL Basis Set Exchange Library(Schuchardt 

et al. 2007)  for carbon atom. 

 
! 3-21G  EMSL  Basis Set Exchange Library   9/8/10 1:44 PM 
! Elements                             References 
! --------                             ---------- 
!  H - Ne: J.S. Binkley, J.A. Pople, W.J. Hehre, J. Am. Chem. Soc 102 939 (1980) 
! Na - Ar: M.S. Gordon, J.S. Binkley, J.A. Pople, W.J. Pietro and W.J. Hehre,  
!          J. Am. Chem. Soc. 104, 2797 (1983). 
!  K - Ca: K.D. Dobbs, W.J. Hehre, J. Comput. Chem. 7, 359 (1986).  
! Ga - Kr: K.D. Dobbs, W.J. Hehre, J. Comput. Chem. 7, 359 (1986). 
! Sc - Zn: K.D. Dobbs, W.J. Hehre, J. Comput. Chem. 8, 861 (1987).  
!  Y - Cd: K.D. Dobbs, W.J. Hehre, J. Comput. Chem. 8, 880 (1987).  
! Cs     : A 3-21G quality set derived from the Huzinage MIDI basis sets. 
!          E.D. Glendening and D. Feller, J. Phys. Chem. 99, 3060 (1995) 
!    
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**** 
C     0  
S   3   1.00 
    172.2560000              0.0617669         
     25.9109000              0.3587940         
      5.5333500              0.7007130         
SP   2   1.00 
      3.6649800             -0.3958970              0.2364600         
      0.7705450              1.2158400              0.8606190         
SP   1   1.00 
      0.1958570              1.0000000              1.0000000         
**** 
 

 

Since these parameters is for 3-21G basis function, and C atom has electrons in 1s, 2s, 2p orbital; 

there will be three Gaussian determinants for core orbital (i.e. 1S) and the valence orbital 2S and 

2P should have two.  

Table 6 : 3-21 G basis set for C 

Atom       
C 172.256 0.0617669 3.66498 -0.395897 0.236400 0.195857 
 25.9109 0.3587940 0.770545 1.2158400 0.860619  
 5.53335 0.7007130     
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These functions then use as the starting point for computer molecular orbital computations.  
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Appendix C. Parameters for tight binding formulism 
 

Onsite energy and transfer integrals are usually calculated using first principle methods 

(Appendix B). In any first principle methods the first step is to select appropriate a basic set 

which specify the atomic orbital for all atoms present in the system. In the case of charge transfer 

properties in the DNA, where charge transfer integrals play a critical role, the natural selection is 

to use split valence triple zeta basis set, e.g. 6-31G++ or TZ2P, which describes the trail of the 

wave functions accurately. The tail of the wave function mainly determines the charge transfer 

integral as charge transfer integral depends on the effective overlap between two wave functions.  

In general the first step of such procedure is to obtain the optimal structure by total energy 

minimization methods describe in the Appendix C . The optimized atomic orbital (Porezag et al. 

1995) produced by this procedure is then serves as the basis functions for the transfer integral 

and onsite energy calculations.  

Section C.01 Fragmental Molecular orbital approach 
As an example, the molecular orbital for the DNA base can be written as a linear 

combination of the optimized atomic orbital .  

 

Where summation μ is over total number of atoms in the base and cμ is computed using first 

principle optimization. In this framework on-site energy of the base is given by the matrix 

element Tii=εii;   

 

The table 1 illustrates the ionization energies for the isolated base pairs. The absolute values of 

these energies depend on the computation methods employed. These energies were calculated, 



 

104 
 

for optimized isolated base pairs, using Amsterdam Density Function (ADF) software package 

with TZ2p split valence basis set. The cutoff distance of 10Ǻ was used to select atoms participate 

in the calculations.  We have computed the ionization energies described in Table 5 using dry 

DNA bases. This was done in order to mimic the experimental situations where the I-V 

characteristic is measured on the dry DNA. However there is a debate among the scientist about 

how dry is the dry DNA is.  It is commonly believed that even in the DNA which commonly 

considered as dry, consists of some water molecules bonded to it which never leaves. We haven’t 

considered this situation as it is not clear the extent of such hydration. Our calculation are 

performed in isolated DNA fragments, i.e. G or A. 

Section C.02 Transfer integral Computation 
The transfer integral between two molecular orbital  and is given by the matrix element Tij 

as; 

 

In order to accurately represent charge transfer through molecular fragments, the molecular 

orbital needs to be orthogonal to each other. But in general, computations are carried out with 

non-orthogonal fragmental molecular orbital basis sets (Mehrez and Anantram 2005). The 

correct charge transfer integral is then computed as; 

 

Where Sij is the overlap matrix in the molecular basis set is given by; 

 

In the above equation is the overlap matrix in the atomic basis set. Tij is the transfer matrix 

element in non orthogonal basis set given by; 
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Hμν is the Hamiltonian the atomic basis set (Kubar� et al. 2008). 
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Appendix D. Parallel and Distributed Computing 
 

Even though processing power of modern computers are significantly higher than that of a 

decade ago computers the trend is flattening out. Moreover manufactures has started to integrate 

more and more processing units (cores) into a central processing units (CPU) rather than trying 

to develop faster single core CPU. Though this has obvious advantage over power consumption, 

harnessing the collective computational power is challenging.   In this prospective parallel and 

distributed high performance computing is beginning to play an important part in future science.  

The main objective of a computational scientist is to process input data in a meaningfull way 

producing new information about a given problem.  This question then can be  translated into 

three main steps; feeding data into the main processing unit, processing data and writing new 

information out.   The program performance depends on the way these three sections perform. 

(a) Inputs 
 

Inputs can be fed into the program by many means. It can be read from the file in the hard 

disk each time it needed, or it can be read from the hard disk once and store in a variable in a 

memory location. Though these two mechanisms serve the same purpose, performancewise it has 

immense difference.   Typically if data reside in the hard disk the maximum attainable data 

transfer rate is roughly 70MB/s whereas if data reside in the shared memory, with Intel xeon 

CPU, up to 32 GB/s data transfer rate can be achieved. If data resided in a CPU cash memory 

then computation can access to those memory faster than if it is in the main memory more over if 

it is in a register then CPU can access it even faster, within few flop delay.  The careful 

management of data flow would change program run time from days to hours for large data 

intensive computations.  
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Figure 41 : Schematic illustration of a system architecture of a computer memory hierarchy 

Modern computer architecher had been designed to support large data management 

requirements. For this reason the data transfer between main memory and the cash is performed 

in data chunks rather than individual elements. Hence when a program requests for a data from 

memory, it usually receives a chunk of data from the memory.  Since the data transfer in an 

expensive operation it is important to design the program data structure in such a way that once a 

data request if fulfill program perform as much as computations on current data in the cash 

before requesting another data from main memory.  

(b) Data layout 
 

The present computational problem the input data are wave function at each site (its real and 

imaginary part), lattice displacement and twist angle, first derivative of lattice displacement and 

twist angle. Since the Hamiltonian operates on only nearest neighbors it is fruitful to use 

ALU 
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Main Memory 

      

Hard Disk 
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contiguous data allocation. The continuous memory space of main memory can be allocated in C 

language using “malloc” command.  

ptr=(cast-type*)malloc(byte-size);  

This command dynamically allocates a continuous memory space of size given in bytes and 

returns a reference to the memory location.  

The Figure 42 shows two possible data layouts. Both one dimensional layout consist of same 

number of data and memory requirement is also same.  In the first situation data is arranged as 

structure of arrays whereas in the second format data is arranged as array of structures. The main 

difference of these two situations is when the program asks for Y1 (y stretching) data element, 

computer memory management system delivers first few elements of the array (i.e. Y2, Y3 …). 

But in order to compute the next time step of Y1 it also needs the value of Θ1 (twist angle), Ω1 

(angular acceleration) etc. Owing to the fact CPU only has limited cash memory, each time 

program requires new data element (say Θ1 ) it will wipe out the rest of previous data resides in 

the cash (i.e. Y2, Y3 …).  Since memory operations are relatively costly operations, in themes of 

flops, it is preferable to use second data layout. In this method data is stored in a structured 

fashion, so that the data request for data element Y1 brings almost the entire required elements 

into the cash. Now the processor can perform computation without waiting for data. 
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Figure 42 : Array of structures Vs Structure of arrays. 

Listing 1 demonstrates the declaration of an array of structures which is used in the program.  

typedef struct 
 { 
          double HR; 
          double HI; 
    double XR; 
          double XI; 
    double TH; 
    double OM; 
          double Y; 
          double A; 
  
 } Base_Pair; 
 

Base_Pair *BP; 
BP=  malloc (N*sizeof(Base_Pair)); 
 

(c) Parallel Processing 
 

In order to speed up the computation, many processing cores have been used in the 

simulations. But this introduced additional overhead. The computations are carried out at a 

cluster where each processing unit (node) equipped with its own hardware including its own 

memory space. A particular node only has exclusive access to its own memory space. This 

requires distribution of data trough out the processing nodes prior to any computation and 
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gathering results back after computations. Massage Passing interface (MPI) was used to 

communicate between nodes.  

MPI can be initiated using MPI_Init commands. This command takes all arguments which are 

used to initiate the main process and then initial addition number of process requested by the user 

with same arguments as with main program. Each process is then assigned as identification 

number from zero to number of process and communication reference point (communicator) is 

provided.  

int MPI_Init(int *argc, char ***argv) 

Input data is then distributed throughout the processing units. It is important to balance 

computational load throughout all processing node since if one node becomes over loaded with 

large number of data then it will become a bottleneck and all other processors has to wait till 

overloaded process to finish. Distributing equal number of data elements to each node is an 

important task in terms of performance. Initial data distribution was carried out by MPI_Scattre 

command which as following syntax. Since MPI_Scatter is a collective operation each process in 

the communicator should call this simultaneously.  

 
int MPI_Scatter (  
        void *sendbuf,  
        int sendcnt,  
        MPI_Datatype sendtype,  
        void *recvbuf,  
        int recvcnt,  
        MPI_Datatype recvtype,  
        int root,  
        MPI_Comm comm ) 
 

In this command first argument sendbuf refers to the pointer to the input data, second and third 

argument refer to the number of data to be sent to each node and the type of data is to be sent.  
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Next three arguments refer to the pointer to the receiving variable, number of elements to be 

received, and the type of data to be expected respectively.  Seventh argument specify the node 

which is initiating the scattering process and the last argument is the communicator generated by 

the MPI_Init() command.  

As illustrated by listing 1 in order to compute a particular Yn Θn Ψn values program need its 

neighboring values also. When input data is distributed across different nodes, the computation 

of edge element brings additional problems hence now the neighboring elements are resided in 

different node. So at each calculation steps these values should move to the computation node.  

Point to point communication is performed using MPI_Send() and MPI_Recv() commands. 

 
int MPI_Send( void *buf, int count, MPI_Datatype datatype, int dest,int tag, MPI_Comm comm ) 
int MPI_Recv( void *buf, int count, MPI_Datatype datatype, int source,int tag, MPI_Comm 
comm, MPI_Status *status ) 
 
 
Since above commands are blocking commands the possibility of getting into a deadlock 

situation is significantly high. In order to avoid such situation I have used the combine version of 

the send receive command.  

int MPI_Sendrecv( void *sendbuf, int sendcount, MPI_Datatype sendtype,int dest, int 
sendtag,void *recvbuf, int recvcount, MPI_Datatype recvtype,int source, int recvtag, 
MPI_Comm comm, MPI_Status *status ) 
 

In this command first five arguments describe the behavior of outgoing data, whereas the next 

five describe the incoming data. Last argument returns the status of the receiving process. Each 

process has a rank in the communicator. The initial data distribution was done acceding to the 

hierarchy of the processes. Then each process need to send its edge data to the processors who’s 

rank is one less or greater than its own. Following code segment illustrate the data distribution. 
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MPI_Comm_size ( MPI_COMM_WORLD, &size ); 
MPI_Comm_rank(MPI_COMM_WORLD, &myrank); 
M=N/size; 
Send_count_start=M;   
  Destination=myrank+1; 
  if (Destination>size-1) 
  { 
   Destination=0; 
  } 
  Origin=myrank-1; 
  if (Origin<0) 
  { 
    Origin=size-1; 
  } 
MPI_Sendrecv( &BP[Send_count_start], ghost,MPI_DOUBLE,Destination,4,&BP[0], 
ghost,MPI_DOUBLE, Origin,4,MPI_COMM_WORLD, &M_status); 
  Send_count_start=ghost; 
  if (Send_count_start>N) 
  { 
   Send_count_start=0; 
  } 
  Destination=myrank-1; 
  if (Destination<0) 
  { 
   Destination=size-1; 
  } 
  Origin=myrank+1; 
  if (Origin>size-1) 
  { 
    Origin=0;  }     
 
MPI_Sendrecv(&BP[Send_count_start],ghost,MPI_DOUBLE,Destination,3, &BP[M+ghost], 
ghost,MPI_DOUBLE, Origin,3,MPI_COMM_WORLD, &M_status);  
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Figure 43 : Data distribution pattern for MPI parallel programming. 

Finally escape was determined as the charge density of donor site reach the threshold value. For 

this purpose previously scattered data need to be gathered into one location. This process is 

achieved by the MPI_Gather() command.  

int MPI_Gather ( void *sendbuf, int sendcnt, MPI_Datatype sendtype,void *recvbuf, int 
recvcount, MPI_Datatype recvtype,  
int root, MPI_Comm comm ) 
 

(d) Output 
 

In order to avoid race condition, where many processes try to write into same location, an 

output oriented algorithm was used. Since it is possible to read same input by several processes 

without any apparent consequence the output oriented algorithm is preferred.  

(e) Performance considerations 
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The speedup gain through parallel execution is depends on both computation time and 

communication time as in parallel programs communication serves as an overhead compares to 

serial version.  

 

 

 

 

As given by the Amdahl’s law the denominate factor of the speed up in a parallel algorithm is 

governs by the serial portion of the algorithm. Simple arithmetic justifies that even for a code 

which is 90% runs in parallel mode the maximum achievable speed up is only 4.7. Due to this 

reasons for small base pair sequences the simulation was executed in batch mode. In which serial 

code was executed on different nodes with different initial conditions. But as DNA strand gets 

larger parallel algorithm was used with 4 nodes per run. This allows keeping communication 

overhead under control while achieving additional advantage due to small dataset which 

facilitate efficient use of cash memory.  
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Appendix E. Software  

(a) Charge transport through DNA  

(i) Main Program (C/C++ MPI) 
 
/******************************************************************************/ 
/* 
  Purpose: 
    Structural Fluctuation and Radiation Damage to DNA  
  Licensing: 
    This code is distributed under the GNU LGPL license. 
  Modified: 
   16 Aug 2010 
  Parallel Version: C MPI 
  Author: 
Neranjan Edirisinghe 
*/ 
/******************************************************************************/ 
 
# include "stochastic_rk.h" 
 
 
double fi ( double x ); 
double gi ( double x ); 
/******************************************************************************/ 
 
int main(argc , argv) 
int argc;  /* contains number of arguments */ 
char **argv; /* contains the arguments themselves */ 
{//{1}  
/******************************************************************************/ 
 
/* variable definitoion*/ 
 Int 
Position,n,M,size,myrank,QD,i,j,len,Energy_Min,N_Index,Red_Count,Send_count_start,Syncronization_Interval,Exi
t_Switch,Buffer_Size,Local_Index; 
 double  *E,*THO,X,QW1,THO1,V,h,E1,E2,*Total_Energy,q=1; 
 double 
count,t,Kb,gma,m,Tresh_hold,Tresh_hold_Evoluation,Energy_Tol,Norm1,radiation_rate,Relax_Time,Hydration_En
ergy; 
    double t0 = 0.0; 
    double tn = 1; 
    int 
Radiation_Location,seed,T,Print_Interval,Pre_Escape2,Pre_Escape1,Energy_Correction_Counter,Parallel_debug,
EXIT_ON,Buffer_Index; 
 int 
compleate,Escaped,Restart_Switch,Radiation_Study,Transport_Study,Energy_Correction_Interval,Radiation_Hit,P
rinting_On; 
 int Buffer_Print_Interval,Buffer_Print_Advance; 
 double Elaped_time,Parati; 
 char *Initial; 
 char Prefix[250]={0}; 
 char OutPut[250]={0}; 
 char *Restart_File; 
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 char *OutPut_File; 
 char output_file [250]; 
 char Index[250] ={0}; 
 float CH; 
 struct stat buffer; 
 int    
status,Destination,Origin,Job_ID,Initial_Given,Initial_Temperature,Final_Temperature,Temperature_Interval; 
  
 Norm Exit_Conditions; 
 MPI_Status M_status; 
  Base_Pair *BP,*y1,*y2,*y0,*ytemp; 
  Base_Pair *BP_MAIN; 
  Radiation Ray; 
  Base *Strand; 
  Storage_Base_Pair *Output_Buffer; 
  Storage_Base_Pair *Master_Output_Buffer; 
  Cell cell_acceptor; 
  Cell cell_donor; 
  Base base_acceptor; 
  Base base_donor; 
  div_t nh; 
  
      
/******************************************************************************/ 
/* 
Open file for write output 
*/ 
/******************************************************************************/  
 FILE *pfile; 
 FILE *Restart; 
 FILE *IN; 
 FILE *Data; 
 FILE *yfile; 
 FILE *afile; 
 FILE *tfile; 
 FILE *ofile; 
 FILE *wfile; 
 FILE *hfile; 
 FILE *tmfile; 
  
 
/******************************************************************************/ 
/* 
Define base pair structure 
*/ 
/******************************************************************************/ 
  BP_MAIN=  malloc (N*sizeof(Base_Pair)); 
  if (BP_MAIN == NULL)  
  {//{2}  
   printf("error defining BP_MAIN  "); 
   exit(EXIT_FAILURE); 
  }//{2}  
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  BP=  malloc (N*sizeof(Base_Pair)); 
  if (BP == NULL)  
  {//{2}  
   printf("error defining BP  "); 
   exit(EXIT_FAILURE); 
  }//{2}  
 
   
   
/******************************************************************************/ 
  /******************************************************************************/ 
/* 
Define E variable 
*/ 
/******************************************************************************/ 
  E= malloc (N*sizeof(double)); 
  if (E == NULL)  
  {//{2}  
   printf("error defining E  "); 
   exit(EXIT_FAILURE); 
  }//{2}  
/******************************************************************************/ 
/* 
Define THO variable 
*/ 
/******************************************************************************/ 
  THO=malloc (N*sizeof(double)); 
  if (THO == NULL)  
  {//{2}  
   printf("error defining THO  "); 
   exit(EXIT_FAILURE); 
  }//{2}  
/******************************************************************************/ 
  //IN=fopen(argv[1],"r"); 
MPI_Init(&argc, &argv); 
MPI_Comm_size ( MPI_COMM_WORLD, &size ); 
MPI_Comm_rank(MPI_COMM_WORLD, &myrank); 
M=N/size; 
  Strand=  malloc ((M+2*ghost)*sizeof(Base)); 
  if (Strand == NULL)  
  {//{2}  
   printf("error defining Strand  "); 
   exit(EXIT_FAILURE); 
  }//{2}  
 
  Total_Energy=  malloc ((M+2*ghost)*sizeof(double)); 
  if (Strand == NULL)  
  {//{2}  
   printf("error defining Strand  "); 
   exit(EXIT_FAILURE); 
  }//{2} 
   
  y1=malloc ((M+2*ghost)*sizeof(Base_Pair)); 
  if (y1 == NULL)  
  { 
   printf("error defining d1  "); 



 

118 
 

   exit(EXIT_FAILURE); 
  } 
   
  y2=malloc ((M+2*ghost)*sizeof(Base_Pair)); 
  if (y2 == NULL)  
  { 
   printf("error defining d2  "); 
   exit(EXIT_FAILURE); 
  } 
 
  y0=malloc ((M+2*ghost)*sizeof(Base_Pair)); 
  if (y0 == NULL)  
  { 
   printf("error defining d2  "); 
   exit(EXIT_FAILURE); 
  } 
   
   
 
  ytemp=malloc ((M+2*ghost)*sizeof(Base_Pair)); 
  if (ytemp == NULL)  
  { 
   printf("error defining dtemp  "); 
   exit(EXIT_FAILURE); 
  } 
 
if (myrank==0) 
{//{2}    
 if (DEBUG==0) 
 {//{3}  
  Data=fopen(argv[3],"r"); 
 }//{3}  
 else 
 {//{3}  
  Data=fopen("data.txt","r"); 
 }//{3}  
  fscanf (Data, "%f", &CH); 
  X=CH; 
  fscanf (Data, "%f", &CH); 
  Tresh_hold=CH; 
  fscanf (Data, "%f", &CH); 
  Tresh_hold_Evoluation=CH; 
  fscanf (Data, "%d", &QD); 
  fscanf (Data, "%d", &Print_Interval); 
  fscanf (Data, "%d", &Restart_Switch); 
  fscanf (Data, "%f", &CH); 
  radiation_rate=CH; 
  fscanf (Data, "%f", &CH); 
  Relax_Time=CH; 
  fscanf (Data, "%d", &Red_Count); 
  fscanf (Data, "%d",&Radiation_Study); 
  fscanf (Data, "%d",&Transport_Study); 
  fscanf (Data, "%d",&Energy_Correction_Interval); 
  fscanf (Data, "%d",&Syncronization_Interval); 
  fscanf (Data, "%d",&Parallel_debug); 
  fscanf (Data, "%d",&T); 
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  fscanf (Data, "%d",&Initial_Given); 
  fscanf (Data, "%d",&Initial_Temperature); 
  fscanf (Data, "%d",&Final_Temperature); 
  fscanf (Data, "%d",&Temperature_Interval); 
  fscanf (Data, "%d",&Printing_On); 
  fscanf (Data, "%d",&Buffer_Size); 
  fclose(Data); 
  printf ("    Restart             :  "); 
  printf ( "%d\n    ", Restart_Switch); 
 
}//{2}  
/******************************************************************************/ 
MPI_Barrier(MPI_COMM_WORLD); 
if (Parallel_debug) 
{//{2}  
 printf(" I have reached BC START point %d \n",myrank); 
}//{2}  
 
