3 research outputs found

    Modeling of Spectrum Handoff in 3GPP LTE-A Indoor Deployment

    No full text
    40th International Conference on Telecommunications and Signal Processing (TSP) -- JUL 05-07, 2017 -- Barcelona, SPAINWOS: 000425229000043The lack of available radio spectrum and inefficiency in its usage necessitate a new communication paradigm requiring to exploit the existing spectrum opportunistically. One of the perspective spectrum sharing methods, which is currently under a heavy investigation by academia and industry as well across whole Europe, is called Licensed Shared Access (LSA). This novel technology allows for controlled sharing of spectrum between an original owner (primary user, incumbent) and a licensee (secondary user), such as the mobile network operators (MNOs), which coexist geographically. Despite certain benefits, there are still several issues to be solved before the LSA framework will be implemented in commercial infrastructure. One of them is the need to move secondary users (SUs) from the rented LSA band whenever the incumbent needs it. The potential solution for this problem is represented by spectrum handoff, which aims to help SUs to vacate the occupied licensed spectrum and find suitable network resources to resume the unfinished transmissions somewhere else. Inspired by this, we propose a decision making model considering several SUs attributes (RSSI, RSRP, RSRQ, SINR) in order to efficiently implement the handoff procedure and treat SUs to maximize total service time, spectrum utilization and SUs satisfaction. As an input for our simulation model, we have used the set of measurements performed in real 3GPP LTE-A indoor cellular system located at Brno University of Technology, Czech republic. Our achieved simulation results evaluate the spectrum utilization of three LTE cells and provide the total service time for each active SU, while different values of primary user's activity ratio are considered for each cell.National Sustainability Program [LO1401]; Ministry of Education and Science of the Russian FederationMinistry of Education and Science, Russian Federation [02.a03.21.0008]; Technology Agency of Czech Republic project [TF02000036]Research described in this paper was financed by the National Sustainability Program under grant LO1401. For the research, infrastructure of the SIX Center was used. The publication was financially supported by the Ministry of Education and Science of the Russian Federation (the Agreement number 02.a03.21.0008). This research was funded by the Technology Agency of Czech Republic project No. TF02000036

    Modeling of spectrum handoff in 3GPP LTE-A indoor deployment

    No full text
    The lack of available radio spectrum and inefficiency in its usage necessitate a new communication paradigm requiring to exploit the existing spectrum opportunistically. One of the perspective spectrum sharing methods, which is currently under a heavy investigation by academia and industry as well across whole Europe, is called Licensed Shared Access (LSA). This novel technology allows for controlled sharing of spectrum between an original owner (primary user, incumbent) and a licensee (secondary user), such as the mobile network operators (MNOs), which coexist geographically. Despite certain benefits, there are still several issues to be solved before the LSA framework will be implemented in commercial infrastructure. One of them is the need to move secondary users (SUs) from the rented LSA band whenever the incumbent needs it. The potential solution for this problem is represented by spectrum handoff, which aims to help SUs to vacate the occupied licensed spectrum and find suitable network resources to resume the unfinished transmissions somewhere else. Inspired by this, we propose a decision making model considering several SUs attributes (RSSI, RSRP, RSRQ, SINR) in order to efficiently implement the handoff procedure and treat SUs to maximize total service time, spectrum utilization and SUs satisfaction. As an input for our simulation model, we have used the set of measurements performed in real 3GPP LTE-A indoor cellular system located at Brno University of Technology, Czech Republic. Our achieved simulation results evaluate the spectrum utilization of three LTE cells and provide the total service time for each active SU, while different values of primary user's activity ratio are considered for each cell. © 2017 IEEE

    Modeling of spectrum handoff in 3GPP LTE-A indoor deployment

    No full text
    The lack of available radio spectrum and inefficiency in its usage necessitate a new communication paradigm requiring to exploit the existing spectrum opportunistically. One of the perspective spectrum sharing methods, which is currently under a heavy investigation by academia and industry as well across whole Europe, is called Licensed Shared Access (LSA). This novel technology allows for controlled sharing of spectrum between an original owner (primary user, incumbent) and a licensee (secondary user), such as the mobile network operators (MNOs), which coexist geographically. Despite certain benefits, there are still several issues to be solved before the LSA framework will be implemented in commercial infrastructure. One of them is the need to move secondary users (SUs) from the rented LSA band whenever the incumbent needs it. The potential solution for this problem is represented by spectrum handoff, which aims to help SUs to vacate the occupied licensed spectrum and find suitable network resources to resume the unfinished transmissions somewhere else. Inspired by this, we propose a decision making model considering several SUs attributes (RSSI, RSRP, RSRQ, SINR) in order to efficiently implement the handoff procedure and treat SUs to maximize total service time, spectrum utilization and SUs satisfaction. As an input for our simulation model, we have used the set of measurements performed in real 3GPP LTE-A indoor cellular system located at Brno University of Technology, Czech Republic. Our achieved simulation results evaluate the spectrum utilization of three LTE cells and provide the total service time for each active SU, while different values of primary user's activity ratio are considered for each cell. © 2017 IEEE
    corecore