128 research outputs found

    Reducing the effects of intersymbol interference in diffuse DPIM optical wireless systems

    Get PDF
    The paper investigates the performance of digital pulse interval modulation (DPIM) in the presence of multipath propagation and additive white Gaussian noise. To combat intersymbol interference (ISI), guard slots and a nonlinear equaliser have been introduced. The average optical power requirements (AOPR) due to ISI for cases with/without guard slots and with equaliser are analysed using a ceilingbounce model. Results obtained show that in the absence of equalisation, DPIM without guard slot offers a lower AOPR compared with on–off keying (OOK). Introducing guard slots gives a further reduction in AOPR by up to 4 dB due to the reduced duty cycle of the DPIM signal. The performance of DPIM without guard slot but using an equaliser is found to be significantly better than DPIM with guard slots on a channel with severe ISI

    Bit error performance of diffuse indoor optical wireless channel pulse position modulation system employing artificial neural networks for channel equalisation

    Get PDF
    The bit-error rate (BER) performance of a pulse position modulation (PPM) scheme for non-line-of-sight indoor optical links employing channel equalisation based on the artificial neural network (ANN) is reported. Channel equalisation is achieved by training a multilayer perceptrons ANN. A comparative study of the unequalised `soft' decision decoding and the `hard' decision decoding along with the neural equalised `soft' decision decoding is presented for different bit resolutions for optical channels with different delay spread. We show that the unequalised `hard' decision decoding performs the worst for all values of normalised delayed spread, becoming impractical beyond a normalised delayed spread of 0.6. However, `soft' decision decoding with/without equalisation displays relatively improved performance for all values of the delay spread. The study shows that for a highly diffuse channel, the signal-to-noise ratio requirement to achieve a BER of 10−5 for the ANN-based equaliser is ~10 dB lower compared with the unequalised `soft' decoding for 16-PPM at a data rate of 155 Mbps. Our results indicate that for all range of delay spread, neural network equalisation is an effective tool of mitigating the inter-symbol interference

    Effective denoising and adaptive equalization of indoor optical wireless channel with artificial light using the discrete wavelet transform and artificial neural network

    Get PDF
    Indoor diffuse optical wireless (OW) communication systems performance is limited due to a number of effects; interference from natural and artificial light sources and multipath induced intersymbol interference (ISI). Artificial light interference (ALI) is a periodic signal with a spectrum profile extending up to the MHz range. It is the dominant source of performance degradation at low data rates, which can be removed using a high-pass filter (HPF). On the other hand, ISI is more severe at high data rates and an equalizing filter is incorporated at the receiver to compensate for the ISI. This paper provides the simulation results for a discrete wavelet transform (DWT)—artificial neural network (ANN)-based receiver architecture for on-and-off keying (OOK) non-return-to-zero (NRZ) scheme for a diffuse indoor OW link in the presence of ALI and ISI. ANN is adopted for classification acting as an efficient equalizer compared to the traditional equalizers. The ALI is effectively reduced by proper selection of the DWT coefficients resulting in improved receiver performance compared to the digital HPF. The simulated bit error rate (BER) performance of proposed DWT-ANN receiver structure for a diffuse indoor OW link operating at a data range of 10-200 Mbps is presented and discussed. The results are compared with performance of a diffuse link with an HPF-equalizer, ALI with/without filtering, and a line-of-sight (LOS) without filtering. We show that the DWT-ANN display a lower power requirement when compared to the receiver with an HPF-equalizer over a full range of delay spread in presence of ALI. However, as expected compared to the ideal LOS link the power penalty is higher reaching to 6 dB at 200 Mbps data rate

    Indoor Localization Based on Visible Light Communication

    Get PDF
    With the increasing demand for accurate indoor localization and widespread deployment of light-emitting diodes (LEDs) for lighting, there has been a dramatic rise in research activities in many areas of indoor localization based on visible light communication (VLC), including modeling of VLC channels, localization methods, localization algorithms, and localization systems. In VLC based indoor localization systems, the reflection, interference and noise in the VLC channels cause the loss, fading and distortion of the transmitted signals. The bandwidth and the signal-to-noise ratio (SNR) of the channel directly affect the channel capacity, the design of modulation scheme, the transmitted power and the data rate. Therefore, it is imperative to capture the characteristics of different VLC channels and properly model them for dual purpose of illumination and localization. We start by a systematic investigation of the VLC channel models. We first investigate three possible configurations of indoor VLC links, and evaluate two widely used VLC channel models – the directed light-of-sight (LOS) optical channel and the nondirected LOS optical channel model. We next investigate the electrical SNR for VLC channels with intersymbol interference (ISI) and without ISI, and provide closed-form derivations to clarify some confusion on the electrical SNR in the literature.To help design and especially evaluate VLC localization schemes, we investigate, analyze and compare four possible localization methods applied to indoor VLC localization – time of arrival (TOA) methods, time difference of arrival (TDOA) methods, received signal strength (RSS) methods and angle of arrival (AOA) methods. For practicality, we consider intensity modulation and direct detection (IM/DD) and explore the dilution of precision (DOP) analysis, a metric that has been successfully deployed in GPS localization and AOA-based localization. For RSS-based indoor VLC localization, we establish a closed-form relation between positional DOP (PDOP) and the accuracy of RSS-based indoor VLC localization, use PDOP to analyze two localization scenarios with different LED grid patterns, and quantize the effect of LED grid patterns on the position errors. Simulation results confirm the effectiveness of the proposed approach