MPI_Bcast(&X,1,MPI_DOUBLE,0,MPI_COMM_WORLD); 
MPI_Bcast(&Tresh_hold,1,MPI_DOUBLE,0,MPI_COMM_WORLD); 
MPI_Bcast(&Print_Interval,1,MPI_INT,0,MPI_COMM_WORLD); 
MPI_Bcast(&Restart_Switch,1,MPI_INT,0,MPI_COMM_WORLD); 
MPI_Bcast(&Red_Count,1,MPI_INT,0,MPI_COMM_WORLD); 
MPI_Bcast(&Relax_Time,1,MPI_DOUBLE,0,MPI_COMM_WORLD); 
MPI_Bcast(&radiation_rate,1,MPI_DOUBLE,0,MPI_COMM_WORLD); 
MPI_Bcast(&Radiation_Study,1,MPI_INT,0,MPI_COMM_WORLD); 
MPI_Bcast(&Transport_Study,1,MPI_INT,0,MPI_COMM_WORLD); 
MPI_Bcast(&Energy_Correction_Interval,1,MPI_INT,0,MPI_COMM_WORLD); 
MPI_Bcast(&QD,1,MPI_INT,0,MPI_COMM_WORLD); 
MPI_Bcast(&Syncronization_Interval,1,MPI_INT,0,MPI_COMM_WORLD); 
MPI_Bcast(&Parallel_debug,1,MPI_INT,0,MPI_COMM_WORLD); 
MPI_Bcast(&T,1,MPI_INT,0,MPI_COMM_WORLD); 
MPI_Bcast(&Initial_Given,1,MPI_INT,0,MPI_COMM_WORLD); 
MPI_Bcast(&Initial_Temperature,1,MPI_INT,0,MPI_COMM_WORLD); 
MPI_Bcast(&Final_Temperature,1,MPI_INT,0,MPI_COMM_WORLD); 
MPI_Bcast(&Temperature_Interval,1,MPI_INT,0,MPI_COMM_WORLD); 
MPI_Bcast(&Printing_On,1,MPI_INT,0,MPI_COMM_WORLD); 
MPI_Bcast(&Buffer_Size,1,MPI_INT,0,MPI_COMM_WORLD); 
MPI_Bcast(&Tresh_hold_Evoluation,1,MPI_DOUBLE,0,MPI_COMM_WORLD); 
if (Parallel_debug) 
{//{2}  
printf(" I have reached BC point %d \n",myrank); 
}//{2}  
/*******************************************************************************/ 
 
  Output_Buffer=  malloc (M*Buffer_Size*sizeof(Storage_Base_Pair)); 
  if (Output_Buffer == NULL)  
  {//{2}  
   printf("error defining Output_Buffer  "); 
   exit(EXIT_FAILURE); 
  }//{2}  
 
   
  Master_Output_Buffer=  malloc (N*Buffer_Size*sizeof(Storage_Base_Pair)); 
  if (Master_Output_Buffer == NULL)  
  {//{2}  
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   printf("error defining Master_Output_Buffer  "); 
   exit(EXIT_FAILURE); 
  }//{2}  
   
 
Hydration_Energy=12.27; 
 //T=0; 
 compleate=1; 
 if (DEBUG==0) 
 {//{2} 
  Initial=argv[1]; 
 }//{2} 
 else 
 {//{2} 
  Initial="L.1"; 
 }//{2} 
 
 len=strlen(argv[1]); 
 strncpy(Index,Initial+2,len-2); 
 N_Index=atoi(Index); 
     
 Job_ID=atoi(argv[4]); 
 //if (Parallel_debug) 
 //{//{2}  
  printf("%d \n",N_Index); 
 //} 
 seed = pow(N_Index,2); 
 printf("%d \n",seed); 
 /******************************************************************************/ 
PutSeed(seed); 
 
while (compleate) 
{//{2} 
printf("done\n %d %d \n",T,myrank); 
Elaped_time=0; 
Elaped_time=-MPI_Wtime(); 
 
 
 
Ray.Sub_unit=0; 
Ray.Position=0; 
Ray.Ray_Hit=0; 
cell_acceptor.Initiate=0; 
cell_acceptor.Sub_unit=0; 
cell_acceptor.Position=0; 
base_acceptor.well_depth=0; 
base_acceptor.absorption=0; 
cell_donor.Initiate=0; 
cell_donor.Sub_unit=0; 
cell_donor.Position=0; 
base_donor.well_depth=0; 
base_donor.absorption=0; 
Pre_Escape2=Pre_Escape1=1; 
 
/*******************************************************************************/ 
// Initialte Variable BP 
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/*******************************************************************************/ 
 for (j=0;j<N;j++) 
 {//{3} 
  BP[j].HR=0.0; 
  BP[j].XR=0.0; 
  BP[j].HI=0.0; 
  BP[j].XI=0.0; 
  BP[j].Y=0.0; 
  BP[j].A=0.0; 
  BP[j].OM=0.0; 
  BP[j].TH=0.0; 
 
  BP_MAIN[j].HR=0.0; 
  BP_MAIN[j].XR=0.0; 
  BP_MAIN[j].HI=0.0; 
  BP_MAIN[j].XI=0.0; 
  BP_MAIN[j].Y=0.0; 
  BP_MAIN[j].A=0.0; 
  BP_MAIN[j].OM=0.0; 
  BP_MAIN[j].TH=0.0; 
 
  
   
   
 }//{3} 
 
 
 for (j=0;j<M+2*ghost;j++) 
 {//{3} 
  Strand[j].well_depth=0; 
  Strand[j].absorption=0; 
  Total_Energy[j]=0; 
  y1[j].HR=0.0; 
  y1[j].XR=0.0; 
  y1[j].HI=0.0; 
  y1[j].XI=0.0; 
  y1[j].Y=0.0; 
  y1[j].A=0.0; 
  y1[j].OM=0.0; 
  y1[j].TH=0.0;  
  y2[j].HR=0.0; 
  y2[j].XR=0.0; 
  y2[j].HI=0.0; 
  y2[j].XI=0.0; 
  y2[j].Y=0.0; 
  y2[j].A=0.0; 
  y2[j].OM=0.0; 
  y2[j].TH=0.0;   
  ytemp[j].HR=0.0; 
  ytemp[j].XR=0.0; 
  ytemp[j].HI=0.0; 
  ytemp[j].XI=0.0; 
  ytemp[j].Y=0.0; 
  ytemp[j].A=0.0; 
  ytemp[j].OM=0.0; 
  ytemp[j].TH=0.0; 
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 }//{3} 
 for (j=0;j<N;j++) 
 {//{3} 
  E[j]=0; 
  THO[j]=0; 
 }//{3} 
 
 
 
 
    
 if (myrank==0) 
   {//{3} 
     if (!Restart_Switch) 
     {//{4} 
   
 /******************************************************************************/ 
   /* 
   Creat Input Files 
   */ 
  
 /******************************************************************************/ 
      if (Initial_Given) 
      {//{5} 
        
         if (DEBUG==0) 
         {//{6} 
          Initial=argv[2]; 
         }//{6} 
         else 
         {//{6} 
          Initial="L.1"; 
         }//{6} 
          
       sprintf(output_file, "%d", T); 
       strcat(OutPut,Initial); 
       strcat(OutPut,"_Displacement_Initial_"); 
       strcat(OutPut,output_file); 
       strcat(OutPut,".txt"); 
       //printf("%s\n",OutPut); 
       OutPut_File=OutPut; 
       yfile=fopen(OutPut_File,"r"); 
       len=strlen(OutPut); 
        
       for ( i = 0; i < len ;i++) 
        {//{6} 
         OutPut[i]=0; 
        }//{6} 
        //itoa (T,output_file,10); 
       sprintf(output_file, "%d", T); 
       strcat(OutPut,Initial); 
       strcat(OutPut,"_Velocity_Initial_"); 
       strcat(OutPut,output_file); 
       strcat(OutPut,".txt"); 
       //printf("%s\n",OutPut); 
       OutPut_File=OutPut; 
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       afile=fopen(OutPut_File,"r"); 
       len=strlen(OutPut); 
        for ( i = 0; i < len ;i++) 
        {//{6} 
         OutPut[i]=0; 
        }//{6} 
 
        //itoa (T,output_file,10); 
       sprintf(output_file, "%d", T); 
       strcat(OutPut,Initial); 
       strcat(OutPut,"_Angle_Initial_"); 
       strcat(OutPut,output_file); 
       strcat(OutPut,".txt"); 
       //printf("%s\n",OutPut); 
       OutPut_File=OutPut; 
       tfile=fopen(OutPut_File,"r"); 
       len=strlen(OutPut); 
        for ( i = 0; i < len ;i++) 
        {//{6} 
         OutPut[i]=0; 
        }//{6} 
 
        //itoa (T,output_file,10); 
       sprintf(output_file, "%d", T); 
       strcat(OutPut,Initial); 
       strcat(OutPut,"_Anguler_Velocity_Initial_"); 
       strcat(OutPut,output_file); 
       strcat(OutPut,".txt"); 
       //printf("%s\n",OutPut); 
       OutPut_File=OutPut; 
       ofile=fopen(OutPut_File,"r"); 
       len=strlen(OutPut); 
        for ( i = 0; i < len ;i++) 
        {//{6} 
         OutPut[i]=0; 
        }//{6} 
 
        //itoa (T,output_file,10); 
       sprintf(output_file, "%d", T); 
       strcat(OutPut,Initial); 
       strcat(OutPut,"_Electron_Initial_"); 
       strcat(OutPut,output_file); 
       strcat(OutPut,".txt"); 
       //printf("%s\n",OutPut); 
       OutPut_File=OutPut; 
       wfile=fopen(OutPut_File,"r"); 
       len=strlen(OutPut); 
        for ( i = 0; i < len ;i++) 
        {//{6} 
         OutPut[i]=0; 
        }//{6} 
 
        //itoa (T,output_file,10); 
       sprintf(output_file, "%d", T); 
       strcat(OutPut,Initial); 
       strcat(OutPut,"_Hole_Initial_"); 
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       strcat(OutPut,output_file); 
       strcat(OutPut,".txt"); 
       //printf("%s\n",OutPut); 
       OutPut_File=OutPut; 
       hfile=fopen(OutPut_File,"r"); 
       len=strlen(OutPut); 
        for ( i = 0; i < len ;i++) 
        {//{6} 
         OutPut[i]=0; 
        }//{6} 
 
        //itoa (T,output_file,10); 
       sprintf(output_file, "%d", T); 
       strcat(OutPut,Initial); 
       strcat(OutPut,"_Time_Initial_"); 
       strcat(OutPut,output_file); 
       strcat(OutPut,".txt"); 
       //printf("%s\n",OutPut); 
       OutPut_File=OutPut; 
       tmfile=fopen(OutPut_File,"r"); 
       len=strlen(OutPut); 
        for ( i = 0; i < len ;i++) 
        {//{6} 
         OutPut[i]=0; 
        }//{6} 
     
    
 /******************************************************************************/ 
       rewind(yfile); 
       rewind(afile); 
       rewind(tfile); 
       rewind(ofile); 
        
       for (j=0;j<N;j++) 
       {//{6} 
         
        if(j<200) 
        { 
         fscanf (yfile, "%f", &CH); 
         BP_MAIN[j].Y=CH; 
         fscanf (afile, "%f", &CH); 
         BP_MAIN[j].A=CH; 
         fscanf (tfile, "%f", &CH); 
         BP_MAIN[j].TH=CH; 
         fscanf (ofile, "%f", &CH); 
         BP_MAIN[j].OM=CH; 
         BP_MAIN[j].XR=0; 
         BP_MAIN[j].XI=0; 
         BP_MAIN[j].HR=0; 
         BP_MAIN[j].HI=0; 
        } 
        else 
        {   Position=256; 
         while (abs(Position)>200) 
         { 
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 Position=fabs(Normal(0,1))*200; 
         } 
        
 BP_MAIN[j].Y=BP_MAIN[Position].Y; 
        
 BP_MAIN[j].A=BP_MAIN[Position].A; 
        
 BP_MAIN[j].TH=BP_MAIN[Position].TH; 
        
 BP_MAIN[j].OM=BP_MAIN[Position].OM; 
         BP_MAIN[j].XR=0; 
         BP_MAIN[j].XI=0; 
         BP_MAIN[j].HR=0; 
         BP_MAIN[j].HI=0; 
 
 
        } 
          
        
         
       }//{6} 
       
 
         fclose(yfile); 
        fclose(afile); 
        fclose(tfile); 
        fclose(ofile); 
        fclose(wfile); 
        fclose(hfile); 
        fclose(tmfile); 
 
        
      
      }//{5} 
      else 
      {//{5} 
       if (T==Initial_Temperature) 
       {//{6} 
        for (j=0;j<N;j++) 
        {//{7} 
         BP_MAIN[j].Y=0; 
         Parati=Normal(0, 1); 
         if (Parati>0) 
         {//{8} 
        
 BP_MAIN[j].A=Maxwell_Boltzman(0.5,T,0); 
         }//{8} 
         else 
         {//{8} 
          BP_MAIN[j].A=-
Maxwell_Boltzman(0.5,T,0); 
         }//{8} 
         Parati=Normal(0, 1); 
         if (Parati>0) 
         {//{8} 
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          BP_MAIN[j].OM= 
Maxwell_Boltzman(0.5,T,1); 
         }//{8} 
         else 
         {//{8} 
          BP_MAIN[j].OM=-
Maxwell_Boltzman(0.5,T,1); 
         }//{8} 
         BP_MAIN[j].TH=0; 
        }//{7} 
         
       }//{6} 
       else 
       {//{6} 
        T=T-Temperature_Interval;  
          if (DEBUG==0) 
          {//{7} 
           Initial=argv[1]; 
          }//{7} 
          else 
          {//{7} 
           Initial="L.1"; 
          }//{7} 
           
        sprintf(output_file, "%d", T); 
        strcat(OutPut,Initial); 
        strcat(OutPut,"_Displacement_Initial_"); 
        strcat(OutPut,output_file); 
        strcat(OutPut,".txt"); 
        printf("%s\n",OutPut); 
        OutPut_File=OutPut; 
        yfile=fopen(OutPut_File,"r"); 
        len=strlen(OutPut); 
         for ( i = 0; i < len ;i++) 
         {//{7} 
          OutPut[i]=0; 
         }//{7} 
 
         //itoa (T,output_file,10); 
        sprintf(output_file, "%d", T); 
        strcat(OutPut,Initial); 
        strcat(OutPut,"_Velocity_Initial_"); 
        strcat(OutPut,output_file); 
        strcat(OutPut,".txt"); 
        //printf("%s\n",OutPut); 
        OutPut_File=OutPut; 
        afile=fopen(OutPut_File,"r"); 
        len=strlen(OutPut); 
         for ( i = 0; i < len ;i++) 
         {//{7} 
          OutPut[i]=0; 
         }//{7} 
 
         //itoa (T,output_file,10); 
        sprintf(output_file, "%d", T); 
        strcat(OutPut,Initial); 
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        strcat(OutPut,"_Angle_Initial_"); 
        strcat(OutPut,output_file); 
        strcat(OutPut,".txt"); 
        //printf("%s\n",OutPut); 
        OutPut_File=OutPut; 
        tfile=fopen(OutPut_File,"r"); 
        len=strlen(OutPut); 
         for ( i = 0; i < len ;i++) 
         {//{7} 
          OutPut[i]=0; 
         }//{7} 
 
         //itoa (T,output_file,10); 
        sprintf(output_file, "%d", T); 
        strcat(OutPut,Initial); 
       
 strcat(OutPut,"_Anguler_Velocity_Initial_"); 
        strcat(OutPut,output_file); 
        strcat(OutPut,".txt"); 
        //printf("%s\n",OutPut); 
        OutPut_File=OutPut; 
        ofile=fopen(OutPut_File,"r"); 
        len=strlen(OutPut); 
         for ( i = 0; i < len ;i++) 
         {//{7} 
          OutPut[i]=0; 
         }//{7} 
 
         //itoa (T,output_file,10); 
        sprintf(output_file, "%d", T); 
        strcat(OutPut,Initial); 
        strcat(OutPut,"_Electron_Initial_"); 
        strcat(OutPut,output_file); 
        strcat(OutPut,".txt"); 
        //printf("%s\n",OutPut); 
        OutPut_File=OutPut; 
        wfile=fopen(OutPut_File,"r"); 
        len=strlen(OutPut); 
         for ( i = 0; i < len ;i++) 
         {//{7} 
          OutPut[i]=0; 
         }//{7} 
 
         //itoa (T,output_file,10); 
        sprintf(output_file, "%d", T); 
        strcat(OutPut,Initial); 
        strcat(OutPut,"_Hole_Initial_"); 
        strcat(OutPut,output_file); 
        strcat(OutPut,".txt"); 
        //printf("%s\n",OutPut); 
        OutPut_File=OutPut; 
        hfile=fopen(OutPut_File,"r"); 
        len=strlen(OutPut); 
         for ( i = 0; i < len ;i++) 
         {//{7} 
          OutPut[i]=0; 
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         }//{7} 
 
         //itoa (T,output_file,10); 
        sprintf(output_file, "%d", T); 
        strcat(OutPut,Initial); 
        strcat(OutPut,"_Time_Initial_"); 
        strcat(OutPut,output_file); 
        strcat(OutPut,".txt"); 
        //printf("%s\n",OutPut); 
        OutPut_File=OutPut; 
        tmfile=fopen(OutPut_File,"r"); 
        len=strlen(OutPut); 
         for ( i = 0; i < len ;i++) 
         {//{7} 
          OutPut[i]=0; 
         }//{7} 
     
     
 /******************************************************************************/ 
        rewind(yfile); 
        rewind(afile); 
        rewind(tfile); 
        rewind(ofile); 
         
        for (j=0;j<N;j++) 
        {//{7} 
          
          
          fscanf (yfile, "%f", &CH); 
          BP_MAIN[j].Y=CH; 
          fscanf (afile, "%f", &CH); 
          BP_MAIN[j].A=CH; 
          fscanf (tfile, "%f", &CH); 
          BP_MAIN[j].TH=CH; 
          fscanf (ofile, "%f", &CH); 
          BP_MAIN[j].OM=CH; 
          BP_MAIN[j].XR=0; 
          BP_MAIN[j].XI=0; 
          BP_MAIN[j].HR=0; 
          BP_MAIN[j].HI=0; 
           
          
          
        }//{7} 
        
 
          fclose(yfile); 
         fclose(afile); 
         fclose(tfile); 
         fclose(ofile); 
         fclose(wfile); 
         fclose(hfile); 
         fclose(tmfile); 
       T=T+Temperature_Interval; 
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       }//{6} 
        
 
       
 
 
 
 
 
 
 
      }//{5} 
 
       
 
 
     
 
 
 
     }//{4} 
  }//{3} 
 
 
  
 MPI_Comm_size ( MPI_COMM_WORLD, &size ); 
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank); 
 M=N/size; 
 MPI_Barrier(MPI_COMM_WORLD);   
 MPI_Scatter 
(&BP_MAIN[0],DIM*M,MPI_DOUBLE,&BP[ghost],DIM*M,MPI_DOUBLE,0,MPI_COMM_WORLD); 
 MPI_Barrier(MPI_COMM_WORLD); 
 if (Parallel_debug) 
 {//{3} 
  printf(" I have reached SCATT point %d \n",myrank); 
 }//{3} 
 
  
  Send_count_start=M; 
  Destination=myrank+1; 
  if (Destination>size-1) 
  {//{3} 
   Destination=0; 
  }//{3} 
 
  Origin=myrank-1; 
  if (Origin<0) 
  {//{3} 
    Origin=size-1; 
  }//{3} 
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 MPI_Sendrecv( &BP[Send_count_start], DIM*ghost,MPI_DOUBLE,Destination,4,&BP[0], 
DIM*ghost,MPI_DOUBLE, Origin,4,MPI_COMM_WORLD, &M_status); 
 MPI_Barrier(MPI_COMM_WORLD); 
 
         
 
  Send_count_start=ghost; 
  
   
  Destination=myrank-1; 
  if (Destination<0) 
  {//{3} 
   Destination=size-1; 
  }//{3} 
 
  Origin=myrank+1; 
  if (Origin>size-1) 
  {//{3} 
    Origin=0; 
  }//{3} 
   
    MPI_Sendrecv(&BP[Send_count_start],DIM*ghost,MPI_DOUBLE,Destination,3, &BP[M+ghost], 
DIM*ghost,MPI_DOUBLE, Origin,3,MPI_COMM_WORLD, &M_status); 
    MPI_Barrier(MPI_COMM_WORLD); 
 if (Parallel_debug) 
 {//{3} 
  printf(" I have reached DIS point %d \n",myrank); 
 }//{3} 
  
   if (myrank==0) 
   {//{3} 
    if (Restart_Switch) 
    {//{4} 
  /******************************************************************************/ 
  /* 
  Creat Input Files 
  */ 
  /******************************************************************************/ 
    
      
    
     sprintf(output_file, "%d", T); 
     strcat(OutPut,Initial); 
     strcat(OutPut,"_Restart_"); 
     strcat(OutPut,output_file); 
     strcat(OutPut,".txt"); 
     OutPut_File=OutPut; 
     status = stat(OutPut_File, &buffer); 
       
      if (status==0) 
      {//{5} 
       IN=fopen(OutPut_File,"r"); 
      }//{5} 
      len=strlen(OutPut); 
       for ( i = 0; i < len ;i++) 
       {//{5} 
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        OutPut[i]=0; 
       }//{5} 
     
   
 /******************************************************************************/ 
      if (status==0) 
      {//{5} 
       while (!feof(IN))  
       {//{6} 
 
        for (j=0;j<DIM*N+1;j++) 
        {//{7} 
         fscanf (IN, "%f", &CH); 
         BP[j].Y=CH;  
        }//{7} 
         fscanf (IN, "\n"); 
          
       }//{6} 
      fclose(IN); 
      }//{5} 
     }//{4} 
    }//{3} 
 
/******************************************************************************/ 
/* 
Initialize Variables 
*/ 
/******************************************************************************/ 
  
   Kb=8.617343e-5; 
   gma=.005; 
   m=300*1.0358e-4; 
   Energy_Tol=5e-8; 
 
/******************************************************************************/ 
/* 
Bring system into thermal equlibrium 
*/ 
/******************************************************************************/ 
 m=1000; 
h=1e-4; 
 
E1=0; 
E2=0; 
Energy_Min=1; 
/******************************************************************************/ 
/* 
Allow Faster relazation 
*/ 
/******************************************************************************/ 
gma=.5; 
   
/******************************************************************************/ 
/* 
Back to normal 
*/ 
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/******************************************************************************/ 
gma=0.005; 
 
 
/******************************************************************************/ 
/* 
Initialize Variables 
*/ 
/******************************************************************************/ 
  
  n=1000000000; 
 THO1=200; 
 QW1=-0.4/0.04; 
 //QD=2; 
 V=0.1; 
 //X=0.6; 
// h = ( tn - t0 ) / ( double ) ( n ); 
 h=1e-4; 
 E_THO_CONST(E,THO,QD,QW1,THO1); 
  
  
   if (myrank==1) 
   {//{3} 
 
    printf ("Boltzman Constane   :"); 
    printf ( "%20.15f\n", Kb ); 
    printf ("Gamma               :"); 
    printf ( "%20.15f\n", gma ); 
    printf ("Chi                 :"); 
    printf ( "%20.15f\n", X ); 
    printf ("Transfer Integrals  :"); 
    printf ( "%20.15f\n", V ); 
    printf ("Well Depth          :"); 
    printf ( "%20.15f\n", QW1 ); 
    printf ("Well Separation     :"); 
    printf ( "%d\n    ", QD ); 
    printf ("Relax Time     :"); 
    printf ( "%f\n    ", Relax_Time ); 
    printf ("Rediation Count     :"); 
    printf ( "%d\n    ", Red_Count ); 
    printf ("Transport_Study     :"); 
    printf ( "%d\n    ", Transport_Study ); 
    printf ("Radiation_Study     :"); 
    printf ( "%d\n    ", Radiation_Study ); 
    printf ("Energy_Correction_Interval     :"); 
    printf ( "%d\n    ", Energy_Correction_Interval ); 
    printf ("Syncronization_Interval     :"); 
    printf ( "%d\n    ", Syncronization_Interval ); 
    printf ("Temperature     :"); 
    printf ( "%d\n    ", T); 
    printf ("Tresh_hold     :"); 
    printf ( "%f\n    ", Tresh_hold); 
    printf ("Time Step     :"); 
    printf ( "%f\n    ", h); 
    printf ("Seed     :"); 
    printf ( "%d\n    ", seed); 
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    printf ("Buffer_Size     :"); 
    printf ( "%d\n    ", Buffer_Size); 
    printf ("Print_Interval    :"); 
    printf ( "%d\n    ", Print_Interval); 
    printf ("Tresh_hold_Evoluation    :"); 
    printf ( "%f\n    ", Tresh_hold_Evoluation); 
   }//{3} 
 
/******************************************************************************/ 
/* 
place a charge on to the system 
*/ 
/******************************************************************************/ 
      
 
 
 
   if (myrank==0) 
   {//{3} 
    if (!Restart_Switch) 
    {//{4} 
     if (DIM==4) 
     {//{5} 
      BP[N/2-1].XR=1; 
     }//{5} 
     else 
     {//{5} 
       
     }//{5} 
     
    }//{4} 
    else 
    {//{4} 
     if (status==0) 
     {//{5} 
     // t=y[DIM*N]; 
     }//{5} 
    }//{4} 
    if (Restart_Switch) 
    {//{4} 
 
       if (DEBUG==0) 
       {//{5} 
 
        Initial=argv[1]; 
       }//{5} 
       else 
       {//{5} 
        Initial="L.1"; 
       }//{5} 
 
       //itoa (T,output_file,10); 
       sprintf(output_file, "%d", T); 
       strcat(OutPut,Initial); 
       strcat(OutPut,"_OutPut_"); 
       strcat(OutPut,output_file); 
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       strcat(OutPut,".txt"); 
       //printf("%s\n",OutPut); 
       OutPut_File=OutPut; 
       if (status==0) 
       {//{5} 
        pfile=fopen(OutPut_File,"w+"); 
        i=0;  
        Escaped=1; 
       }//{5} 
       else 
       {//{5} 
        Escaped=0; 
        if(T==Final_Temperature) 
        {//{6} 
         compleate=0; 
        }//{6} 
       }//{5} 
    }//{4} 
    else 
    {//{4} 
  
 /******************************************************************************/ 
   /* 
   Creat Output Files 
   */ 
  
 /******************************************************************************/ 
    if (Initial_Given) 
    {//{5} 
      if (DEBUG==0) 
       {//{6} 
        Initial=argv[1]; 
       }//{6} 
       else 
       {//{6} 
        Initial="L.1"; 
       }//{6} 
     if (myrank==0) 
     {//{6} 
     
 //Creat_file_structure(T,Initial,yfile,afile,tfile,ofile,wfile,hfile,tmfile); 
       
     for ( i = 0; i < len ;i++) 
      {//{7} 
       OutPut[i]=0; 
      }//{7}  
      //itoa (T,output_file,10); 
     sprintf(output_file, "%d", T); 
     strcat(OutPut,Initial); 
     strcat(OutPut,"_Displacement_"); 
     strcat(OutPut,output_file); 
     strcat(OutPut,".txt"); 
     //printf("%s\n",OutPut); 
     OutPut_File=OutPut; 
     yfile=fopen(OutPut_File,"w+"); 
     len=strlen(OutPut); 
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      for ( i = 0; i < len ;i++) 
      {//{7} 
       OutPut[i]=0; 
      }//{7} 
 
      //itoa (T,output_file,10); 
     sprintf(output_file, "%d", T); 
     strcat(OutPut,Initial); 
     strcat(OutPut,"_Velocity_"); 
     strcat(OutPut,output_file); 
     strcat(OutPut,".txt"); 
     //printf("%s\n",OutPut); 
     OutPut_File=OutPut; 
     afile=fopen(OutPut_File,"w+"); 
     len=strlen(OutPut); 
      for ( i = 0; i < len ;i++) 
      {//{7} 
       OutPut[i]=0; 
      }//{7} 
 
      //itoa (T,output_file,10); 
     sprintf(output_file, "%d", T); 
     strcat(OutPut,Initial); 
     strcat(OutPut,"_Angle_"); 
     strcat(OutPut,output_file); 
     strcat(OutPut,".txt"); 
     //printf("%s\n",OutPut); 
     OutPut_File=OutPut; 
     tfile=fopen(OutPut_File,"w+"); 
     len=strlen(OutPut); 
      for ( i = 0; i < len ;i++) 
      {//{7} 
       OutPut[i]=0; 
      }//{7} 
 
      //itoa (T,output_file,10); 
     sprintf(output_file, "%d", T); 
     strcat(OutPut,Initial); 
     strcat(OutPut,"_Anguler_Velocity_"); 
     strcat(OutPut,output_file); 
     strcat(OutPut,".txt"); 
     //printf("%s\n",OutPut); 
     OutPut_File=OutPut; 
     ofile=fopen(OutPut_File,"w+"); 
     len=strlen(OutPut); 
      for ( i = 0; i < len ;i++) 
      {//{7} 
       OutPut[i]=0; 
      }//{7} 
 
      //itoa (T,output_file,10); 
     sprintf(output_file, "%d", T); 
     strcat(OutPut,Initial); 
     strcat(OutPut,"_Electron_"); 
     strcat(OutPut,output_file); 
     strcat(OutPut,".txt"); 
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     //printf("%s\n",OutPut); 
     OutPut_File=OutPut; 
     wfile=fopen(OutPut_File,"w+"); 
     len=strlen(OutPut); 
      for ( i = 0; i < len ;i++) 
      {//{7} 
       OutPut[i]=0; 
      }//{7} 
 
      //itoa (T,output_file,10); 
     sprintf(output_file, "%d", T); 
     strcat(OutPut,Initial); 
     strcat(OutPut,"_Hole_"); 
     strcat(OutPut,output_file); 
     strcat(OutPut,".txt"); 
     //printf("%s\n",OutPut); 
     OutPut_File=OutPut; 
     hfile=fopen(OutPut_File,"w+"); 
     len=strlen(OutPut); 
      for ( i = 0; i < len ;i++) 
      {//{7} 
       OutPut[i]=0; 
      }//{7} 
 
       //itoa (T,output_file,10); 
     sprintf(output_file, "%d", T); 
     strcat(OutPut,Initial); 
     strcat(OutPut,"_TME_"); 
     strcat(OutPut,output_file); 
     strcat(OutPut,".txt"); 
     //printf("%s\n",OutPut); 
     OutPut_File=OutPut; 
     tmfile=fopen(OutPut_File,"w+"); 
     len=strlen(OutPut); 
      for ( i = 0; i < len ;i++) 
      {//{7} 
       OutPut[i]=0; 
      }//{7} 
 
      //itoa (T,output_file,10); 
     sprintf(output_file, "%d", T); 
     strcat(OutPut,Initial); 
     strcat(OutPut,"_Time_"); 
     strcat(OutPut,output_file); 
     strcat(OutPut,".txt"); 
     //printf("%s\n",OutPut); 
     OutPut_File=OutPut; 
     pfile=fopen(OutPut_File,"w+"); 
     len=strlen(OutPut); 
      for ( i = 0; i < len ;i++) 
      {//{7} 
       OutPut[i]=0; 
      }//{7} 
     
        
     }//{6} 
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    }//{5} 
    else 
    {//{5} 
       if (DEBUG==0) 
       {//{6} 
        Initial=argv[1]; 
       }//{6} 
       else 
       {//{6} 
        Initial="L.1"; 
       }//{6} 
     if (myrank==0) 
     {//{6} 
     
 //Creat_file_structure(T,Initial,yfile,afile,tfile,ofile,wfile,hfile,tmfile); 
       
       
       //itoa (T,output_file,10); 
      sprintf(output_file, "%d", T); 
      strcat(OutPut,Initial); 
      strcat(OutPut,"_Displacement_Initial_"); 
      strcat(OutPut,output_file); 
      strcat(OutPut,".txt"); 
      //printf("%s\n",OutPut); 
      OutPut_File=OutPut; 
      yfile=fopen(OutPut_File,"w+"); 
      len=strlen(OutPut); 
       for ( i = 0; i < len ;i++) 
       {//{7} 
        OutPut[i]=0; 
       }//{7} 
 
       //itoa (T,output_file,10); 
      sprintf(output_file, "%d", T); 
      strcat(OutPut,Initial); 
      strcat(OutPut,"_Velocity_Initial_"); 
      strcat(OutPut,output_file); 
      strcat(OutPut,".txt"); 
      //printf("%s\n",OutPut); 
      OutPut_File=OutPut; 
      afile=fopen(OutPut_File,"w+"); 
      len=strlen(OutPut); 
       for ( i = 0; i < len ;i++) 
       {//{7} 
        OutPut[i]=0; 
       }//{7} 
 
       //itoa (T,output_file,10); 
      sprintf(output_file, "%d", T); 
      strcat(OutPut,Initial); 
      strcat(OutPut,"_Angle_Initial_"); 
      strcat(OutPut,output_file); 
      strcat(OutPut,".txt"); 
      //printf("%s\n",OutPut); 
      OutPut_File=OutPut; 
      tfile=fopen(OutPut_File,"w+"); 
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      len=strlen(OutPut); 
       for ( i = 0; i < len ;i++) 
       {//{7} 
        OutPut[i]=0; 
       }//{7} 
 
       //itoa (T,output_file,10); 
      sprintf(output_file, "%d", T); 
      strcat(OutPut,Initial); 
      strcat(OutPut,"_Anguler_Velocity_Initial_"); 
      strcat(OutPut,output_file); 
      strcat(OutPut,".txt"); 
      //printf("%s\n",OutPut); 
      OutPut_File=OutPut; 
      ofile=fopen(OutPut_File,"w+"); 
      len=strlen(OutPut); 
       for ( i = 0; i < len ;i++) 
       {//{7} 
        OutPut[i]=0; 
       }//{7} 
 
       //itoa (T,output_file,10); 
      sprintf(output_file, "%d", T); 
      strcat(OutPut,Initial); 
      strcat(OutPut,"_Electron_Initial_"); 
      strcat(OutPut,output_file); 
      strcat(OutPut,".txt"); 
      //printf("%s\n",OutPut); 
      OutPut_File=OutPut; 
      wfile=fopen(OutPut_File,"w+"); 
      len=strlen(OutPut); 
       for ( i = 0; i < len ;i++) 
       {//{7} 
        OutPut[i]=0; 
       }//{7} 
 
       //itoa (T,output_file,10); 
      sprintf(output_file, "%d", T); 
      strcat(OutPut,Initial); 
      strcat(OutPut,"_Hole_Initial_"); 
      strcat(OutPut,output_file); 
      strcat(OutPut,".txt"); 
      //printf("%s\n",OutPut); 
      OutPut_File=OutPut; 
      hfile=fopen(OutPut_File,"w+"); 
      len=strlen(OutPut); 
       for ( i = 0; i < len ;i++) 
       {//{7} 
        OutPut[i]=0; 
       }//{7} 
 
       //itoa (T,output_file,10); 
      sprintf(output_file, "%d", T); 
      strcat(OutPut,Initial); 
      strcat(OutPut,"_Time_Initial_"); 
      strcat(OutPut,output_file); 
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      strcat(OutPut,".txt"); 
      //printf("%s\n",OutPut); 
      OutPut_File=OutPut; 
      tmfile=fopen(OutPut_File,"w+"); 
      len=strlen(OutPut); 
       for ( i = 0; i < len ;i++) 
       {//{7} 
        OutPut[i]=0; 
       }//{7} 
      }//{6} 
    }//{5} 
      
    }//{4} 
   }//{3} 
  
  if(Radiation_Study) 
     {//{3} 
        if (myrank==0) 
        {//{4} 
        Radiation_Location=N*fabs(Normal(0,1)); 
        if (Radiation_Location<N) 
        {//{5} 
         nh = div(Radiation_Location, M); 
         Ray.Sub_unit=nh.quot; 
         Ray.Position=nh.rem; 
         Ray.Ray_Hit=1; 
        }//{5} 
        }//{4} 
        
      MPI_Bcast(&Ray,3,MPI_INT,0,MPI_COMM_WORLD); 
      if (Ray.Ray_Hit==1) 
      {//{4} 
       Ray.Ray_Hit=0; 
       if (myrank==Ray.Sub_unit) 
       {//{5} 
       BP[Ray.Position].XR=1; 
       BP[Ray.Position].HR=1; 
       }//{5} 
      }//{4} 
     }//{3} 
Radiation_Hit=1; 
t=0; 
 
i=0; 
count=0;  
Escaped=1;  
Norm1=0; 
 
if (Parallel_debug) 
{//{3} 
 printf(" I have reached INIT point %d \n",myrank); 
}//{3} 
 
 
 for (j=0;j<M+2*ghost;j++) 
 { 



 

140 
 

  y0[j].HR=BP[j].HR; 
  y0[j].XR=BP[j].XR; 
  y0[j].HI=BP[j].HI; 
  y0[j].XI=BP[j].XI; 
  y0[j].Y=BP[j].Y; 
  y0[j].A=BP[j].A; 
  y0[j].OM=BP[j].OM; 
  y0[j].TH=BP[j].TH; 
   
 } 
 
 for (j=0;j<M+2*ghost;j++) 
 { 
  ytemp[j].HR=BP[j].HR; 
  ytemp[j].XR=BP[j].XR; 
  ytemp[j].HI=BP[j].HI; 
  ytemp[j].XI=BP[j].XI; 
  ytemp[j].Y=BP[j].Y; 
  ytemp[j].A=BP[j].A; 
  ytemp[j].OM=BP[j].OM; 
  ytemp[j].TH=BP[j].TH; 
   
 } 
    
    Stochastic_RK4 ( ytemp, Strand,X,V,t, h, q, &seed ,T,gma,Total_Energy,Transport_Study,Job_ID); 
 
    
 for (j=0;j<M+2*ghost;j++) 
 { 
  y1[j].HR=ytemp[j].HR; 
  y1[j].XR=ytemp[j].XR; 
  y1[j].HI=ytemp[j].HI; 
  y1[j].XI=ytemp[j].XI; 
  y1[j].Y=ytemp[j].Y; 
  y1[j].A=ytemp[j].A; 
  y1[j].OM=ytemp[j].OM; 
  y1[j].TH=ytemp[j].TH; 
   
 } 
 
  Send_count_start=M; 
  Destination=myrank+1; 
  if (Destination>size-1) 
  {//{3} 
   Destination=0; 
  }//{3} 
 
  Origin=myrank-1; 
  if (Origin<0) 
  {//{3} 
    Origin=size-1; 
  }//{3} 
 
      
 



 

141 
 

 MPI_Sendrecv( &ytemp[Send_count_start], DIM*ghost,MPI_DOUBLE,Destination,4,&ytemp[0], 
DIM*ghost,MPI_DOUBLE, Origin,4,MPI_COMM_WORLD, &M_status); 
 MPI_Barrier(MPI_COMM_WORLD); 
 
         
 
  Send_count_start=ghost; 
  
   
  Destination=myrank-1; 
  if (Destination<0) 
  {//{3} 
   Destination=size-1; 
  }//{3} 
 
  Origin=myrank+1; 
  if (Origin>size-1) 
  {//{3} 
    Origin=0; 
  }//{3} 
   
    MPI_Sendrecv(&ytemp[Send_count_start],DIM*ghost,MPI_DOUBLE,Destination,3, &ytemp[M+ghost], 
DIM*ghost,MPI_DOUBLE, Origin,3,MPI_COMM_WORLD, &M_status); 
    MPI_Barrier(MPI_COMM_WORLD); 
 
 
 
 
 Stochastic_RK4 ( ytemp, Strand,X,V,t, h, q, &seed ,T,gma,Total_Energy,Transport_Study,Job_ID); 
 for (j=0;j<M+2*ghost;j++) 
 { 
  y2[j].HR=ytemp[j].HR; 
  y2[j].XR=ytemp[j].XR; 
  y2[j].HI=ytemp[j].HI; 
  y2[j].XI=ytemp[j].XI; 
  y2[j].Y=ytemp[j].Y; 
  y2[j].A=ytemp[j].A; 
  y2[j].OM=ytemp[j].OM; 
  y2[j].TH=ytemp[j].TH; 
   
 } 
 
 
  Send_count_start=M; 
  Destination=myrank+1; 
  if (Destination>size-1) 
  {//{3} 
   Destination=0; 
  }//{3} 
 
  Origin=myrank-1; 
  if (Origin<0) 
  {//{3} 
    Origin=size-1; 
  }//{3} 
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 MPI_Sendrecv( &ytemp[Send_count_start], DIM*ghost,MPI_DOUBLE,Destination,4,&ytemp[0], 
DIM*ghost,MPI_DOUBLE, Origin,4,MPI_COMM_WORLD, &M_status); 
 MPI_Barrier(MPI_COMM_WORLD); 
 
         
 
  Send_count_start=ghost; 
               Destination=myrank-1; 
  if (Destination<0) 
  {//{3} 
   Destination=size-1; 
  }//{3} 
 
  Origin=myrank+1; 
  if (Origin>size-1) 
  {//{3} 
    Origin=0; 
  }//{3} 
   
    MPI_Sendrecv(&ytemp[Send_count_start],DIM*ghost,MPI_DOUBLE,Destination,3, &ytemp[M+ghost], 
DIM*ghost,MPI_DOUBLE, Origin,3,MPI_COMM_WORLD, &M_status); 
    MPI_Barrier(MPI_COMM_WORLD); 
 Stochastic_RK4 ( ytemp, Strand,X,V,t, h, q, &seed ,T,gma,Total_Energy,Transport_Study,Job_ID); 
 for (j=0;j<M+2*ghost;j++) 
 { 
  BP[j].HR=ytemp[j].HR; 
  BP[j].XR=ytemp[j].XR; 
  BP[j].HI=ytemp[j].HI; 
  BP[j].XI=ytemp[j].XI; 
  BP[j].Y=ytemp[j].Y; 
  BP[j].A=ytemp[j].A; 
  BP[j].OM=ytemp[j].OM; 
  BP[j].TH=ytemp[j].TH; 
   
 } 
 
  Send_count_start=M; 
  Destination=myrank+1; 
  if (Destination>size-1) 
  {//{3} 
   Destination=0; 
  }//{3} 
 
  Origin=myrank-1; 
  if (Origin<0) 
  {//{3} 
    Origin=size-1; 
  }//{3} 
 
 MPI_Sendrecv( &BP[Send_count_start], DIM*ghost,MPI_DOUBLE,Destination,4,&BP[0], 
DIM*ghost,MPI_DOUBLE, Origin,4,MPI_COMM_WORLD, &M_status); 
 MPI_Barrier(MPI_COMM_WORLD); 
               Send_count_start=ghost;  
  Destination=myrank-1; 
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  if (Destination<0) 
  {//{3} 
   Destination=size-1; 
  }//{3} 
 
  Origin=myrank+1; 
  if (Origin>size-1) 
  {//{3} 
    Origin=0; 
  }//{3} 
   
    MPI_Sendrecv(&BP[Send_count_start],DIM*ghost,MPI_DOUBLE,Destination,3, &BP[M+ghost], 
DIM*ghost,MPI_DOUBLE, Origin,3,MPI_COMM_WORLD, &M_status); 
    MPI_Barrier(MPI_COMM_WORLD); 
 Buffer_Print_Advance=1; 
while (Escaped==1) //for ( i = 1; i <= n; i++ )  
{//{3} 
 
 t=t+h; 
 i=i+1; 
  
 count=count+h; 
  
 Energy_Correction_Counter=Energy_Correction_Counter+1; 
 if(Transport_Study) 
 {//{4} 
  if (Energy_Correction_Interval<Energy_Correction_Counter) 
  {//{5} 
    Energy_Correction_Counter=0; 
    Energy_Calculation(BP,Total_Energy,X,Transport_Study,Job_ID); 
   
 Onsite_Energy_Calculation(BP,Total_Energy,X,Hydration_Energy,Transport_Study); 
  }//{5} 
 }//{4} 
 
 
 //Runge_Kutta_Fehlberg (BP,y2,y1,y0,h, t,Strand,X,V,T,gma,Total_Energy,Transport_Study,Job_ID); 
 Stochastic_RK4(BP,Strand,X,V,t,h,q,&seed,T,gma,Total_Energy,Transport_Study,Job_ID); 
 nh = div(i, 1000); 
 Buffer_Print_Interval=nh.rem; 
 nh = div(Buffer_Print_Advance, Buffer_Size); 
 Buffer_Index=nh.rem; 
 if (Buffer_Print_Interval==1) 
 { 
  Buffer_Print_Advance=Buffer_Print_Advance+1; 
  for (j=ghost;j<M+ghost;j++) 
  { 
   Local_Index=Buffer_Index*M+(j-ghost); 
    
   Output_Buffer[Local_Index].Wave_Function=pow(BP[j].XI,2)+pow(BP[j].XR,2); 
   Output_Buffer[Local_Index].Displacement=BP[j].Y; 
   Output_Buffer[Local_Index].Twist_Angle=BP[j].TH; 
    
  } 
 } 
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     if (i>n) 
     {//{4} 
   
 /******************************************************************************/ 
    /* 
    Creat Restart Files 
    */ 
   
 /******************************************************************************/ 
      if (myrank==0) 
      {//{5} 
       if (DEBUG==0) 
       {//{6} 
       Initial=argv[1]; 
       }//{6} 
       else 
       {//{6} 
        Initial="L.1"; 
       }//{6} 
 
       
       //itoa (T,output_file,10); 
       sprintf(output_file, "%d", T); 
       strcat(Prefix,Initial); 
       strcat(Prefix,"_Restart_"); 
       strcat(Prefix,output_file); 
       strcat(Prefix,".txt"); 
       //printf("%s\n",Prefix); 
       Restart_File=Prefix; 
       Restart=fopen(Restart_File,"w+"); 
      }//{5} 
   
 /******************************************************************************/ 
      Escaped=0; 
   