    Multi-user indoor optical wireless communication system channel control using a genetic algorithm

    Get PDF
    A genetic algorithm controlled multispot transmitter is demonstrated that is capable of optimising the received power distribution for randomly aligned single element receivers in multiple fully diffuse optical wireless communications systems with multiple mobile users. Using a genetic algorithm to control the intensity of individual diffusion spots, system deployment environment changes, user movement and user alignment can be compensating for, with negligible impact on the bandwidth and root mean square delay spread. It is shown that the dynamic range, referenced against the peak received power, can be reduced up to 27% for empty environments and up to 26% when the users are moving. Furthermore, the effect of user movement, that can perturb the channel up to 8%, can be reduced to within 5% of the optimised case. Compared to alternative bespoke designs that are capable of mitigating optical wireless channel drawbacks, this method provides the possibility of cost-effectiveness for mass-produced receivers in applications where end-user friendliness and mobility are paramount

    Flip-OFDM for Optical Wireless Communications

    Get PDF
    We consider two uniploar OFDM techniques for optical wireless communications: asymmetric clipped optical OFDM (ACO-OFDM) and Flip-OFDM. Both techniques can be used to compensate multipath distortion effects in optical wireless channels. However, ACO-OFDM has been widely studied in the literature, while the performance of Flip-OFDM has never been investigated. In this paper, we conduct the performance analysis of Flip-OFDM and propose additional modification to the original scheme in order to compare the performance of both techniques. Finally, it is shown by simulation that both techniques have the same performance but different hardware complexities. In particular, for slow fading channels, Flip-OFDM offers 50% saving in hardware complexity over ACO-OFDM at the receiver.Comment: published in IEEE Information Theory Workshop, Paraty Brazil, Sept 201

    Convolutional coded dual header pulse interval modulation for line of sight photonic wireless links.

    Get PDF
    The analysis and simulation for convolutional coded dual header pulse interval modulation (CC-DH-PIM) scheme using a rate ½ convolutional code with the constraint length of 3 is presented. Decoding is implemented using the Viterbi algorithm with a hard decision. Mathematical analysis for the slot error rate (SER) upper bounds is presented and results are compared with the simulated data for a number of different modulation techniques. The authors show that the coded DH-PIM outperforms the pulse position modulation (PPM) scheme and offers >4 dB code gain at the SER of 10?4 compared to the standard DH-PIM. Results presented show that the CC-DH-PIM with a higher constraint length of 7 offers a code gain of 2 dB at SER of 10?5 compared to the CC-DH-PIM with a constraint length of 3. However, in CC-DH-PIM the improvement in the error performance is achieved at the cost of reduced transmission throughput compared to the standard DH-PIM

    Wavelet transform - artificial neural network receiver with adaptive equalisation for a diffuse indoor optical wireless OOK link

    Get PDF
    This paper presents an alternative approach for signal detection and equalization using the continuous wavelet transform (CWT) and the artificial neural network (ANN) in diffuse indoor optical wireless links (OWL). The wavelet analysis is used for signal preprocessing (feature extraction) and the ANN for signal detection. Traditional receiver architectures based on matched filter (MF) experience significant performance degradation in the presence of artificial light interference (ALI) and multipath induced intersymbol interference (ISI). The proposed receiver structure reduces the effect of ALI and ISI by selecting a particular scale of CWT that corresponds to the desired signal and classifying the signal into binary 1 and 0 based on an observation vector. By selecting particular scales corresponding to the signal, the effect of ALI is reduced. We show that there is little variation when using 30 and 5 neurons in the first layer, with one layer ANN model showing a consistently worse BER performance than other models, whilst the 15 neuron model show some behaviour anomalies from a BER of approximately 10-3. The simulation results show that the Wavelet-ANN architecture outperforms the traditional MF based receiver even with the filter is matched to the ISI affected pulse shape. The Wavelet-ANN receiver is also capable of providing a bit error rate (BER) performance comparable to the equalized forms of traditional receiver structure
    corecore