 /******************************************************************************/ 
    /* 
    set restart points 
    */ 
   
 /******************************************************************************/ 
       if (myrank==0) 
      {//{5} 
       for (j=0;j<DIM*N+1;j++) 
       {//{6} 
          
          if (j<DIM*N) 
          {//{7} 
         // fprintf(Restart,"%20.16f  
",y[j]); 
          }//{7} 
          else 
          {//{7} 
         // 
 fprintf(Restart,"%20.16f  ",t); 
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          }//{7} 
          
          
       }//{6} 
       fprintf(Restart,"\n");  
       fclose(Restart);  
       len=strlen(Prefix); 
       printf("%d\n",len); 
        for ( j = 0; j < len ;j++) 
        {//{6} 
         Prefix[j]=0; 
        }//{6} 
      }//{5} 
     }//{4} 
/******************************************************************************/ 
/* 
Perform the computations 
*/ 
/******************************************************************************/ 
     if(Radiation_Study) 
     {//{4} 
     if (Relax_Time<t) 
      {//{5} 
        if (count>radiation_rate) 
        {//{6} 
         count=0; 
         for (j=0;j<Red_Count;j++) 
         {//{7} 
           
           if (myrank==0) 
           {//{8} 
          
 Radiation_Location=N*fabs(Normal(0,1)); 
           if 
(Radiation_Location<N) 
           {//{9} 
            nh = 
div(Radiation_Location, M); 
           
 Ray.Sub_unit=nh.quot; 
           
 Ray.Position=nh.rem; 
           
 Ray.Ray_Hit=1; 
           }//{9} 
           }//{8} 
           
        
 MPI_Bcast(&Ray,3,MPI_INT,0,MPI_COMM_WORLD); 
         if (Ray.Ray_Hit==1) 
         {//{8} 
          Ray.Ray_Hit=0; 
          if 
(myrank==Ray.Sub_unit) 
          {//{9} 
          BP[Ray.Position].XR=1; 
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          BP[Ray.Position].HR=1; 
          }//{9} 
         }//{8} 
            
         }//{7} 
        }//{6} 
      }//{5} 
     }//{4} 
     
 
     if (Relax_Time<t) 
     {//{4} 
      if (Radiation_Hit) 
      {//{5} 
       Radiation_Hit=0; 
       if(Transport_Study) 
       {//{6} 
 
        if (myrank==0) 
        {//{7} 
        Radiation_Location=N/2-1; 
         if (Radiation_Location<N) 
         {//{8} 
          nh = 
div(Radiation_Location, M); 
          Ray.Sub_unit=nh.quot; 
          Ray.Position=nh.rem; 
          Ray.Ray_Hit=1; 
          nh = 
div(Radiation_Location, M); 
          cell_donor.Initiate=1; 
         
 cell_donor.Sub_unit=nh.quot; 
 cell_donor.Position=nh.rem; 
 base_donor.well_depth=QW1; 
 base_donor.absorption=0; 
 nh = div(Radiation_Location-QD, M); 
 cell_acceptor.Initiate=1; 
 cell_acceptor.Sub_unit=nh.quot; 
 cell_acceptor.Position=nh.rem; 
 base_acceptor.well_depth=QW1; 
 base_acceptor.absorption=1000; 
 }//{8} 
 }//{7} 
       
 MPI_Bcast(&Ray,3,MPI_INT,0,MPI_COMM_WORLD); 
 MPI_Bcast(&cell_acceptor,3,MPI_INT,0,MPI_COMM_WORLD); 
 MPI_Bcast(&cell_donor,3,MPI_INT,0,MPI_COMM_WORLD); 
 MPI_Bcast(&base_acceptor,2,MPI_DOUBLE,0,MPI_COMM_WORLD); 
 MPI_Bcast(&base_donor,2,MPI_DOUBLE,0,MPI_COMM_WORLD); 
 MPI_Barrier(MPI_COMM_WORLD); 
  if (Ray.Ray_Hit==1)       

{//{7} 
  Ray.Ray_Hit=0; 
  if (myrank==Ray.Sub_unit) 
  {//{8}  
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BP[Ray.Position+ghost-1].XR=1;        
 }//{8} 

}//{7} 
  if (cell_donor.Initiate==1) 
  {//{7} 
  if (myrank==cell_donor.Sub_unit) 
  {//{8} 
         
 Strand[cell_donor.Position+ghost-1].well_depth=base_donor.well_depth; 
 Strand[cell_donor.Position+ghost-1].absorption=base_donor.absorption;    
 //printf(" base_donor.well_depth   %f  \n   cell_donor.Sub_unit    %d  \n base_donor.absorption    %f   \n   
cell_donor.Position+ghost     %d   \n       myrank    
%d",base_donor.well_depth,cell_donor.Sub_unit,base_donor.absorption,cell_donor.Position+ghost-1,myrank); 
 }//{8} 
 }//{7} 
 if (cell_acceptor.Initiate==1) 
 {//{7} 
 if (myrank==cell_acceptor.Sub_unit) 

{//{8} 
 Strand[cell_acceptor.Position+ghost-1].well_depth=base_acceptor.well_depth; 
 Strand[cell_acceptor.Position+ghost-1].absorption=base_acceptor.absorption; 
 //printf(" base_acceptor.well_depth   %f  \n   cell_acceptor.Sub_unit    %d  \n base_acceptor.absorption    
%f   \n   cell_acceptor.Position+ghost     %d   \n       myrank    
%d",base_acceptor.well_depth,cell_acceptor.Sub_unit,base_acceptor.absorption,cell_acceptor.Position+ghost-
1,myrank); 
 }//{8} 
 }//{7} 
}//{6} 
}//{5} 
}//{4} 
      
      
  
              
 
/******************************************************************************/ 
//Call Computation  
/******************************************************************************/ 
 
nh = div(i, Print_Interval); 
if (nh.rem==(1)) 
{//{4} 
MPI_Gather ( &BP[ghost], DIM*M, MPI_DOUBLE, &BP_MAIN[0], DIM*M, MPI_DOUBLE,0, 
MPI_COMM_WORLD); 
MPI_Barrier(MPI_COMM_WORLD); 
if (Parallel_debug) 
{//{5} 
printf(" I have reached GATHE point %d \n",myrank); 
}//{5} 
}//{4} 
if (Printing_On) 
{ 
nh = div(i, Print_Interval); 
if (nh.rem==(1)) 
{//{4} 
if (Initial_Given) 
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{//{5} 
    if (myrank==0) 
    {//{6} 
    fprintf(tmfile,"%f \n",t); 
    fflush(tmfile) ; 
    Print_matrix(BP_MAIN,yfile,afile,tfile,ofile,wfile,hfile); 
    }//{6} 
    Norm1=0; 
    Exit_Switch=0; 
    EXIT_ON=0; 
    Exit_Conditions=Norm_Calculation(BP,cell_donor); 
    
    //if (myrank==cell_donor.Sub_unit) 
    //{//{6} 
 
      Exit_Switch=0; 
      if (Exit_Conditions.Return_Probability<Tresh_hold) 
      { 
 
      
 if((1/Exit_Conditions.Participation_Function)>Tresh_hold_Evoluation) 
 { 
 //if(Exit_Conditions.Shannon_Information_Entrophy>1) 
 //{ 
     

if (myrank==0) 
 { 
 if (Relax_Time<t) 
 {//{6} 
 Exit_Switch=1; 
 } 
 } 
 //} 
 } 
 } 
 MPI_Bcast(&Exit_Switch,1,MPI_INT,0,MPI_COMM_WORLD); 
 MPI_Barrier(MPI_COMM_WORLD);  
 if (Exit_Switch) 
 {//{7} 
 //Pre_Escape1=0; 
 //if ((Pre_Escape1==0)&&(Pre_Escape2==0)) 
 //{//{8} 
        
 MPI_Gather ( &Output_Buffer[0], Buffer_Size*3*M, MPI_DOUBLE, &Master_Output_Buffer[0], 
Buffer_Size*3*M, MPI_DOUBLE,0, MPI_COMM_WORLD); 
 MPI_Barrier(MPI_COMM_WORLD); 
 if (myrank==0) 
  {//{9} 
 printf("%d  %d\n",Buffer_Size,Buffer_Index); 
       
Final_Times_Print_matrix(Master_Output_Buffer,yfile,tfile,wfile,Buffer_Size,Buffer_Index); 
  Escaped=0; 
   }//{9} 
 MPI_Bcast(&Escaped,1,MPI_INT,0,MPI_COMM_WORLD); 
 MPI_Barrier(MPI_COMM_WORLD);  
 //}//{8} 
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 //Pre_Escape2=Pre_Escape1; 
 //}//{7} 
 //else 
 //{//{7} 
 //Pre_Escape2=1; 
 }//{7}  
 MPI_Bcast(&Escaped,1,MPI_INT,0,MPI_COMM_WORLD); 
 MPI_Barrier(MPI_COMM_WORLD); 
 /*for (j=cell_donor.Position+ghost-(abs(QD)+1);j<cell_donor.Position+ghost+(abs(QD)+2);j++) 
     {//{7} 
      Norm1=Norm1+(BP[j].XR*BP[j].XR+BP[j].XI*BP[j].XI); 
     }//{7} 
     if (Norm1<Tresh_hold) 
     {//{7} 
     if (Relax_Time<t) 
      {//{8} 
       Exit_Switch=1; 
      }//{8} 
     }//{7}*/ 
      
    //}//{6} 
   }//{5} 
   else 
   {//{5} 
    if (Relax_Time<t) 
    {//{6} 
     if (myrank==0) 
     {//{7} 
      fprintf(tmfile,"%f \n",t); 
      fflush(tmfile) ; 
      Print_matrix(BP_MAIN,yfile,afile,tfile,ofile,wfile,hfile); 
     }//{7} 
      Escaped=0; 
      MPI_Bcast(&Escaped,1,MPI_INT,0,MPI_COMM_WORLD); 
     MPI_Barrier(MPI_COMM_WORLD); 
    }//{6} 
   }//{5} 
  }//{4} 
  else 
  {//{4} 
   if (Initial_Given) 
   {//{5} 
    Norm1=0; 
    Exit_Switch=0; 
    /* if (myrank==cell_donor.Sub_unit) 
     {//{6} 
     for (j=cell_donor.Position+ghost-
(abs(QD)+1);j<cell_donor.Position+ghost+(abs(QD)+2);j++) 
     {//{7} 
      Norm1=Norm1+(BP[j].XR*BP[j].XR+BP[j].XI*BP[j].XI); 
     }//{7} 
     if (Norm1<Tresh_hold) 
     {//{7} 
     Exit_Switch=1; 
     }//{7} 
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    }//{6}*/ 
    Exit_Conditions=Norm_Calculation(BP,cell_donor); 
      
     if (myrank==0) 
     { 
       
      if (Exit_Conditions.Return_Probability<Tresh_hold) 
      { 
 
      
 if((1/Exit_Conditions.Participation_Function)>Tresh_hold_Evoluation) 
       { 
       
 //if(Exit_Conditions.Shannon_Information_Entrophy>1) 
        //{ 
         if (Relax_Time<t) 
         {//{6} 
         Exit_Switch=1; 
          
         } 
 
        //} 
       } 
      } 
     } 
    
    
     
   
    //nh = div(i, Syncronization_Interval); 
    //if (nh.rem==(1)) 
    //{//{6} 
     MPI_Bcast(&Exit_Switch,1,MPI_INT,0,MPI_COMM_WORLD); 
     MPI_Barrier(MPI_COMM_WORLD); 
     if (Parallel_debug) 
     {//{3}  
      if (myrank==0) 
      { 
      printf("%f      %f       %f       %d %d %f %f %f 
%f\n",Exit_Conditions.Return_Probability,1/Exit_Conditions.Participation_Function,Exit_Conditions.Shannon_Inf
ormation_Entrophy,Escaped,Exit_Switch,Tresh_hold,Tresh_hold_Evoluation,Relax_Time,t); 
      } 
     }  
     if (Exit_Switch) 
     {//{7} 
      
       
      //Pre_Escape1=0; 
      //if ((Pre_Escape1==0)&&(Pre_Escape2==0)) 
      //{//{8} 
         
       MPI_Gather ( &BP[ghost], DIM*M, MPI_DOUBLE, 
&BP_MAIN[0], DIM*M, MPI_DOUBLE,0, MPI_COMM_WORLD); 
       MPI_Barrier(MPI_COMM_WORLD); 
       MPI_Gather ( &Output_Buffer[0], Buffer_Size*3*M, 
MPI_DOUBLE, &Master_Output_Buffer[0], Buffer_Size*3*M, MPI_DOUBLE,0, MPI_COMM_WORLD); 
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       MPI_Barrier(MPI_COMM_WORLD); 
       if (myrank==0) 
        {//{9} 
         Escaped=0; 
         fprintf(tmfile,"%f \n",t); 
         fflush(tmfile) ; 
           
         printf("%d  
%d\n",Buffer_Size,Buffer_Index); 
         
Final_Times_Print_matrix(Master_Output_Buffer,yfile,tfile,wfile,Buffer_Size,Buffer_Index); 
         
Print_matrix(BP_MAIN,yfile,afile,tfile,ofile,wfile,hfile); 
          
          
          
        }//{9} 
      
 MPI_Bcast(&Escaped,1,MPI_INT,0,MPI_COMM_WORLD); 
       MPI_Barrier(MPI_COMM_WORLD);  
        
      //}//{8} 
      //Pre_Escape2=Pre_Escape1; 
      Exit_Switch=0; 
       
     //}//{7} 
     //else 
     //{//{7} 
     //Pre_Escape2=1; 
 
     }//{7} 
    //}//{6} 
    
   }//{5} 
   else 
   {//{5} 
    if (Relax_Time<t) 
    {//{6} 
     if (myrank==0) 
     {//{7} 
      fprintf(tmfile,"%f \n",t); 
      fflush(tmfile) ; 
      Print_matrix(BP_MAIN,yfile,afile,tfile,ofile,wfile,hfile); 
     }//{7} 
      Escaped=0; 
      MPI_Bcast(&Escaped,1,MPI_INT,0,MPI_COMM_WORLD); 
     MPI_Barrier(MPI_COMM_WORLD); 
    }//{6} 
     
   }//{5} 
  }//{4} 
  } 
  
   
  if(T==Final_Temperature) 
  {//{4} 
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   compleate=0; 
  }//{4} 
 
//Escaped=1;   
    
/******************************************************************************/ 
 
 MPI_Barrier(MPI_COMM_WORLD);  
   
/******************************************************************************/ 
}//{3}//while Escaped 
T=T+Temperature_Interval; 
 
Elaped_time +=MPI_Wtime(); 
 if (myrank==1) 
 {//{3} 
  printf ("Elaped_time     :"); 
  printf ( "%f\n    ", Elaped_time); 
 }//{3} 
 
 
 
/******************************************************************************/ 
 
   len=strlen(OutPut); 
   for ( i = 0; i < len ;i++) 
   {//{3} 
    OutPut[i]=0; 
   }//{3} 
   if (myrank==0) 
   {//{3} 
     
    if (!Restart_Switch) 
    {//{4} 
      
     if (Initial_Given) 
     {//{5} 
    
     fclose(pfile); 
     fclose(yfile); 
     fclose(afile); 
     fclose(tfile); 
     fclose(ofile); 
     fclose(wfile); 
     fclose(hfile); 
     fclose(tmfile); 
     } 
     else 
     { 
     fclose(yfile); 
     fclose(afile); 
     fclose(tfile); 
     fclose(ofile); 
     fclose(wfile); 
     fclose(hfile); 
     fclose(tmfile); 
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     } 
      
 
    }//{4} 
    else 
    {//{4}      
     if (status==0) 
     {//{5} 
     if (Initial_Given) 
     {//{5} 
      fclose(pfile); 
     fclose(yfile); 
     fclose(afile); 
     fclose(tfile); 
     fclose(ofile); 
     fclose(wfile); 
     fclose(hfile); 
     fclose(tmfile); 
     } 
     else 
     { 
      
     fclose(yfile); 
     fclose(afile); 
     fclose(tfile); 
     fclose(ofile); 
     fclose(wfile); 
     fclose(hfile); 
     fclose(tmfile); 
     } 
     }//{5}    
    }//{4}  
   }//{3}  
     
/******************************************************************************/ 
}//{2} //while compleate 
/******************************************************************************/ 
 
 MPI_Finalize(); 
 
/******************************************************************************/ 
/* 
Clear memory allocated for local variables 
*/ 
/******************************************************************************/ 
free(BP); 
BP=NULL; 
free(E); 
E=NULL; 
free(THO); 
THO=NULL; 
/******************************************************************************/ 
  return 0; 
}//{1}  
/******************************************************************************/ 
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(ii) Compute Maxwell Boltzman Distribution 
 

/******************************************************************************/ 
/* 
  Purpose: 
    Compute Maxwell Boltzman Distribution 
  Licensing: 
    This code is distributed under the GNU LGPL license. 
  Modified: 
   16 Aug 2010 
  Parallel Version: C MPI 
  Author: 
 Neranjan Edirisinghe 
/******************************************************************************/ 
 
 
#include "stochastic_rk.h" 
double Maxwell_Boltzman(double G,int T,int S) 
{ 
double value,X1,X2,X3,m,Kb,R0; 
 m=300*1.0358e-4; 
  Kb=8.617343e-5; 
  R0=4.45*10; 
  if (S==1) 
  { 
 m=m*R0; 
  } 
X1=Normal(0, sqrt(2*Kb*T*m*G)); 
X2=Normal(0, sqrt(2*Kb*T*m*G)); 
X3=Normal(0, sqrt(2*Kb*T*m*G)); 
value=sqrt(pow(X1,2)+pow(X2,2)+pow(X3,2)); 
return value; 
} 
 

(iii) Distribute data across the processors 
 

/******************************************************************************/ 
/* 
  Purpose: 
    Distribute data across the processors 
  Licensing:  
    This code is distributed under the GNU LGPL license. 
  Modified: 
   16 May 2009 
  Parallel Version: C MPI 
  Author: 
 Neranjan Edirisinghe 
/******************************************************************************/ 
 
 
 
# include "stochastic_rk.h" 
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void Distribute_data(Base_Pair yk[],int Tag1,int Tag2,int Job_ID) 
{ 
int myrank,size,M,Destination,Origin,Send_count_start; 
MPI_Status status; 
 
MPI_Comm_size ( MPI_COMM_WORLD, &size ); 
MPI_Comm_rank(MPI_COMM_WORLD, &myrank); 
M=N/size; 
Send_count_start=M; 
    Destination=myrank+1; 
  if (Destination>size-1) 
  { 
   Destination=0; 
  } 
 
  Origin=myrank-1; 
  if (Origin<0) 
  { 
    Origin=size-1; 
  } 
 
     MPI_Sendrecv(&yk[Send_count_start],DIM*ghost,MPI_DOUBLE,Destination,Tag1,&yk[0], 
DIM*ghost,MPI_DOUBLE, Origin,Tag1,MPI_COMM_WORLD, &status); 
     MPI_Barrier(MPI_COMM_WORLD); 
  Send_count_start=ghost; 
  if (Send_count_start>M) 
  { 
   Send_count_start=0; 
  } 
   
   
  Destination=myrank-1; 
  if (Destination<0) 
  { 
   Destination=size-1; 
  } 
 
  Origin=myrank+1; 
  if (Origin>size-1) 
  { 
    Origin=0; 
  } 
  MPI_Sendrecv(&yk[Send_count_start],DIM*ghost,MPI_DOUBLE,Destination,Tag2,&yk[M+ghost], 
DIM*ghost,MPI_DOUBLE, Origin,Tag2,MPI_COMM_WORLD, &status); 
 
MPI_Barrier(MPI_COMM_WORLD); 
} 
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(iv) Stachastic Differntail Equation solver Using fourth order Runge-Kutta method 
 

/******************************************************************************/ 
/* 
  Purpose: 
    Solve Stachastic Differntail Equation Using fourth order Runge-Kutta method 
  Licensing: 
    This code is distributed under the GNU LGPL license. 
  Modified: 
    07 July 2010 
  Serial Version Author: 
    John Burkardt 
  Parallel Versiton Author: 
 Neranjan Edirisinghe 
*/ 
/******************************************************************************/ 
 
#include "stochastic_rk.h" 
double gv (int x,int T,double ); 
void Stochastic_RK4(Base_Pair BP[],Base Strand[],double X,double V,double t,double h,double q,int *seed,int 
T,double G,double Total_Energy[],int Transport_Study,int Job_ID) 
{ 
    double a21; 
   double a31; 
   double a32; 
   double a41; 
   double a42; 
   double a43; 
   double a51; 
   double a52; 
   double a53; 
   double a54; 
    
   double q1; 
   double q2; 
   double q3; 
   double q4; 
   double t1; 
   double t2; 
   double t3; 
   double t4; 
   double w1; 
   double w2; 
   double w3; 
   double w4; 
    
  
  int myrank,size,M,Send_count_start; 
 
  double *OLD; 
   Base_Pair *dy,*yk,*K1,*K2,*K3,*K4; 
  int j; 
  double Kb,m; 
  m=300*1.0358e-4; 
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  Kb=8.617343e-5; 
    
/******************************************************************************/ 
/**/ 
 
 MPI_Comm_size ( MPI_COMM_WORLD, &size ); 
MPI_Comm_rank(MPI_COMM_WORLD, &myrank); 
M=N/size; 
Send_count_start=M; 
 // printf(" I have reached INSIDE SK4 point %d \n",myrank);  
/******************************************************************************/ 
/* 
Allocate memory for dy  
*/ 
/******************************************************************************/ 
  dy=malloc ((M+2*ghost)*sizeof(Base_Pair)); 
  if (dy == NULL)  
  { 
   printf("error defining dy  "); 
  }  
   
  yk=malloc ((M+2*ghost)*sizeof(Base_Pair)); 
  if (dy == NULL)  
  { 
   printf("error defining dy  "); 
  } 
 
  K1=malloc ((M+2*ghost)*sizeof(Base_Pair)); 
  if (dy == NULL)  
  { 
   printf("error defining dy  "); 
  } 
 
  K2=malloc ((M+2*ghost)*sizeof(Base_Pair)); 
  if (dy == NULL)  
  { 
   printf("error defining dy  "); 
  } 
 
  K3=malloc ((M+2*ghost)*sizeof(Base_Pair)); 
  if (dy == NULL)  
  { 
   printf("error defining dy  "); 
  } 
 
  K4=malloc ((M+2*ghost)*sizeof(Base_Pair)); 
  if (dy == NULL)  
  { 
   printf("error defining dy  "); 
  } 
 
  OLD=malloc ((M+2*ghost)*sizeof(double)); 
  if (OLD == NULL)  
  { 
   printf("error defining OLD  "); 
  } 
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/******************************************************************************/ 
 
/******************************************************************************/ 
/* 
Variable Initialization 
*/ 
/******************************************************************************/ 
 
//printf("%f %d   \n",BP[1].Y,myrank); 
 
   for (j=0;j<(M+2*ghost);j++) 
   { 
    dy[j].HR=0.0; 
    dy[j].XR=0.0; 
    dy[j].HI=0.0; 
    dy[j].XI=0.0; 
    dy[j].Y=0.0; 
    dy[j].A=0.0; 
    dy[j].OM=0.0; 
    dy[j].TH=0.0;  
    K1[j].HR=0.0; 
    K1[j].XR=0.0; 
    K1[j].HI=0.0; 
    K1[j].XI=0.0; 
    K1[j].Y=0.0; 
    K1[j].A=0.0; 
    K1[j].OM=0.0; 
    K1[j].TH=0.0;   
    K2[j].HR=0.0; 
    K2[j].XR=0.0; 
    K2[j].HI=0.0; 
    K2[j].XI=0.0; 
    K2[j].Y=0.0; 
    K2[j].A=0.0; 
    K2[j].OM=0.0; 
    K2[j].TH=0.0;     
    K3[j].HR=0.0; 
    K3[j].XR=0.0; 
    K3[j].HI=0.0; 
    K3[j].XI=0.0; 
    K3[j].Y=0.0; 
    K3[j].A=0.0; 
    K3[j].OM=0.0; 
    K3[j].TH=0.0;     
    K4[j].HR=0.0; 
    K4[j].XR=0.0; 
    K4[j].HI=0.0; 
    K4[j].XI=0.0; 
    K4[j].Y=0.0; 
    K4[j].A=0.0; 
    K4[j].OM=0.0; 
    K4[j].TH=0.0;    
    yk[j].HR=0.0; 
    yk[j].XR=0.0; 
    yk[j].HI=0.0; 
    yk[j].XI=0.0; 



 

159 
 

    yk[j].Y=0.0; 
    yk[j].A=0.0; 
    yk[j].OM=0.0; 
    yk[j].TH=0.0;     
      
 
   } 
    
   a21 =   0.66667754298442; 
   a31 =   0.63493935027993; 
   a32 =   0.00342761715422; 
   a41 = - 2.32428921184321; 
   a42 =   2.69723745129487; 
   a43 =   0.29093673271592; 
   a51 =   0.25001351164789; 
   a52 =   0.67428574806272; 
   a53 = - 0.00831795169360; 
   a54 =   0.08401868181222; 
 
   q1 = 3.99956364361748; 
   q2 = 1.64524970733585; 
   q3 = 1.59330355118722; 
   q4 = 0.26330006501868; 
/******************************************************************************/ 
 
/******************************************************************************/ 
 
 for (j=ghost;j<M+ghost;j++) 
 { 
  yk[j].HR=BP[j].HR; 
  yk[j].XR=BP[j].XR; 
  yk[j].HI=BP[j].HI; 
  yk[j].XI=BP[j].XI; 
  yk[j].Y=BP[j].Y; 
  yk[j].A=BP[j].A; 
  OLD[j]=BP[j].OM; 
  yk[j].OM=BP[j].OM; 
  yk[j].TH=BP[j].TH; 
   
 } 
   Distribute_data(yk,21,22,Job_ID); 
   RHS_FUN(yk,dy,Strand,X,V,G,OLD,h,Total_Energy,Transport_Study); 
    //Distribute_data(yk,1,2,Job_ID);    
 //printf(" I have reached TRANS point %d \n",myrank); 
   t1=t; 
   for (j=ghost;j<M+ghost;j++) 
  { 
    
   w1 = Normal(0, sqrt(2*Kb*T*m*G)) * sqrt ( q1 * q / h ); 
   K1[j].Y=h*dy[j].Y+h*w1; 
   //w1 = r8_normal_01 (seed ) * sqrt ( q1 * q / h ); 
   K1[j].A=h*dy[j].A;//+h*gv(0,T,G)*w1; 
   w1 = Normal(0, sqrt(2*Kb*T*m*G)) * sqrt ( q1 * q / h ); 
   K1[j].TH=h*dy[j].TH+h*w1;//+h*gv(0,T,G)*w1; 
   //w1 = r8_normal_01 (seed ) * sqrt ( q1 * q / h ); 
   K1[j].OM=h*dy[j].OM;//+h*gv(0,T,G)*w1; 



 

160 
 

   //w1 = r8_normal_01 (seed ) * sqrt ( q1 * q / h ); 
   K1[j].XR=h*dy[j].XR;//+h*gv(0,T,G)*w1; 
   //w1 = r8_normal_01 (seed ) * sqrt ( q1 * q / h ); 
   K1[j].XI=h*dy[j].XI;//+h*gv(0,T,G)*w1; 
   //w1 = r8_normal_01 (seed ) * sqrt ( q1 * q / h ); 
   K1[j].HR=h*dy[j].HR;//+h*gv(0,T,G)*w1; 
   //w1 = r8_normal_01 (seed ) * sqrt ( q1 * q / h ); 
   K1[j].HI=h*dy[j].HI;//+h*gv(0,T,G)*w1; 
    
  } 
/******************************************************************************/ 
    
/******************************************************************************/ 
   
   t2=t1+a21*h; 
   for (j=ghost;j<M+ghost;j++) 
  { 
   yk[j].Y=BP[j].Y+a21*K1[j].Y; 
   yk[j].A=BP[j].A+a21*K1[j].A; 
   yk[j].TH=BP[j].TH+a21*K1[j].TH; 
   OLD[j]=yk[j].OM; 
   yk[j].OM=BP[j].OM+a21*K1[j].OM; 
   yk[j].XR=BP[j].XR+a21*K1[j].XR; 
   yk[j].XI=BP[j].XI+a21*K1[j].XI; 
   yk[j].HR=BP[j].HR+a21*K1[j].HR; 
   yk[j].HI=BP[j].HI+a21*K1[j].HI; 
  } 
   Distribute_data(yk,5,6,Job_ID); 
   RHS_FUN(yk,dy,Strand,X,V,G,OLD,h,Total_Energy,Transport_Study); 
      
 
   for (j=ghost;j<M+ghost;j++) 
  { 
    w2 = Normal(0, sqrt(2*Kb*T*m*G))* sqrt ( q2 * q / h ); 
    K2[j].Y=h*dy[j].Y+h*w2; 
    //w2 = r8_normal_01 (seed ) * sqrt ( q2 * q / h ); 
    K2[j].A=h*dy[j].A;//+h*gv(0,T,G)*w2; 
    w2 = Normal(0, sqrt(2*Kb*T*m*G))* sqrt ( q2 * q / h ); 
    K2[j].TH=h*dy[j].TH+h*w2;//+h*gv(0,T,G)*w2; 
    //w2 = r8_normal_01 (seed ) * sqrt ( q2 * q / h ); 
    K2[j].OM=h*dy[j].OM;//+h*gv(0,T,G)*w2; 
    //w2 = r8_normal_01 (seed ) * sqrt ( q2 * q / h ); 
    K2[j].XR=h*dy[j].XR;//+h*gv(0,T,G)*w2; 
    //w2 = r8_normal_01 (seed ) * sqrt ( q2 * q / h ); 
    K2[j].XI=h*dy[j].XI;//+h*gv(0,T,G)*w2; 
    //w2 = r8_normal_01 (seed ) * sqrt ( q2 * q / h ); 
    K2[j].HR=h*dy[j].HR;//+h*gv(0,T,G)*w2; 
    //w2 = r8_normal_01 (seed ) * sqrt ( q2 * q / h ); 
    K2[j].HI=h*dy[j].HI;//+h*gv(0,T,G)*w2; 
 
    
  } 
/******************************************************************************/ 
 
/******************************************************************************/ 
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   t3=t1+a31*h+a32*h; 
   for (j=ghost;j<M+ghost;j++) 
  { 
   yk[j].Y=BP[j].Y+a31*K1[j].Y+a32*K2[j].Y; 
   yk[j].A=BP[j].A+a31*K1[j].A+a32*K2[j].A; 
   yk[j].TH=BP[j].TH+a31*K1[j].TH+a32*K2[j].TH; 
   OLD[j]=yk[j].OM; 
   yk[j].OM=BP[j].OM+a31*K1[j].OM+a32*K2[j].OM; 
   yk[j].XR=BP[j].XR+a31*K1[j].XR+a32*K2[j].XR; 
   yk[j].XI=BP[j].XI+a31*K1[j].XI+a32*K2[j].XI; 
   yk[j].HR=BP[j].HR+a31*K1[j].HR+a32*K2[j].HR; 
   yk[j].HI=BP[j].HI+a31*K1[j].HI+a32*K2[j].HI; 
  } 
    
   Distribute_data(yk,7,8,Job_ID);  
   RHS_FUN(yk,dy,Strand,X,V,G,OLD,h,Total_Energy,Transport_Study); 
      
 
   for (j=ghost;j<M+ghost;j++) 
  { 
   w3 = Normal(0, sqrt(2*Kb*T*m*G)) * sqrt ( q3 * q / h ); 
   K3[j].Y=h*dy[j].Y+h*w3; 
   //w3 = r8_normal_01 (seed ) * sqrt ( q3 * q / h ); 
   K3[j].A=h*dy[j].A;//+h*gv(0,T,G)*w3; 
   w3 = Normal(0, sqrt(2*Kb*T*m*G)) * sqrt ( q3 * q / h ); 
   K3[j].TH=h*dy[j].TH+h*w3;//+h*gv(0,T,G)*w3; 
   //w3 = r8_normal_01 (seed ) * sqrt ( q3 * q / h ); 
   K3[j].OM=h*dy[j].OM;//+h*gv(0,T,G)*w3; 
   //w3 = r8_normal_01 (seed ) * sqrt ( q3 * q / h ); 
   K3[j].XR=h*dy[j].XR;//+h*gv(0,T,G)*w3; 
   //w3 = r8_normal_01 (seed ) * sqrt ( q3 * q / h ); 
   K3[j].XI=h*dy[j].XI;//+h*gv(0,T,G)*w3; 
   //w3 = r8_normal_01 (seed ) * sqrt ( q3 * q / h ); 
   K3[j].HR=h*dy[j].HR;//+h*gv(0,T,G)*w3; 
   //w3 = r8_normal_01 (seed ) * sqrt ( q3 * q / h ); 
   K3[j].HI=h*dy[j].HI;//+h*gv(0,T,G)*w3; 
  } 
/******************************************************************************/ 
 
/******************************************************************************/ 
 
   t4=t1+a41*h+a42*h+a43*h; 
   for (j=ghost;j<M+ghost;j++) 
  { 
   yk[j].Y=BP[j].Y+a41*K1[j].Y+a42*K2[j].Y+a43*K3[j].Y; 
   yk[j].A=BP[j].A+a41*K1[j].A+a42*K2[j].A+a43*K3[j].A; 
   yk[j].TH=BP[j].TH+a41*K1[j].TH+a42*K2[j].TH+a43*K3[j].TH; 
   OLD[j]=yk[j].OM; 
   yk[j].OM=BP[j].OM+a41*K1[j].OM+a42*K2[j].OM+a43*K3[j].OM; 
   yk[j].XR=BP[j].XR+a41*K1[j].XR+a42*K2[j].XR+a43*K3[j].XR; 
   yk[j].XI=BP[j].XI+a41*K1[j].XI+a42*K2[j].XI+a43*K3[j].XI; 
   yk[j].HR=BP[j].HR+a41*K1[j].HR+a42*K2[j].HR+a43*K3[j].HR; 
   yk[j].HI=BP[j].HI+a41*K1[j].HI+a42*K2[j].HI+a43*K3[j].HI; 
    
  } 
    Distribute_data(yk,9,10,Job_ID); 
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    RHS_FUN(yk,dy,Strand,X,V,G,OLD,h,Total_Energy,Transport_Study); 
      
 
   for (j=ghost;j<M+ghost;j++) 
  { 
   w4 = Normal(0, sqrt(2*Kb*T*m*G)) * sqrt ( q4 * q / h ); 
   K4[j].Y=h*dy[j].Y+h*w4; 
   //w4 = r8_normal_01 ( seed ) * sqrt ( q4 * q / h ); 
   K4[j].A=h*dy[j].A;//+h*gv(0,T,G)*w4; 
   w4 = Normal(0, sqrt(2*Kb*T*m*G)) * sqrt ( q4 * q / h ); 
   K4[j].TH=h*dy[j].TH+h*w4;//+h*gv(0,T,G)*w4; 
   //w4 = r8_normal_01 ( seed ) * sqrt ( q4 * q / h ); 
   K4[j].OM=h*dy[j].OM;//+h*gv(0,T,G)*w4; 
   //w4 = r8_normal_01 ( seed ) * sqrt ( q4 * q / h ); 
   K4[j].XR=h*dy[j].XR;//+h*gv(0,T,G)*w4; 
   //w4 = r8_normal_01 ( seed ) * sqrt ( q4 * q / h ); 
   K4[j].XI=h*dy[j].XI;//+h*gv(0,T,G)*w4; 
   //w4 = r8_normal_01 ( seed ) * sqrt ( q4 * q / h ); 
   K4[j].HR=h*dy[j].HR;//+h*gv(0,T,G)*w4; 
   //w4 = r8_normal_01 ( seed ) * sqrt ( q4 * q / h ); 
   K4[j].HI=h*dy[j].HI;//+h*gv(0,T,G)*w4; 
  } 
/******************************************************************************/ 
 
/******************************************************************************/ 
     for (j=ghost;j<M+ghost;j++) 
  { 
   BP[j].Y = BP[j].Y + a51 * K1[j].Y + a52 * K2[j].Y + a53 * K3[j].Y + a54 * K4[j].Y; 
   BP[j].A = BP[j].A + a51 * K1[j].A + a52 * K2[j].A + a53 * K3[j].A + a54 * K4[j].A; 
   BP[j].TH = BP[j].TH + a51 * K1[j].TH + a52 * K2[j].TH + a53 * K3[j].TH + a54 * 
K4[j].TH; 
   BP[j].OM = BP[j].OM + a51 * K1[j].OM + a52 * K2[j].OM + a53 * K3[j].OM + a54 * 
K4[j].OM; 
   BP[j].XR = BP[j].XR + a51 * K1[j].XR + a52 * K2[j].XR + a53 * K3[j].XR + a54 * 
K4[j].XR; 
   BP[j].XI = BP[j].XI + a51 * K1[j].XI + a52 * K2[j].XI + a53 * K3[j].XI + a54 * 
K4[j].XI; 
   BP[j].HR = BP[j].HR + a51 * K1[j].HR + a52 * K2[j].HR + a53 * K3[j].HR + a54 * 
K4[j].HR; 
   BP[j].HI = BP[j].HI + a51 * K1[j].HI + a52 * K2[j].HI + a53 * K3[j].HI + a54 * 
K4[j].HI; 
  }  
 
/******************************************************************************/ 
 
 
free(OLD); 
OLD=NULL; 
free(dy); 
dy=NULL; 
free(yk); 
yk=NULL; 
free(K1); 
K1=NULL; 
free(K2); 
K2=NULL; 
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free(K3); 
K3=NULL; 
free(K4); 
K4=NULL; 
 
} 
 
 
/******************************************************************************/ 
 
double gv ( int x ,int T,double gma) 
 
/******************************************************************************/ 
/* 
  Purpose: 
 
    GI is a time invariant stochastic right hand side. 
 
  Licensing: 
 
    This code is distributed under the GNU LGPL license. 
 
  Modified: 
 
    07 July 2010 
 
  Author: 
 
    John Burkardt 
 
  Parameters: 
 
    Input, double X, the argument. 
 
    Output, double GI, the value. 
*/ 
{ 
 
  double value,Kb,m; 
  Kb=8.617343e-5; 
  //gma=.005; 
  m=300*1.0358e-4; 
  value=0; 
  if (x==1) 
  { 
 
  value = sqrt(2*Kb*T*m*gma); 
  } 
  else 
  { 
   value=0.0;; 
  } 
  return value; 
} 
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(v) RHS function for fourth order Runge-Kutta method 
/******************************************************************************/ 
/* 
  Purpose: 
    RHS function for fourth order Runge-Kutta method 
  Licensing: 
    This code is distributed under the GNU LGPL license. 
  Modified: 
    07 July 2010 
  Author: 
 Neranjan Edirisinghe 
*/ 
/******************************************************************************/ 
 
# include "stochastic_rk.h" 
 
void RHS_FUN(Base_Pair yk[],Base_Pair dy[], Base Strand[],double X,double V,double GM,double OLD[],double 
STEP,double Total_Energy[],int Transport_Study) 
{ 
 
 int i,j,C1,C2,M,size,myrank; 
 double 
Vfun1,Wfun12,Wfun21,a,h,m,k,R,B,D,R0,L,ld,R0I,THA,KI,Kyy,Kpp,Kyp,G,GI,H,G0,K,td,Xe,Xh,X3,V1,V2,XI1,XI3,X
R1,XR3; 
 double 
DCHANGE,HDASH,TH2,OM2,XI2,XR2,HI2,HR2,YT1,YT2,YT3,TEMP1,TEMP2,TEMP3,TEMP4,TEMP5,TEMP6,T
EMP7,TEMP8,X1,X2,H2,H1,DR,TH1,TH3; 
 //Base_Pair *BP; 
  MPI_Comm_size ( MPI_COMM_WORLD, &size ); 
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank); 
 M=N/size; 
 Xe=X; 
 Xh=X; 
 C1=1; 
 C2=2; 
 a=4.45; 
 D=0.04; 
 k=0.4; 
 B=0.35; 
 R=0.5; 
 h=0.000658211; 
 m=0.03105; 
 HDASH=sqrt(pow(a,2)/(D*m)); 
 KI=1; 
 R0I=10; 
 THA=25; 
 H=3.4; 
 DR=a*3.4; 
 ld=sqrt(pow(H,2)+4*pow(R0I,2)*pow(sin(THA/2),2)); 
 R0=a*R0I; 
 td=sqrt(D*pow(a,2)/m); 
 h=h*HDASH; 
 //STEP=STEP*td; 
 G0=KI*pow(R0,2)/2; 
 L=a*ld; 
 GI=G0/D; 



 

165 
 

 K=KI/(D*pow(a,2)); 
 DCHANGE=1/(D*a); 
 
 Kyy=(K*pow(R0,2)/pow(L,2))*(pow((1-cos(THA)),2)); 
 Kpp=(K*pow(R0,2)/pow(L,2))*pow(sin(THA),2); 
 Kyp=2*(K*pow(R0,2)/pow(L,2))*sin(THA)*(1-cos(THA)); 
 G=GI/pow(R0,2); 
 Vfun1=0; 
 Wfun12=0; 
 Wfun21=0; 
 
 
 
 
for (j=ghost;j<M+ghost;j++) 
{ 
    
 YT2=yk[j].Y; 
   YT1=yk[j-1].Y; 
   YT3=yk[j+1].Y; 
   XR2=yk[j].XR; 
   XI2=yk[j].XI; 
   XR1=yk[j-1].XR; 
   XI1=yk[j-1].XI; 
   XR3=yk[j+1].XR; 
   XI3=yk[j+1].XI; 
   HR2=yk[j].HR; 
   HI2=yk[j].HI; 
   TH1=yk[j-1].TH; 
   TH2=yk[j].TH; 
   TH3=yk[j+1].TH; 
   OM2=yk[j].OM; 
    
  
   TEMP1=0; 
   TEMP2=0; 
   TEMP3=0; 
   TEMP4=0; 
   TEMP5=0; 
   TEMP6=0; 
   TEMP7=0; 
   TEMP8=0; 
 
for (i=1;i<ghost;i++) 
 { 
   
   
    H2=(pow(yk[j+i].HR,2)+pow(yk[j+i].HI,2)); 
    X2=(pow(yk[j+i].XR,2)+pow(yk[j+i].XI,2)); 
    H1=(pow(yk[(j-i)].HR,2)+pow(yk[(j-i)].HI,2)); 
    X1=(pow(yk[(j-i)].XR,2)+pow(yk[(j-i)].XI,2)); 
    TEMP1=TEMP1+(XI2*H2+XI2*H1)/((i)*DR); 
    TEMP2=TEMP2+(XR2*H2+XR2*H1)/((i)*DR); 
    TEMP3=TEMP3+(HI2*X2+HI2*X1)/((i)*DR); 
    TEMP4=TEMP4+(HR2*X2+HR2*X1)/((i)*DR); 
    TEMP5=TEMP5+(HI2*H2+HI2*H1)/((i)*DR); 
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    TEMP6=TEMP6+(HR2*H2+HR2*H1)/((i)*DR); 
    TEMP7=TEMP7+(XI2*X2+XI2*X1)/((i)*DR); 
    TEMP8=TEMP8+(XR2*X2+XR2*X1)/((i)*DR); 
    
 
 } 
    H2=(pow(HR2,2)+pow(HI2,2)); 
 X3=(pow(XR3,2)+pow(XI3,2)); 
 X1=(pow(XR1,2)+pow(XI1,2)); 
 X2=(pow(XR2,2)+pow(XI2,2)); 
    V1=(1/D)*V_cal(TH2,YT2,TH3,YT3,j,Transport_Study); 
 V2=(1/D)*V_cal(TH1,YT1,TH2,YT2,j-1,Transport_Study); 
            dy[j].HR=Total_Energy[j]*HR2+(-V1*yk[1+j].HI-V2*yk[-1+j].HI-
(Xh*DCHANGE)*YT2*HI2+Strand[j].well_depth*HI2)/h/*-Recombiantion_Rate*HR2*X2*/+TEMP1/h-
TEMP5/h+GRADIENT*j*yk[j].HR-td*Strand[j].absorption*HR2; 
            dy[j].HI=Total_Energy[j]*HI2+(V1*yk[1+j].HR+V2*yk[-1+j].HR+(Xh*DCHANGE)*YT2*HR2-
Strand[j].well_depth*HR2)/h/*-Recombiantion_Rate*HI2*X2*/-TEMP2/h+TEMP6/h+GRADIENT*j*yk[j].HI-
td*Strand[j].absorption*HI2; 
            dy[j].XR=Total_Energy[j]*XR2+(-V1*XI3-
V2*XI1+(Xe*DCHANGE)*YT2*XI2+Strand[j].well_depth*XI2)/h/*-Recombiantion_Rate*XR2*H2+TEMP3/h-
TEMP7/h-GRADIENT*j*yk[j].XR*/-td*Strand[j].absorption*XR2; 
            dy[j].XI=Total_Energy[j]*XI2+(V1*XR3+V2*XR1-(Xe*DCHANGE)*YT2*XR2-
Strand[j].well_depth*XR2)/h/*-Recombiantion_Rate*XI2*H2-TEMP4/h+TEMP8/h-GRADIENT*j*yk[j].XI*/-
td*Strand[j].absorption*XI2; 
            dy[j].A=(1+YT2/R0)*(1/R0)*pow(OM2,2)-(YT2-(3/2)*pow(YT2,2)+(7/6)*pow(YT2,3))-
Kyy*(YT3+YT1+2*YT2)-Kyp*(TH3-TH1)-(Xe*X2-Xh*H2)*DCHANGE; 
            dy[j].Y=yk[j].A; 

dy[j].OM=Kpp*(TH3+TH1-2*TH2)-G*(yk[j+2].TH+yk[j-2].TH-4*TH3-4*TH1+6*TH2)+(Kyp/2)*(YT3-
YT1)-(2/R0)*yk[j].A*OM2-(2/R0)*YT2*((OM2-OLD[j])/STEP)-(2/pow(R0,2))*YT2*yk[j].A*OM2-
(1/pow(R0,2))*pow(YT2,2)*((OM2-OLD[j])/STEP)+V1*TH2*(X2*X1)/D+V2*TH2*(X3*X2)/D; 
   dy[j].TH=OM2; 
 
 
} 
            
 
} 
 

(vi) Runge-Kutta-Fehlberg method 
 

/******************************************************************************/ 
/* 
  Purpose: 
    Runge-Kutta-Fehlberg method 
  Licensing: 
    This code is distributed under the GNU LGPL license. 
  Modified: 
    07 July 2010 
  Author: 
 Neranjan Edirisinghe 
*/ 
/******************************************************************************/ 
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# include "stochastic_rk.h" 
void Runge_Kutta_Fehlberg( Base_Pair BP[],Base_Pair y2[],Base_Pair y1[],Base_Pair y0[],double h,double t, 
Base Strand[],double X,double V,int T,double G,double Total_Energy[],int Transport_Study,int Job_ID) 
{ 
  //double h; 
  int j; 
  //int n; 
  double q,Multiplier,*OLD; 
  int seed; 
    int myrank,size,M,Send_count_start; 
 int   Destination,Origin; 
 MPI_Status M_status; 
   Base_Pair *yk,*ytemp1,*ytemp2,*dy; 
   q = 1.0; 
  seed = 123456789; 
 
   MPI_Comm_size ( MPI_COMM_WORLD, &size ); 
MPI_Comm_rank(MPI_COMM_WORLD, &myrank); 
M=N/size; 
Send_count_start=M; 
 
  yk=malloc ((M+2*ghost)*sizeof(Base_Pair)); 
  if (yk == NULL)  
  { 
   printf("error defining yk  "); 
  } 
 
  ytemp1=malloc ((M+2*ghost)*sizeof(Base_Pair)); 
  if (ytemp1 == NULL)  
  { 
   printf("error defining ytemp1  "); 
  } 
 
  ytemp2=malloc ((M+2*ghost)*sizeof(Base_Pair)); 
  if (ytemp2 == NULL)  
  { 
   printf("error defining ytemp2  "); 
  } 
  OLD=malloc ((M+2*ghost)*sizeof(double)); 
  if (OLD == NULL)  
  { 
   printf("error defining OLD  "); 
  } 
  dy=malloc ((M+2*ghost)*sizeof(Base_Pair)); 
  if (dy == NULL)  
  { 
   printf("error defining dy  "); 
  } 
 
 
   for (j=0;j<(M+2*ghost);j++) 
   { 
         
    yk[j].HR=BP[j].HR; 
    yk[j].XR=BP[j].XR; 
    yk[j].HI=BP[j].HI; 
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    yk[j].XI=BP[j].XI; 
    yk[j].Y=BP[j].Y; 
    yk[j].A=BP[j].A; 
    yk[j].OM=BP[j].OM; 
    yk[j].TH=BP[j].TH;     
    OLD[j]=y2[j].OM; 
    ytemp1[j].HR=0; 
    ytemp1[j].XR=0; 
    ytemp1[j].HI=0; 
    ytemp1[j].XI=0; 
    ytemp1[j].Y=0; 
    ytemp1[j].A=0; 
    ytemp1[j].OM=0; 
    ytemp1[j].TH=0; 
    ytemp2[j].HR=0; 
    ytemp2[j].XR=0; 
    ytemp2[j].HI=0; 
    ytemp2[j].XI=0; 
    ytemp2[j].Y=0; 
    ytemp2[j].A=0; 
    ytemp2[j].OM=0; 
    ytemp2[j].TH=0; 
         
      
 
   } 
 
 
 RHS_FUN(yk,dy,Strand,X,V,G,OLD,h,Total_Energy,Transport_Study); 
 Multiplier=55*h; 
   for (j=0;j<(M+2*ghost);j++) 
   { 
         
    ytemp1[j].HR=ytemp1[j].HR+Multiplier*dy[j].HR; 
    ytemp1[j].XR=ytemp1[j].XR+Multiplier*dy[j].XR; 
    ytemp1[j].HI=ytemp1[j].HI+Multiplier*dy[j].HI; 
    ytemp1[j].XI=ytemp1[j].XI+Multiplier*dy[j].XI; 
    ytemp1[j].Y=ytemp1[j].Y+Multiplier*dy[j].Y; 
    ytemp1[j].A=ytemp1[j].A+Multiplier*dy[j].A; 
    ytemp1[j].OM=ytemp1[j].OM+Multiplier*dy[j].OM; 
    ytemp1[j].TH=ytemp1[j].TH+Multiplier*dy[j].TH;     
    OLD[j]=y2[j].OM;   
         
      
 
   } 
 
   Multiplier=19*h; 
   for (j=0;j<(M+2*ghost);j++) 
   { 
         
    ytemp2[j].HR=ytemp2[j].HR+Multiplier*dy[j].HR; 
    ytemp2[j].XR=ytemp2[j].XR+Multiplier*dy[j].XR; 
    ytemp2[j].HI=ytemp2[j].HI+Multiplier*dy[j].HI; 
    ytemp2[j].XI=ytemp2[j].XI+Multiplier*dy[j].XI; 
    ytemp2[j].Y=ytemp2[j].Y+Multiplier*dy[j].Y; 
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    ytemp2[j].A=ytemp2[j].A+Multiplier*dy[j].A; 
    ytemp2[j].OM=ytemp2[j].OM+Multiplier*dy[j].OM; 
    ytemp2[j].TH=ytemp2[j].TH+Multiplier*dy[j].TH;  
      
 
   } 
 
 
  for (j=0;j<(M+2*ghost);j++) 
   { 
         
    yk[j].HR=y2[j].HR; 
    yk[j].XR=y2[j].XR; 
    yk[j].HI=y2[j].HI; 
    yk[j].XI=y2[j].XI; 
    yk[j].Y=y2[j].Y; 
    yk[j].A=y2[j].A; 
    yk[j].OM=y2[j].OM; 
    yk[j].TH=y2[j].TH;     
    OLD[j]=y1[j].OM;   
         
      
 
   } 
 
 RHS_FUN(yk,dy,Strand,X,V,G,OLD,h,Total_Energy,Transport_Study); 
 Multiplier=-59*h; 
   for (j=0;j<(M+2*ghost);j++) 
   { 
         
    ytemp1[j].HR=ytemp1[j].HR+Multiplier*dy[j].HR; 
    ytemp1[j].XR=ytemp1[j].XR+Multiplier*dy[j].XR; 
    ytemp1[j].HI=ytemp1[j].HI+Multiplier*dy[j].HI; 
    ytemp1[j].XI=ytemp1[j].XI+Multiplier*dy[j].XI; 
    ytemp1[j].Y=ytemp1[j].Y+Multiplier*dy[j].Y; 
    ytemp1[j].A=ytemp1[j].A+Multiplier*dy[j].A; 
    ytemp1[j].OM=ytemp1[j].OM+Multiplier*dy[j].OM; 
    ytemp1[j].TH=ytemp1[j].TH+Multiplier*dy[j].TH;     
       
         
      
 
   } 
 
   
 
   Multiplier=-5*h; 
   for (j=0;j<(M+2*ghost);j++) 
   { 
         
    ytemp2[j].HR=ytemp2[j].HR+Multiplier*dy[j].HR; 
    ytemp2[j].XR=ytemp2[j].XR+Multiplier*dy[j].XR; 
    ytemp2[j].HI=ytemp2[j].HI+Multiplier*dy[j].HI; 
    ytemp2[j].XI=ytemp2[j].XI+Multiplier*dy[j].XI; 
    ytemp2[j].Y=ytemp2[j].Y+Multiplier*dy[j].Y; 
    ytemp2[j].A=ytemp2[j].A+Multiplier*dy[j].A; 
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    ytemp2[j].OM=ytemp2[j].OM+Multiplier*dy[j].OM; 
    ytemp2[j].TH=ytemp2[j].TH+Multiplier*dy[j].TH;  
      
 
   } 
 
   for (j=0;j<(M+2*ghost);j++) 
   { 
         
    yk[j].HR=y1[j].HR; 
    yk[j].XR=y1[j].XR; 
    yk[j].HI=y1[j].HI; 
    yk[j].XI=y1[j].XI; 
    yk[j].Y=y1[j].Y; 
    yk[j].A=y1[j].A; 
    yk[j].OM=y1[j].OM; 
    yk[j].TH=y1[j].TH;     
    OLD[j]=y0[j].OM;   
         
      
 
   } 
 
 RHS_FUN(yk,dy,Strand,X,V,G,OLD,h,Total_Energy,Transport_Study); 
 Multiplier=37*h; 
   for (j=0;j<(M+2*ghost);j++) 
   { 
         
    ytemp1[j].HR=ytemp1[j].HR+Multiplier*dy[j].HR; 
    ytemp1[j].XR=ytemp1[j].XR+Multiplier*dy[j].XR; 
    ytemp1[j].HI=ytemp1[j].HI+Multiplier*dy[j].HI; 
    ytemp1[j].XI=ytemp1[j].XI+Multiplier*dy[j].XI; 
    ytemp1[j].Y=ytemp1[j].Y+Multiplier*dy[j].Y; 
    ytemp1[j].A=ytemp1[j].A+Multiplier*dy[j].A; 
    ytemp1[j].OM=ytemp1[j].OM+Multiplier*dy[j].OM; 
    ytemp1[j].TH=ytemp1[j].TH+Multiplier*dy[j].TH;  
      
 
   } 
 
   Multiplier=h; 
   for (j=0;j<(M+2*ghost);j++) 
   { 
         
    ytemp2[j].HR=ytemp2[j].HR+Multiplier*dy[j].HR; 
    ytemp2[j].XR=ytemp2[j].XR+Multiplier*dy[j].XR; 
    ytemp2[j].HI=ytemp2[j].HI+Multiplier*dy[j].HI; 
    ytemp2[j].XI=ytemp2[j].XI+Multiplier*dy[j].XI; 
    ytemp2[j].Y=ytemp2[j].Y+Multiplier*dy[j].Y; 
    ytemp2[j].A=ytemp2[j].A+Multiplier*dy[j].A; 
    ytemp2[j].OM=ytemp2[j].OM+Multiplier*dy[j].OM; 
    ytemp2[j].TH=ytemp2[j].TH+Multiplier*dy[j].TH;  
      
 
   } 
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   for (j=0;j<(M+2*ghost);j++) 
   { 
         
    yk[j].HR=y0[j].HR; 
    yk[j].XR=y0[j].XR; 
    yk[j].HI=y0[j].HI; 
    yk[j].XI=y0[j].XI; 
    yk[j].Y=y0[j].Y; 
    yk[j].A=y0[j].A; 
    yk[j].OM=y0[j].OM; 
    yk[j].TH=y0[j].TH;     
    OLD[j]=y0[j].OM;   
         
      
 
   } 
 
 RHS_FUN(yk,dy,Strand,X,V,G,OLD,h,Total_Energy,Transport_Study); 
 Multiplier=-9*h; 
   for (j=0;j<(M+2*ghost);j++) 
   { 
         
    ytemp1[j].HR=ytemp1[j].HR+Multiplier*dy[j].HR; 
    ytemp1[j].XR=ytemp1[j].XR+Multiplier*dy[j].XR; 
    ytemp1[j].HI=ytemp1[j].HI+Multiplier*dy[j].HI; 
    ytemp1[j].XI=ytemp1[j].XI+Multiplier*dy[j].XI; 
    ytemp1[j].Y=ytemp1[j].Y+Multiplier*dy[j].Y; 
    ytemp1[j].A=ytemp1[j].A+Multiplier*dy[j].A; 
    ytemp1[j].OM=ytemp1[j].OM+Multiplier*dy[j].OM; 
    ytemp1[j].TH=ytemp1[j].TH+Multiplier*dy[j].TH;  
      
 
   } 
 
   for (j=0;j<(M+2*ghost);j++) 
   { 
         
    ytemp1[j].HR=ytemp1[j].HR/24+BP[j].HR; 
    ytemp1[j].XR=ytemp1[j].XR/24+BP[j].XR; 
    ytemp1[j].HI=ytemp1[j].HI/24+BP[j].HI; 
    ytemp1[j].XI=ytemp1[j].XI/24+BP[j].XI; 
    ytemp1[j].Y=ytemp1[j].Y/24+BP[j].Y; 
    ytemp1[j].A=ytemp1[j].A/24+BP[j].A; 
    ytemp1[j].OM=ytemp1[j].OM/24+BP[j].OM; 
    ytemp1[j].TH=ytemp1[j].TH/24+BP[j].TH;  
      
 
   } 
 
   for (j=0;j<(M+2*ghost);j++) 
   { 
         
    yk[j].HR=ytemp1[j].HR; 
    yk[j].XR=ytemp1[j].XR; 
    yk[j].HI=ytemp1[j].HI; 
    yk[j].XI=ytemp1[j].XI; 
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    yk[j].Y=ytemp1[j].Y; 
    yk[j].A=ytemp1[j].A; 
    yk[j].OM=ytemp1[j].OM; 
    yk[j].TH=ytemp1[j].TH;     
    OLD[j]=BP[j].OM;   
         
      
 
   } 
 
 Send_count_start=M; 
  Destination=myrank+1; 
  if (Destination>size-1) 
  {//{3} 
   Destination=0; 
  }//{3} 
 
  Origin=myrank-1; 
  if (Origin<0) 
  {//{3} 
    Origin=size-1; 
  }//{3} 
 
      
 
 MPI_Sendrecv( &yk[Send_count_start], DIM*ghost,MPI_DOUBLE,Destination,4,&yk[0], 
DIM*ghost,MPI_DOUBLE, Origin,4,MPI_COMM_WORLD, &M_status); 
  Send_count_start=ghost; 
 Destination=myrank-1; 
  if (Destination<0) 
  {//{3} 
   Destination=size-1; 
  }//{3} 
 
  Origin=myrank+1; 
  if (Origin>size-1) 
  {//{3} 
    Origin=0; 
  }//{3} 
   
    MPI_Sendrecv(&yk[Send_count_start],DIM*ghost,MPI_DOUBLE,Destination,3, &yk[M+ghost], 
DIM*ghost,MPI_DOUBLE, Origin,3,MPI_COMM_WORLD, &M_status); 
    MPI_Barrier(MPI_COMM_WORLD); 
 
 
   RHS_FUN(yk,dy,Strand,X,V,G,OLD,h,Total_Energy,Transport_Study); 
   Multiplier=9*h; 
   for (j=0;j<(M+2*ghost);j++) 
   { 
         
    ytemp2[j].HR=ytemp2[j].HR+Multiplier*dy[j].HR; 
    ytemp2[j].XR=ytemp2[j].XR+Multiplier*dy[j].XR; 
    ytemp2[j].HI=ytemp2[j].HI+Multiplier*dy[j].HI; 
    ytemp2[j].XI=ytemp2[j].XI+Multiplier*dy[j].XI; 
    ytemp2[j].Y=ytemp2[j].Y+Multiplier*dy[j].Y; 
    ytemp2[j].A=ytemp2[j].A+Multiplier*dy[j].A; 
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    ytemp2[j].OM=ytemp2[j].OM+Multiplier*dy[j].OM; 
    ytemp2[j].TH=ytemp2[j].TH+Multiplier*dy[j].TH;  
      
 
   } 
 
   for (j=0;j<(M+2*ghost);j++) 
   { 
         
    ytemp1[j].HR=ytemp2[j].HR/24+BP[j].HR; 
    ytemp1[j].XR=ytemp2[j].XR/24+BP[j].XR; 
    ytemp1[j].HI=ytemp2[j].HI/24+BP[j].HI; 
    ytemp1[j].XI=ytemp2[j].XI/24+BP[j].XI; 
    ytemp1[j].Y=ytemp2[j].Y/24+BP[j].Y; 
    ytemp1[j].A=ytemp2[j].A/24+BP[j].A; 
    ytemp1[j].OM=ytemp2[j].OM/24+BP[j].OM; 
    ytemp1[j].TH=ytemp2[j].TH/24+BP[j].TH;  
      
 
   } 
 
 
   for (j=0;j<(M+2*ghost);j++) 
   { 
         
    y0[j].HR=y1[j].HR; 
    y0[j].XR=y1[j].XR; 
    y0[j].HI=y1[j].HI; 
    y0[j].XI=y1[j].XI; 
    y0[j].Y=y1[j].Y; 
    y0[j].A=y1[j].A; 
    y0[j].OM=y1[j].OM; 
    y0[j].TH=y1[j].TH;  
      
 
   } 
 
 
   for (j=0;j<(M+2*ghost);j++) 
   { 
         
    y1[j].HR=y2[j].HR; 
    y1[j].XR=y2[j].XR; 
    y1[j].HI=y2[j].HI; 
    y1[j].XI=y2[j].XI; 
    y1[j].Y=y2[j].Y; 
    y1[j].A=y2[j].A; 
    y1[j].OM=y2[j].OM; 
    y1[j].TH=y2[j].TH;  
      
 
   } 
 
   for (j=0;j<(M+2*ghost);j++) 
   { 
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    y2[j].HR=BP[j].HR; 
    y2[j].XR=BP[j].XR; 
    y2[j].HI=BP[j].HI; 
    y2[j].XI=BP[j].XI; 
    y2[j].Y=BP[j].Y; 
    y2[j].A=BP[j].A; 
    y2[j].OM=BP[j].OM; 
    y2[j].TH=BP[j].TH;  
      
 
   } 
 
   for (j=0;j<(M+2*ghost);j++) 
   { 
         
    BP[j].HR=ytemp1[j].HR; 
    BP[j].XR=ytemp1[j].XR; 
    BP[j].HI=ytemp1[j].HI; 
    BP[j].XI=ytemp1[j].XI; 
    BP[j].Y=ytemp1[j].Y; 
    BP[j].A=ytemp1[j].A; 
    BP[j].OM=ytemp1[j].OM; 
    BP[j].TH=ytemp1[j].TH;  
      
 
   } 
 
     Send_count_start=M; 
  Destination=myrank+1; 
  if (Destination>size-1) 
  {//{3} 
   Destination=0; 
  }//{3} 
 
  Origin=myrank-1; 
  if (Origin<0) 
  {//{3} 
    Origin=size-1; 
  }//{3} 
 
      
 
 MPI_Sendrecv( &BP[Send_count_start], DIM*ghost,MPI_DOUBLE,Destination,4,&BP[0], 
DIM*ghost,MPI_DOUBLE, Origin,4,MPI_COMM_WORLD, &M_status);         
 
  Send_count_start=ghost; 
  Destination=myrank-1; 
  if (Destination<0) 
  {//{3} 
   Destination=size-1; 
  }//{3} 
 
  Origin=myrank+1; 
  if (Origin>size-1) 
  {//{3} 
    Origin=0; 
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  }//{3} 
   
    MPI_Sendrecv(&BP[Send_count_start],DIM*ghost,MPI_DOUBLE,Destination,3, &BP[M+ghost], 
DIM*ghost,MPI_DOUBLE, Origin,3,MPI_COMM_WORLD, &M_status); 
    MPI_Barrier(MPI_COMM_WORLD); 
 
free(OLD); 
OLD=NULL; 
free(dy); 
dy=NULL; 
free(yk); 
yk=NULL; 
free(ytemp1); 
ytemp1=NULL; 
free(ytemp2); 
ytemp2=NULL;  
  return; 
} 
 

(vii) Header file 
 
/******************************************************************************/ 
/* 
  Purpose: 
    Header file 
  Licensing: 
    This code is distributed under the GNU LGPL license. 
  Modified: 
    07 July 2010 
  Author: 
 Neranjan Edirisinghe 
*/ 
/******************************************************************************/ 
 
#include "mpi.h" 
#include "math.h" 
#include "stdio.h" 
#include "malloc.h" 
# include <time.h> 
#include <string.h> 
# include <stdio.h> 
# include <stdlib.h> 
# include <math.h> 
#include <string.h> 
#include <sys/types.h> 
#include <sys/stat.h> 
#include <fcntl.h> 
#include "rngs.h" 
#include "rvgs.h" 
#define DIM 8 
#define DEBUG 0 
 
 
#define Eg 7.77 
#define Ec 8.87 
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#define Ea 8.25 
#define Et 9.13 
#define tb 1.5 
#define tw 0.15 
 
#define T2 tb*tb 
#define Alpha1 (Eg*Eg+Ec*Ec)/T2 
#define E_Init 2*(Eg+Ec) 
typedef struct 
 { 
          double HR; 
          double HI; 
    double XR; 
          double XI; 
    double TH; 
    double OM; 
          double Y; 
          double A; 
  
 } Base_Pair; 
 
typedef struct 
 { 
          double Wave_Function; 
          double Displacement; 
    double Twist_Angle;           
  
 } Storage_Base_Pair; 
 
typedef struct 
 { 
          int Ray_Hit; 
          int Position; 
    int Sub_unit; 
            
 } Radiation; 
 
 
 
typedef struct 
 { 
 int Initiate; 
 int Sub_unit; 
 int Position; 
  
} Cell; 
 
typedef struct 
 { 
 double well_depth; 
 double absorption; 
} Base; 
 
 
typedef struct 
 { 
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 double Return_Probability; 
 double Participation_Function; 
 double Shannon_Information_Entrophy; 
} Norm; 
 
#define N 512 
#define ghost 5 
#define Recombiantion_Rate 200 
#define  GRADIENT 0.0001 
  
//extern double r8_normal_01 ( int *seed ); 
//extern double r8_uniform_01 ( int *seed ); 
//void timestamp ( ); 
extern void RHS_FUN(Base_Pair yk[],Base_Pair dy[], Base Strand[],double X,double V,double G,double 
OLD[],double,double Total_Energy[],int Transport_Study); 
extern void E_THO_CONST(double E[],double THO[],int QD,double QW1, double THO1); 
extern void Stochastic_RK4(Base_Pair BP[], Base Strand[],double X,double V,double t,double h,double q,int *seed, 
int T,double G,double Total_Energy[],int Transport_Study,int); 
//extern double r8_normal_01 ( int *seed ); 
extern double Total_Energy(double y[]); 
extern double V_cal(double theta1, double r1,double theta2, double r2, int i,int Transport_Study); 
extern double V_fun(double a0,double a1, double a2,double a3,double a4,double b1,double b2,double b3,double 
b4,double w,double x,int FI); 
extern void Print_matrix(Base_Pair BP_MAIN[],FILE *yfile,FILE *afile,FILE *tfile,FILE *ofile,FILE *wfile,FILE 
*hfile); 
extern void Distribute_data(Base_Pair yk[],int,int,int); 
extern void Onsite_Energy_Calculation(Base_Pair BP[],double Total_Energy[],double X,double 
Hydration_Energy,int Transport_Study); 
extern void Energy_Calculation(Base_Pair BP[],double Total_Energy[],double X,int Transport_Study,int); 
extern double Normal(double m, double s); 
extern void PutSeed(long x); 
extern double Maxwell_Boltzman(double G,int T,int); 
extern void Creat_file_structure(int T,char *Initial,FILE *yfile,FILE *afile,FILE *tfile,FILE *ofile,FILE 
*wfile,FILE *hfile,FILE *tmfile); 
extern void Runge_Kutta_Fehlberg( Base_Pair BP[],Base_Pair y2[],Base_Pair y1[],Base_Pair y0[],double 
h,double t, Base Strand[],double X,double V,int T,double G,double Total_Energy[],int Transport_Stuy,int Job_ID); 
extern void fft(int , double (*x)[2], double (*X)[2]); 
extern void ifft(int, double (*x)[2], double (*X)[2]); 
extern void Auto_correaltion(Base_Pair BP_MAIN[]); 
extern Norm Norm_Calculation(Base_Pair BP[],Cell cell_donor); 
extern void Final_Times_Print_matrix(Storage_Base_Pair Master_Output_Buffer[],FILE *yfile,FILE *tfile,FILE 
*wfile,int Buffer_Size,int Buffer_Index); 
 
 
 

(viii) Random Number Generators:  
 
/* ------------------------------------------------------------------------- 
 * This is an ANSI C library for multi-stream random number generation.   
 * The use of this library is recommended as a replacement for the ANSI C  
 * rand() and srand() functions, particularly in simulation applications  
 * where the statistical 'goodness' of the random number generator is  
 * important.  The library supplies 256 streams of random numbers; use  
 * SelectStream(s) to switch between streams indexed s = 0,1,...,255. 
 * 
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 * The streams must be initialized.  The recommended way to do this is by 
 * using the function PlantSeeds(x) with the value of x used to initialize  
 * the default stream and all other streams initialized automatically with 
 * values dependent on the value of x.  The following convention is used  
 * to initialize the default stream: 
 *    if x > 0 then x is the state 
 *    if x < 0 then the state is obtained from the system clock 
 *    if x = 0 then the state is to be supplied interactively. 
 * 
 * The generator used in this library is a so-called 'Lehmer random number 
 * generator' which returns a pseudo-random number uniformly distributed 
 * 0.0 and 1.0.  The period is (m - 1) where m = 2,147,483,647 and the 
 * smallest and largest possible values are (1 / m) and 1 - (1 / m) 
 * respectively.  For more details see: 
 *  
 *       "Random Number Generators: Good Ones Are Hard To Find" 
 *                   Steve Park and Keith Miller 
 *              Communications of the ACM, October 1988 
 * 
 * Name            : rngs.c  (Random Number Generation - Multiple Streams) 
 * Authors         : Steve Park & Dave Geyer 
 * Language        : ANSI C 
 * Latest Revision : 09-22-98 
 * -------------------------------------------------------------------------  
 */ 
 
#include <stdio.h> 
#include <time.h> 
#include "rngs.h" 
 
#define MODULUS    2147483647 /* DON'T CHANGE THIS VALUE                  */ 
#define MULTIPLIER 48271      /* DON'T CHANGE THIS VALUE                  */ 
#define CHECK      399268537  /* DON'T CHANGE THIS VALUE                  */ 
#define STREAMS    256        /* # of streams, DON'T CHANGE THIS VALUE    */ 
#define A256       22925      /* jump multiplier, DON'T CHANGE THIS VALUE */ 
#define DEFAULT    123456789  /* initial seed, use 0 < DEFAULT < MODULUS  */ 
       
static long seed[STREAMS] = {DEFAULT};  /* current state of each stream   */ 
static int  stream        = 0;          /* stream index, 0 is the default */ 
static int  initialized   = 0;          /* test for stream initialization */ 
 
 
   double Random(void) 
/* ---------------------------------------------------------------- 
 * Random returns a pseudo-random real number uniformly distributed  
 * between 0.0 and 1.0.  
 * ---------------------------------------------------------------- 
 */ 
{ 
  const long Q = MODULUS / MULTIPLIER; 
  const long R = MODULUS % MULTIPLIER; 
        long t; 
 
  t = MULTIPLIER * (seed[stream] % Q) - R * (seed[stream] / Q); 
  if (t > 0)  
    seed[stream] = t; 
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  else  
    seed[stream] = t + MODULUS; 
  return ((double) seed[stream] / MODULUS); 
} 
 
 
   void PlantSeeds(long x) 
/* --------------------------------------------------------------------- 
 * Use this function to set the state of all the random number generator  
 * streams by "planting" a sequence of states (seeds), one per stream,  
 * with all states dictated by the state of the default stream.  
 * The sequence of planted states is separated one from the next by  
 * 8,367,782 calls to Random(). 
 * --------------------------------------------------------------------- 
 */ 
{ 
  const long Q = MODULUS / A256; 
  const long R = MODULUS % A256; 
        int  j; 
        int  s; 
 
  initialized = 1; 
  s = stream;                            /* remember the current stream */ 
  SelectStream(0);                       /* change to stream 0          */ 
  PutSeed(x);                            /* set seed[0]                 */ 
  stream = s;                            /* reset the current stream    */ 
  for (j = 1; j < STREAMS; j++) { 
    x = A256 * (seed[j - 1] % Q) - R * (seed[j - 1] / Q); 
    if (x > 0) 
      seed[j] = x; 
    else 
      seed[j] = x + MODULUS; 
   } 
} 
 
 
   void PutSeed(long x) 
/* --------------------------------------------------------------- 
 * Use this function to set the state of the current random number  
 * generator stream according to the following conventions: 
 *    if x > 0 then x is the state (unless too large) 
 *    if x < 0 then the state is obtained from the system clock 
 *    if x = 0 then the state is to be supplied interactively 
 * --------------------------------------------------------------- 
 */ 
{ 
  char ok = 0; 
 
  if (x > 0) 
    x = x % MODULUS;                       /* correct if x is too large  */ 
  if (x < 0)                                  
    x = ((unsigned long) time((time_t *) NULL)) % MODULUS;               
  if (x == 0)                                 
    while (!ok) { 
      printf("\nEnter a positive integer seed (9 digits or less) >> "); 
      scanf("%ld", &x); 
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      ok = (0 < x) && (x < MODULUS); 
      if (!ok) 
        printf("\nInput out of range ... try again\n"); 
    } 
  seed[stream] = x; 
} 
 
 
   void GetSeed(long *x) 
/* --------------------------------------------------------------- 
 * Use this function to get the state of the current random number  
 * generator stream.                                                    
 * --------------------------------------------------------------- 
 */ 
{ 
  *x = seed[stream]; 
} 
 
 
   void SelectStream(int index) 
/* ------------------------------------------------------------------ 
 * Use this function to set the current random number generator 
 * stream -- that stream from which the next random number will come. 
 * ------------------------------------------------------------------ 
 */ 
{ 
  stream = ((unsigned int) index) % STREAMS; 
  if ((initialized == 0) && (stream != 0))   /* protect against        */ 
    PlantSeeds(DEFAULT);                     /* un-initialized streams */ 
} 
 
 
   void TestRandom(void) 
/* ------------------------------------------------------------------ 
 * Use this (optional) function to test for a correct implementation. 
 * ------------------------------------------------------------------     
 */ 
{ 
  long   i; 
  long   x; 
  double u; 
  char   ok = 0;   
 
  SelectStream(0);                  /* select the default stream */ 
  PutSeed(1);                       /* and set the state to 1    */ 
  for(i = 0; i < 10000; i++) 
    u = Random(); 
  GetSeed(&x);                      /* get the new state value   */ 
  ok = (x == CHECK);                /* and check for correctness */ 
 
  SelectStream(1);                  /* select stream 1                 */  
  PlantSeeds(1);                    /* set the state of all streams    */ 
  GetSeed(&x);                      /* get the state of stream 1       */ 
  ok = ok && (x == A256);           /* x should be the jump multiplier */     
  if (ok) 
    printf("\n The implementation of rngs.c is correct.\n\n"); 
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  else 
    printf("\n\a ERROR -- the implementation of rngs.c is not correct.\n\n"); 
} 
 

(ix) ANSI C library for generating random variates from six discrete  distributions 
 
/* --------------------------------------------------------------------------  
 * This is an ANSI C library for generating random variates from six discrete  
 * distributions 
 * 
 *      Generator         Range (x)     Mean         Variance 
 * 
 *      Bernoulli(p)      x = 0,1       p            p*(1-p) 
 *      Binomial(n, p)    x = 0,...,n   n*p          n*p*(1-p) 
 *      Equilikely(a, b)  x = a,...,b   (a+b)/2      ((b-a+1)*(b-a+1)-1)/12 
 *      Geometric(p)      x = 0,...     p/(1-p)      p/((1-p)*(1-p)) 
 *      Pascal(n, p)      x = 0,...     n*p/(1-p)    n*p/((1-p)*(1-p)) 
 *      Poisson(m)        x = 0,...     m            m 
 *  
 * and seven continuous distributions 
 * 
 *      Uniform(a, b)     a < x < b     (a + b)/2    (b - a)*(b - a)/12  
 *      Exponential(m)    x > 0         m            m*m 
 *      Erlang(n, b)      x > 0         n*b          n*b*b 
 *      Normal(m, s)      all x         m            s*s 
 *      Lognormal(a, b)   x > 0            see below 
 *      Chisquare(n)      x > 0         n            2*n  
 *      Student(n)        all x         0  (n > 1)   n/(n - 2)   (n > 2) 
 * 
 * For the a Lognormal(a, b) random variable, the mean and variance are 
 * 
 *                        mean = exp(a + 0.5*b*b) 
 *                    variance = (exp(b*b) - 1) * exp(2*a + b*b) 
 * 
 * Name              : rvgs.c  (Random Variate GeneratorS) 
 * Author            : Steve Park & Dave Geyer 
 * Language          : ANSI C 
 * Latest Revision   : 10-28-98 
 * -------------------------------------------------------------------------- 
 */ 
 
#include <math.h> 
#include "rngs.h" 
#include "rvgs.h" 
 
 
   long Bernoulli(double p) 
/* ======================================================== 
 * Returns 1 with probability p or 0 with probability 1 - p.  
 * NOTE: use 0.0 < p < 1.0                                    
 * ======================================================== 
 */  
{ 
  return ((Random() < (1.0 - p)) ? 0 : 1); 
} 
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   long Binomial(long n, double p) 
/* ================================================================  
 * Returns a binomial distributed integer between 0 and n inclusive.  
 * NOTE: use n > 0 and 0.0 < p < 1.0 
 * ================================================================ 
 */ 
{  
  long i, x = 0; 
 
  for (i = 0; i < n; i++) 
    x += Bernoulli(p); 
  return (x); 
} 
 
   long Equilikely(long a, long b) 
/* =================================================================== 
 * Returns an equilikely distributed integer between a and b inclusive.  
 * NOTE: use a < b 
 * =================================================================== 
 */ 
{ 
  return (a + (long) ((b - a + 1) * Random())); 
} 
 
   long Geometric(double p) 
/* ==================================================== 
 * Returns a geometric distributed non-negative integer. 
 * NOTE: use 0.0 < p < 1.0 
 * ==================================================== 
 */ 
{ 
  return ((long) (log(1.0 - Random()) / log(p))); 
} 
 
   long Pascal(long n, double p) 
/* =================================================  
 * Returns a Pascal distributed non-negative integer.  
 * NOTE: use n > 0 and 0.0 < p < 1.0 
 * ================================================= 
 */ 
{  
  long i, x = 0; 
 
  for (i = 0; i < n; i++) 
    x += Geometric(p); 
  return (x); 
} 
 
   long Poisson(double m) 
/* ==================================================  
 * Returns a Poisson distributed non-negative integer.  
 * NOTE: use m > 0 
 * ================================================== 
 */ 
{  
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  double t = 0.0; 
  long   x = 0; 
 
  while (t < m) { 
    t += Exponential(1.0); 
    x++; 
  } 
  return (x - 1); 
} 
 
   double Uniform(double a, double b) 
/* ===========================================================  
 * Returns a uniformly distributed real number between a and b.  
 * NOTE: use a < b 
 * =========================================================== 
 */ 
{  
  return (a + (b - a) * Random()); 
} 
 
   double Exponential(double m) 
/* ========================================================= 
 * Returns an exponentially distributed positive real number.  
 * NOTE: use m > 0.0 
 * ========================================================= 
 */ 
{ 
  return (-m * log(1.0 - Random())); 
} 
 
   double Erlang(long n, double b) 
/* ==================================================  
 * Returns an Erlang distributed positive real number. 
 * NOTE: use n > 0 and b > 0.0 
 * ================================================== 
 */ 
{  
  long   i; 
  double x = 0.0; 
 
  for (i = 0; i < n; i++)  
    x += Exponential(b); 
  return (x); 
} 
 
   double Normal(double m, double s) 
/* 
=====================================================================
=== 
 * Returns a normal (Gaussian) distributed real number. 
 * NOTE: use s > 0.0 
 * 
 * Uses a very accurate approximation of the normal idf due to Odeh & Evans,  
 * J. Applied Statistics, 1974, vol 23, pp 96-97. 
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 * 
=====================================================================
=== 
 */ 
{  
  const double p0 = 0.322232431088;     const double q0 = 0.099348462606; 
  const double p1 = 1.0;                const double q1 = 0.588581570495; 
  const double p2 = 0.342242088547;     const double q2 = 0.531103462366; 
  const double p3 = 0.204231210245e-1;  const double q3 = 0.103537752850; 
  const double p4 = 0.453642210148e-4;  const double q4 = 0.385607006340e-2; 
  double u, t, p, q, z; 
 
  u   = Random(); 
  if (u < 0.5) 
    t = sqrt(-2.0 * log(u)); 
  else 
    t = sqrt(-2.0 * log(1.0 - u)); 
  p   = p0 + t * (p1 + t * (p2 + t * (p3 + t * p4))); 
  q   = q0 + t * (q1 + t * (q2 + t * (q3 + t * q4))); 
  if (u < 0.5) 
    z = (p / q) - t; 
  else 
    z = t - (p / q); 
  return (m + s * z); 
} 
 
   double Lognormal(double a, double b) 
/* ====================================================  
 * Returns a lognormal distributed positive real number.  
 * NOTE: use b > 0.0 
 * ==================================================== 
 */ 
{ 
  return (exp(a + b * Normal(0.0, 1.0))); 
} 
 
   double Chisquare(long n) 
/* ===================================================== 
 * Returns a chi-square distributed positive real number.  
 * NOTE: use n > 0 
 * ===================================================== 
 */ 
{  
  long   i; 
  double z, x = 0.0; 
 
  for (i = 0; i < n; i++) { 
    z  = Normal(0.0, 1.0); 
    x += z * z; 
  } 
  return (x); 
} 
 
   double Student(long n) 
/* ===========================================  
 * Returns a student-t distributed real number. 
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 * NOTE: use n > 0 
 * =========================================== 
 */ 
{ 
  return (Normal(0.0, 1.0) / sqrt(Chisquare(n) / n)); 
} 
 

(x) Compute the transfer integral 
 
/******************************************************************************/ 
/* 
  Purpose: 
    Compute the transfer integral 
  Licensing: 
    This code is distributed under the GNU LGPL license. 
  Modified: 
    07 July 2010 
  Author: 
 Neranjan Edirisinghe 
*/ 
/******************************************************************************/ 
 
 
# include "stochastic_rk.h" 
double V_cal(double theta1, double r1,double theta2, double r2, int i,int Transport_Study) 
{ 
  
 double nppp,nppq,Vppp,Vppq; 
 double a,b,c,d,Rc; 
 double ALF1,ALF2,BTA1,BTA2,GMA1,GMA2; 
 double THE,R,L,V,ALPHA,R1,R2; 
THE=36; 
R=10; 
L=3.34; 
nppp=-2.26; 
nppq=5.27; 
Rc=0.97; 
ALPHA=4.45; 
 
R1=(r1/ALPHA+R); 
R2=(r2/ALPHA+R); 
ALF1=R1*sin(atan((L)/R1))*cos(theta1/(ALPHA*R)+THE); 
BTA1=R1*sin(atan((L)/R1))*sin(theta1/(ALPHA*R)+THE); 
GMA1=R1*cos(atan((L)/R1)); 
ALF2=R2*sin(atan(((2)*L)/R2))*cos(theta2/(ALPHA*R)+(2)*THE); 
BTA2=R2*sin(atan(((2)*L)/R2))*sin(theta2/(ALPHA*R)+(2)*THE); 
GMA2=R2*cos(atan(((2)*L)/R2)); 
a=(ALF1-ALF2); 
b=(BTA1-BTA2); 
c=(GMA1-GMA2); 
d=(sqrt(pow(a,2)+pow(b,2)+pow(c,2))); 
Vppp=nppp*7.62*exp(-d/Rc); 
Vppq=nppq*7.62*exp(-d/Rc); 
V=7.62*exp(-d/Rc)*((fabs(nppp)+nppq)*(pow(L,2)/(pow(d,2))-fabs(nppp))); 
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return V; 
} 
 

(xi) Compute the Norm and statistic 
 

/******************************************************************************/ 
/* 
  Purpose: 
    Compute the Norm and statistic across all processors and gather information on to the one processor 
  Licensing: 
    This code is distributed under the GNU LGPL license. 
  Modified: 
    07 July 2010 
  Author: 
 Neranjan Edirisinghe 
*/ 
/******************************************************************************/ 
 
 
# include "stochastic_rk.h" 
Norm Norm_Calculation(Base_Pair BP[],Cell cell_donor) 
{ Norm Data_Norm,Data_Norm_total; 
 double Temp1,Temp2,Temp3,POW,XI,XR; 
int j,size,myrank,M; 
 
 
MPI_Comm_size ( MPI_COMM_WORLD, &size ); 
MPI_Comm_rank(MPI_COMM_WORLD, &myrank); 
M=N/size; 
Data_Norm.Participation_Function=0; 
Data_Norm.Return_Probability=0; 
Data_Norm.Shannon_Information_Entrophy=0; 
Temp1=0; 
Temp2=0; 
Temp3=0; 
 
 for (j=ghost;j<M+ghost;j++) 
 { XI=BP[j].XI; 
  XR=BP[j].XR; 
   
  POW=pow(XI,2)+pow(XR,2); 
   
  Temp1=Temp1+POW; 
  Temp2=Temp2-((POW)*log(POW)); 
  Temp3=Temp3+pow(POW,2); 
 } 
  
 /* 
 if (myrank==cell_donor.Sub_unit) 
 { 
  XI=BP[cell_donor.Position+ghost-1].XI; 
  XR=BP[cell_donor.Position+ghost-1].XR; 
  Data_Norm.Return_Probability=pow(XI,2)+pow(XR,2); 
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 } 
 */ 
 Data_Norm.Return_Probability=Temp1; 
 Data_Norm.Participation_Function=Temp3; 
 Data_Norm.Shannon_Information_Entrophy=Temp2; 
 MPI_Reduce(&Data_Norm, &Data_Norm_total,3,MPI_DOUBLE,MPI_SUM, 0, MPI_COMM_WORLD) ; 
 MPI_Barrier(MPI_COMM_WORLD); 
 return Data_Norm_total; 
} 
 

(xii) Gather data from all processors and print result into a file 
 
/******************************************************************************/ 
/* 
  Purpose: 
  Gather data from all processors and print result into a file 
  Licensing: 
    This code is distributed under the GNU LGPL license. 
  Modified: 
    07 July 2010 
  Author: 
 Neranjan Edirisinghe 
*/ 
/******************************************************************************/ 
 
#include "stochastic_rk.h" 
void Final_Times_Print_matrix(Storage_Base_Pair Master_Output_Buffer[],FILE *yfile,FILE *tfile,FILE 
*wfile,int Buffer_Size,int Buffer_Index) 
{ 
int j,i,k,size,myrank,M,Globle_Index,Local_Index; 
 div_t nh; 
MPI_Comm_size ( MPI_COMM_WORLD, &size ); 
MPI_Comm_rank(MPI_COMM_WORLD, &myrank); 
M=N/size; 
 for (j=0;j<Buffer_Size;j++) 
 { 
   for (i=0;i<size;i++) 
   { 
    for (k=0;k<M;k++) 
    { 
      nh = div(Buffer_Index+j, Buffer_Size); 
      Local_Index=nh.rem; 
      Globle_Index=Local_Index*M+i*Buffer_Size*M+k; 
 
    
     
      fprintf(yfile,"%12.10f  
",Master_Output_Buffer[Globle_Index].Displacement); 
      fflush(yfile) ; 
      fprintf(tfile,"%12.10f  
",Master_Output_Buffer[Globle_Index].Twist_Angle); 
      fflush(tfile) ; 
      fprintf(wfile,"%12.10f  
",Master_Output_Buffer[Globle_Index].Wave_Function); 
      fflush(wfile) ; 
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    } 
   } 
 fprintf(yfile," \n"); 
 fprintf(tfile," \n"); 
 fprintf(wfile," \n"); 
 } 
 

(xiii)  Print intermediate result  
  
/******************************************************************************/ 
/* 
  Purpose: 
  Print intermediat result into a file 
  Licensing: 
    This code is distributed under the GNU LGPL license. 
  Modified: 
    07 July 2010 
  Author: 
 Neranjan Edirisinghe 
*/ 
/******************************************************************************/ 
 
#include "stochastic_rk.h" 
void Print_matrix(Base_Pair BP_MAIN[],FILE *yfile,FILE *afile,FILE *tfile,FILE *ofile,FILE *wfile,FILE *hfile) 
{ 
int j; 
 
 for (j=0;j<N;j++) 
   { 
    
     
     fprintf(yfile,"%12.10f  ",BP_MAIN[j].Y); 
     fflush(yfile) ; 
     fprintf(afile,"%12.10f  ",BP_MAIN[j].A); 
     fflush(afile) ; 
     fprintf(tfile,"%12.10f  ",BP_MAIN[j].TH); 
     fflush(tfile) ; 
     fprintf(ofile,"%12.10f  ",BP_MAIN[j].OM); 
     fflush(ofile) ; 
     fprintf(wfile,"%12.10f  
",pow(BP_MAIN[j].XR,2)+pow(BP_MAIN[j].XI,2)); 
     fflush(wfile) ; 
     fprintf(hfile,"%12.10f  
",pow(BP_MAIN[j].HR,2)+pow(BP_MAIN[j].HI,2)); 
     fflush(hfile) ; 
     
    
    
   } 
  
  
 
 fprintf(yfile," \n"); 
 fflush(yfile) ; 
 fprintf(afile," \n"); 
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 fflush(afile) ; 
 fprintf(tfile," \n"); 
 fflush(tfile) ; 
 fprintf(ofile," \n"); 
 fflush(ofile) ; 
 fprintf(wfile," \n"); 
 fflush(wfile) ; 
 fprintf(hfile," \n"); 
 fflush(hfile) ; 
} 
   

(b) IV Characteristic of DNA  

(i) Main Transport calculations (matlab) 
 
function [CR,TRT,TST,ES,ER]=Main_Transport_calc(M,N,K) 
%M=14 
for STUDY_INPUT=N:K 
SQ=ones(1,15); 
DLT=zeros(1,15); 
%Parameter_set 
Index=0; 
global Sigma_G; 
global Sigma_C; 
global Tg; 
global Tc; 
global STUDY; 
Sigma_G=9.0; 
Sigma_C=9.0; 
Tg=3.5; 
Tc=3.5; 
STUDY=STUDY_INPUT; 
ESym=sym('ESym'); 
if (STUDY==1) 
    PSS=-.75:.1:.75 
    else if (STUDY==2) 
        PSS=-1.5:.25:1.5 
        else if (STUDY==3) 
        PSS=-1.5:.25:1.5 
            else if (STUDY==4) 
        PSS=-.75:.15:.75 
                else if (STUDY==5) 
        PSS=-.75:.15:.75 
                    else if (STUDY==6) 
        PSS=-1.5:.25:1.5 
                        else if (STUDY==7) 
        PSS=-.75:.15:.75     
                            else 
                            PSS=1 
                            end 
  
                        end 
                    end 
                end 
            end 
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        end 
end 
  
  
     
  
for i=1:size(PSS,2); 
    PS=PSS(1,i); 
Index=Index+1; 
    [eh,el,t1,t2,t3]=DNA_Structure_Build(M,SQ,DLT,PS,ESym) 
 

(ii)  Hamiltonian matrix formation 
 
B=B_matrix_formation(M,eh,el,t1,t2,t3) 
EV=subs(B,{ESym},8.9) 
E0=eigs(EV,2*M) 
E1=zeros(2*M,1); 
TOL=sum(E1-E0); 
TOL=10; 
Tol=.1; 
while TOL>Tol 
    EV=subs(B,{ESym},abs(mean(E1(M:2*M,1))-mean(E0(M:2*M,1)))); 
    E1=eigs(EV,2*M); 
    TOL=(abs(mean(E1(M:2*M,1))-mean(E0(M:2*M,1)))) 
    E0=E1; 
end 
  
  
BW=1; 
[CR,TR,TS,ES,ER]=current_calculation(B,M,E0,PS,ESym) ; 
  TRT(Index,:)=TR 
  TST(Index,:)=TS;   
  ERE(Index,:)=ER;   
  ESE(Index,:)=ES;   
  CRC(Index,:)=CR; 
end 
save(['TRT_' num2str(STUDY_INPUT) '.mat'],'TRT'); 
save(['TST_' num2str(STUDY_INPUT) '.mat'],'TST'); 
save(['ESE_' num2str(STUDY_INPUT) '.mat'],'ESE'); 
save(['ERE_' num2str(STUDY_INPUT) '.mat'],'ERE'); 
save(['CRC_' num2str(STUDY_INPUT) '.mat'],'CRC'); 
end 
 

(iii) DNA Structure Build 
 

function [eh,el,t1,t2,t3]=DNA_Structure_Build(M,SQ,DLT,PS,ESym) 
  
[muuue,theta,C,tho,kb,ThL,ThR,eGCh,eGCl,eATh,eATl ... 
    eGAh,eGAl,tGCh,tGChRs,tGChLs,tGChLa,tGChRa ... 
    tGCl,tGClLs,tGClRs,tGClLa,tGClRa ... 
    tGC,tGCLs,tGCRs,tGAs,tGAa ... 
     GC,AT,GAs,GAa... 
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     ]=Parameter_set(M,PS,ESym); 
VCT=V_T_CAL(theta,C); 
  
for I=1:M 
    
switch ( SQ(I) ) 
             
            case GC  
            C=6;     
                    if (SQ(I+1)==GC) 
                        eh(1,I)=eGCh; 
                        el(1,I)=eGCl; 
                        t1(1,I)=tGCh;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT);%; 
                       t2(1,I)=-tGC;%; 
                        t3(1,I)=tGCl;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT);%;; 
                    elseif (SQ(I+1)==AT) 
                        eh(1,I)=eGCh; 
                        el(1,I)=eGCl; 
                        t1(1,I)=-0.218;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                        t2(1,I)=-0.001; 
                        t3(1,I)=0.066;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                     
                    elseif (SQ(I+1)==GAs) 
                     
                        eh(1,I)=eGCh; 
                        el(1,I)=eGCl; 
                        t1(1,I)=0.254;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                        t2(1,I)=0.024; 
                        t3(1,I)=-0.153;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                     
                     
                    else (SQ(I+1)==GAa); 
                     
                        eh(1,I)=eGCh; 
                        el(1,I)=eGCl; 
                        t1(1,I)=-0.213;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                        t2(1,I)=0.024; 
                        t3(1,I)=-0.072;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                    end 
                     
  
  
            case AT  
            C=6;     
                if (SQ(I+1)==GC) 
                     
                        eh(1,I)=eATh; 
                        el(1,I)=eATl; 
                        t1(1,I)=-0.102;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                       t2(1,I)=-0.063; 
                        t3(1,I)=0.067;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                    elseif (SQ(I+1)==AT) 
                        eh(1,I)=eATh; 
                        el(1,I)=eATl; 
                        t1(1,I)=-0.011;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                        t2(1,I)=0.054; 
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                        t3(1,I)=-0.075;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                     
                    elseif (SQ(I+1)==GAa) 
                     
                        eh(1,I)=eATh; 
                        el(1,I)=eATl; 
                        t1(1,I)=-.002;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                        t2(1,I)=0.054; 
                        t3(1,I)=-0.079;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                     
                     
                    else (SQ(I+1)==GAs); 
                     
                        eh(1,I)=eATh; 
                        el(1,I)=eATl; 
                        t1(1,I)=0.027;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                        t2(1,I)=-0.054; 
                        t3(1,I)=-0.092;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                    end 
                 
  
                 
            case GAs 
             C=6;    
                if (SQ(I+1)==GC) 
                     
                        eh(1,I)=eGAh; 
                        el(1,I)=eGAl; 
                        t1(1,I)=-0.136;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                         %t1=VCT; 
                        t2(1,I)=0.091; 
                        t3(1,I)=-0.073;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                    elseif (SQ(I+1)==AT) 
                        eh(1,I)=eGAh; 
                        el(1,I)=eGAl; 
                        t1(1,I)=0.207;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                        t2(1,I)=-0.161; 
                        t3(1,I)=0.011;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                     
                    elseif (SQ(I+1)==GAs) 
                     
                        eh(1,I)=eGAh; 
                        el(1,I)=eGAl; 
                        t1(1,I)=-.002;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                        t2(1,I)=0.054; 
                        t3(1,I)=-0.079;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                     
                     
                    else (SQ(I+1)==GAa); 
                     
                        eh(1,I)=eGAh; 
                        el(1,I)=eGAl; 
                        t1(1,I)=tGChLa;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                        t2(1,I)=tGAa; 
                        t3(1,I)=tGClLa;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                    end 
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            case GAa  
             C=6;    
                if (SQ(I+1)==GC) 
                     
                        eh(1,I)=eGAh; 
                        el(1,I)=eGAl; 
                        t1(1,I)=0.146;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                        t2(1,I)=0.020; 
                        t3(1,I)=-0.071;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                    elseif (SQ(I+1)==AT) 
                        eh(1,I)=eGAh; 
                        el(1,I)=eGAl; 
                        t1(1,I)=-0.155;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                        t2(1,I)=0.131; 
                        t3(1,I)=-0.117;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                    elseif (SQ(I+1)==GAs) 
                     
                        eh(1,I)=eGAh; 
                        el(1,I)=eGAl; 
                        t1(1,I)=tGChLs;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                        t2(1,I)=tGAs; 
                        t3(1,I)=tGClLs;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                     
                     
                    else (SQ(I+1)==GAa); 
                     
                        eh(1,I)=eGAh; 
                        el(1,I)=eGAl; 
                        t1(1,I)=tGChLa;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                        t2(1,I)=tGAa; 
                        t3(1,I)=tGClLa;%+(V_T_CAL(theta+(DLT(I)-DLT(I+1)),C)-VCT); 
                    end 
                 
                     
end  
end 
 

(iv) current calculation 
 
function [CR1,TR,TS,ER,ES]=current_calculation(B,M,E0,PS,ESym) 
KKK=1; 
STP=0; 
V=0:.001:2; 
    V1=0:.1:1; 
    V2=0:.001:3; 
    muL=-10.5; 
    Bvol_Tem1=-10.5+V; 
    Bvol_Tem2=-8.5+V1; 
    Bvol_Tem3=-7+V2; 
   muR=[Bvol_Tem1 Bvol_Tem2 Bvol_Tem3];   
   FACTOR=2; 
[muuue,theta,C,tho,kb,ThL,ThR,eGCh,eGCl,eATh,eATl ... 
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    eGAh,eGAl,tGCh,tGChRs,tGChLs,tGChLa,tGChRa ... 
    tGCl,tGClLs,tGClRs,tGClLa,tGClRa ... 
    tGC,tGCLs,tGCRs,tGAs,tGAa ... 
     GC,AT,GAs,GAa... 
     ]=Parameter_set(M,PS,ESym); 
BW=1; 
  
  
  
TCR1=zeros(1,size(muR,2)); 
CR1=zeros(1,size(muR,2)); 
  STEP_NO=M*100; 
io=0; 
DOS=0; 
TRS=0; 
STEP=abs(E0(1)-E0(M))/STEP_NO; 
CONST1=STEP*4e-5/1e-9;  
CONT=0; 
OP=1; 
for E=E0(1):.1:E0(M);    
    for k=1:2 
       A=zeros(2*M,2*M); 
       A=E*eye(size(A,1))-subs(B,'ESym',E); 
       eig(A) 
       A=A+eye(size(A,1))*(-1)^k*sqrt(-1)*tho/BW; 
          G(:,:,k)=inv(A); 
    end 
   CONT=CONT+1;  
   T=300; 
    Ga=squeeze(G(:,:,1)); 
    Gr=squeeze(G(:,:,2)); 
    TMP=trace(Gr*ThL*Ga*ThR); 
    TRS=TRS+TMP; 
    DOS=DOS-imag(Ga(KKK,KKK))/pi; 
l=0; 
TR(1,CONT)=abs(TMP); 
ER(1,CONT)=E; 
     
    fL=1./(exp((E-muL)/(kb*T))+1); 
    fR=1./(exp((E-muR)/(kb*T))+1); 
    l=l+1; 
    TM2=CONST1*(fR-fL)*TMP; 
    CR1=CR1+TM2; 
    TCR1=TCR1+TM2; 
    STP=STP+1; 
    OP=OP+1 
end 
%subplot(2,1,1) 
%hold on 
%plot(E0(1):STEP:E0(M),TR) 
%pause(0.1) 
STP=0; 
STEP=abs(E0(M+1)-E0(2*M))/STEP_NO; 
CONST1=STEP*4e-5/1e-9;  
CONT=0; 
for E=E0(M+1):STEP:E0(2*M);  
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    for k=1:2 
       A=zeros(2*M,2*M); 
       A=E*eye(size(A,1))-subs(B,'ESym',E); 
       A=A+eye(size(A,1))*(-1)^k*sqrt(-1)*tho/BW; 
       G(:,:,k)=inv(A); 
    end 
     
   T=300; 
  
    Ga=squeeze(G(:,:,1)); 
    Gr=squeeze(G(:,:,2)); 
    TMP=trace(Gr*ThL*Ga*ThR); 
    TRS=TRS+TMP; 
    DOS=DOS-imag(Ga(KKK,KKK))/pi; 
l=0; 
CONT=CONT+1; 
TS(1,CONT)=abs(TMP); 
ES(1,CONT)=E; 
     
    fL=1./(exp((E-muL)/(kb*T))+1); 
    fR=1./(exp((E-muR)/(kb*T))+1); 
    l=l+1; 
    TM2=CONST1*(fR-fL)*TMP; 
    CR1=CR1+TM2; 
    TCR1=TCR1+TM2; 
    STP=STP+1; 
end 
%subplot(2,1,2) 
%hold on 
%plot(E0(M+1):STEP:E0(2*M),TS) 
%pause(0.1) 
  
end 
 

(v) Parameter set 
function [muuue,theta,C,tho,kb,ThL,ThR,eGCh,eGCl,eATh,eATl ... 
    eGAh,eGAl,tGCh,tGChRs,tGChLs,tGChLa,tGChRa ... 
    tGCl,tGClLs,tGClRs,tGClLa,tGClRa ... 
    tGC,tGCLs,tGCRs,tGAs,tGAa ... 
     GC,AT,GAs,GAa... 
     ]=Parameter_set(M,PS,ESym) 
global Sigma_G; 
global Sigma_C; 
global Tg; 
global Tc; 
global STUDY; 
muuue=0; 
theta=32; 
C=6; 
tho=10*1e-3; 
h=4.13566733e-15; 
kb=8.61e-5; 
Tho=0; 
    ThL=zeros(2*M,2*M); 
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    ThR=zeros(2*M,2*M); 
    ThL(1,1)=tho; 
    ThL(1,M+1)=tho; 
    ThL(M+1,1)=tho; 
    ThL(M+1,M+1)=tho; 
    ThR(M,M)=tho; 
    ThR(2*M,2*M)=tho; 
    ThR(2*M,M)=tho; 
    ThR(M,2*M)=tho; 
  
if (STUDY==1) 
 tGCh= -0.133+PS*(-0.133); 
  tGCl= -0.041+PS*(-0.041); 
else 
 tGCh= -0.133;  
  tGCl= -0.041; 
end 
 tGChLs= -0.213; 
 tGChRs= 0.146; 
 tGChLa= 0.254; 
 tGChRa= -0.136; 
  
  
 tGClLs= -0.072; 
 tGClRs= -0.071; 
 tGClLa= -0.153; 
 tGClRa= -0.073; 
  
 tGC= -0.05; 
 tGCLs= 0.024; 
 tGCRs= -0.025; 
 tGAs =0.02; 
 tGAa =0.091; 
TG=Tg+9.4*(ESym-Sigma_G+i*Tho)/Tg; 
 eGCh=( tGC+9.4+TG^2/(ESym-Sigma_G+i*Tho)); 
 TG=Tc+5.8*(ESym-Sigma_C+i*Tho)/Tc; 
 eGCl=( tGC+5.8+TG^2/(ESym-Sigma_C+i*Tho));  
  
  
 if (STUDY==2) 
  TG=Tg+9.4*(ESym-(Sigma_G+PS)+i*Tho)/Tg;    
  eGCh= ( tGC+9.4+TG^2/(ESym-(Sigma_G+PS)+i*Tho)); 
end 
if (STUDY==3)    
 TG=Tc+5.8*(ESym-(Sigma_C+PS)+i*Tho)/Tc; 
 eGCl=( tGC+5.8+TG^2/(ESym-(Sigma_C+PS)+i*Tho));   
end 
  
if (STUDY==4) 
 TG=Tg+PS+9.4*(ESym-Sigma_G+i*Tho)/(Tg+PS); 
 eGCh=( tGC+9.4+TG^2/(ESym-Sigma_G+i*Tho)); 
end 
if (STUDY==5)    
 TG=Tc+PS+5.8*(ESym-Sigma_C+i*Tho)/(Tc+PS); 
 eGCl=( tGC+5.8+TG^2/(ESym-Sigma_C)+i*Tho);  
end 
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 if (STUDY==6) 
  TG=Tg+9.4*(ESym-(Sigma_G+PS)+i*Tho)/Tg;    
  eGCh= ( tGC+9.4+TG^2/(ESym-(Sigma_G+PS)+i*Tho)); 
  TG=Tc+5.8*(ESym-(Sigma_C+PS)+i*Tho)/Tc; 
 eGCl=( tGC+5.8+TG^2/(ESym-(Sigma_C+PS)+i*Tho));   
 end 
   
 if (STUDY==7) 
 TG=Tg+PS+9.4*(ESym-Sigma_G+i*Tho)/(Tg+PS); 
 eGCh=( tGC+9.4+TG^2/(ESym-Sigma_G+i*Tho)); 
 TG=Tc+PS+5.8*(ESym-Sigma_C+i*Tho)/(Tc+PS); 
 eGCl=( tGC+5.8+TG^2/(ESym-Sigma_C+i*Tho));  
end 
  
 eATh= -9.76-muuue; 
 eATl= -6.56-muuue; 
 eGAh= -9.4-muuue; 
 eGAl=-5.84-muuue; 
  
 GC= 1; 
 AT= 2; 
 GAs= 3; 
 GAa= 4; 
  
 
function B=B_matrix_formation(M,eh,el,t1,t2,t3) 
%B=zeros(2*M,2*M); 
for I=1:M 
  
                    if ((I==1)||(I==M)) 
                    B(I,I)=eh(1,I); 
                    B(M+I,M+I)=el(1,I); 
                    else 
                    B(I,I)=eh(1,I);%+i*tho/100; 
                    B(M+I,M+I)=el(1,I); 
                    end 
  
  
                    if I<M 
                    B(I,I+1)=-t1(1,I); 
                    B(I+1,I)=-t1(1,I); 
                    B(M+I,M+I+1)=-t3(1,I); 
                    B(M+I+1,M+I)=-t3(1,I); 
                    B(I,M+I+1)=-t2(1,I); 
                    B(M+I+1,I)=-t2(1,I); 
                    end 
  
  
        T1(1,I)=t1(1,I);             
end 
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(vi) Transfer integral calculation 
 

function VVALU=V_T_CAL(theta,C) 
  
       a0 =0; 
       a1 =0; 
       b1 =0; 
       a2 =0; 
       b2 =0; 
       a3 =0; 
       b3 =0; 
       a4 =0; 
       b4 =0; 
       w =0; 
    if (C==1.0) 
     %/*TT*/ 
       a0 =-0.2867; 
       a1 =-0.4697; 
       a2=0.0; 
       a3=0.0; 
       b1 =0.2372; 
       a2 =-0.1644; 
       b2 =0.03453; 
       b3=0.0; 
       b4=0.0; 
       w =0.06417; 
       FI=1; 
  
    end 
    if (C==2.0) 
    %/*CC*/ 
       a0 =-0.3326; 
       a1 =-0.3204; 
       a2=0.0; 
       a3=0.0; 
       b1 =0.1865; 
       a2 =-0.1409; 
       b2 =0.02608; 
       b3=0.0; 
       b4=0.0; 
       w = 0.05618; 
       FI=1; 
  
    end 
    if (C==3.0) 
    %/*AA*/ 
       a0 =-0.2379; 
       a1 =-0.4194; 
       a2=0.0; 
       a3=0.0; 
       b1 =-0.01127; 
       a2 =-0.07489; 
       b2 =0.02547; 
       b3=0.0; 
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       b4=0.0; 
       w =0.05626; 
       FI=1; 
  
    end 
    if (C==4.0) 
    %/*GG*/ 
       a0 =-0.2073; 
       a1 =-0.3951; 
       a2=0.0; 
       a3=0.0; 
       b1 =0.1232; 
       a2 =-0.09205; 
       b2 =0.003048; 
       b3=0.0; 
       b4=0.0; 
       w =0.05438; 
       FI=1; 
  
    end 
    if (C==5.0) 
    % /*AT*/ 
       a0 =0.09894; 
       a1 =0.08126; 
       b1 =-0.1539; 
       a2 =0.08326; 
       b2 =0.08645; 
       a3 =0.01602; 
       b3 =0.009397; 
       a4 =0.003014; 
       b4 =-0.001768; 
       w = 0.06283; 
       FI=4; 
  
    end 
    if (C==6.0) 
    %/*GC*/ 
       a0 =0.0841; 
       a1 =0.1588; 
       b1 =0.1426; 
       a2 =-0.1499; 
       b2 =0.01449; 
       a3 =-0.02541; 
       b3 =0.07448; 
       a4 =0.02631; 
       b4 =-0.0379; 
       w = 0.09746; 
       FI=4; 
  
    end 
    if (C==7.0) 
    %/*AC*/ 
       a0 =13.06; 
       a1 =-8.802; 
       b1 =-19.64; 
       a2 =-7.779; 
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       b2 =8.36; 
       a3 =3.241; 
       b3 =1.074; 
       a4 =-0.08756; 
       b4 =-0.5004; 
       w =0.03142; 
       FI=4; 
  
    end 
    if (C==8.0) 
    %/*GA*/ 
        a0 =3.534e+009; 
       a1 =-5.52e+009; 
       b1 =1.247e+009; 
       a2 =2.561e+009; 
       b2 =-1.219e+009; 
       a3 =-6.395e+008; 
       b3 =5.028e+008; 
       a4 =6.447e+007; 
       b4 =-7.933e+007; 
       w =-0.006177; 
       FI=4; 
  
    end 
    if (C==9.0) 
    %/*CT*/ 
       a0 =-5067; 
       a1 =5267; 
       b1 =6278; 
       a2 =736; 
       b2 =-4168; 
       a3 =-1105; 
       b3 =637.8; 
       a4 =161.8; 
       b4 =58.44; 
       w =0.02353; 
       FI=4; 
  
    end 
    if (C==10.0) 
    %/*GT*/ 
       a0 =0.1099; 
       a1 =0.01836; 
       b1 =-0.03161; 
       a2 =-0.1138; 
       b2 =0.1188; 
       a3 =0.06883; 
       b3 =0.04597; 
       a4 =-0.05873; 
       b4 =-0.03044; 
       w =0.1215; 
       FI=4; 
  
    End 
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(vii) Parameter fitting for transfer integral 
     
VVALU=V_fun(a0,a1,a2,a3,a4,b1,b2,b3,b4,w,theta,FI); 
     
function temp=V_fun(a0,a1,a2,a3,a4,b1,b2,b3,b4,w,x,FI) 
  
if (FI==1) 
  
    temp=a0+a1*cos(x*w)+b1*sin(x*w)+a2*cos(2*x*w)+b2*sin(2*x*w); 
elseif (FI==4) 
     
    
temp=a0+a1*cos(x*w)+b1*sin(x*w)+a2*cos(2*x*w)+b2*sin(2*x*w)+a3*cos(3*x*w)+b3*sin(3*x*w)+a4*cos(4*
x*w)+b4*sin(4*x*w); 
  
end 
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