26,697 research outputs found

    pandapower - an Open Source Python Tool for Convenient Modeling, Analysis and Optimization of Electric Power Systems

    Full text link
    pandapower is a Python based, BSD-licensed power system analysis tool aimed at automation of static and quasi-static analysis and optimization of balanced power systems. It provides power flow, optimal power flow, state estimation, topological graph searches and short circuit calculations according to IEC 60909. pandapower includes a Newton-Raphson power flow solver formerly based on PYPOWER, which has been accelerated with just-in-time compilation. Additional enhancements to the solver include the capability to model constant current loads, grids with multiple reference nodes and a connectivity check. The pandapower network model is based on electric elements, such as lines, two and three-winding transformers or ideal switches. All elements can be defined with nameplate parameters and are internally processed with equivalent circuit models, which have been validated against industry standard software tools. The tabular data structure used to define networks is based on the Python library pandas, which allows comfortable handling of input and output parameters. The implementation in Python makes pandapower easy to use and allows comfortable extension with third-party libraries. pandapower has been successfully applied in several grid studies as well as for educational purposes. A comprehensive, publicly available case-study demonstrates a possible application of pandapower in an automated time series calculation

    Assessment of unintentional islanding operations in distribution networks with large induction motors

    Get PDF
    This paper is aimed at assessing the impact of unintentional islanding operations (IOs) in the presence of large induction motors (IMs) within distribution networks (DNs). When a fault occurs,followingthecircuitbreaker(CB)faultclearing,theIMsacttransientlyasgenerators,duetoits inertia, until the CB reclosing takes place. The present work is the outcome of a project carried out in a small DN, where Âżeld measurements were recorded over two years. This paper provides a detailed description of the test system, a selected list of Âżeld measurements, and a discussion on modeling guidelinesusedtocreatethemodeloftheactualpowersystem. Themaingoalistovalidatethesystem model by comparing Âżeld measurements with simulation results. The comparison of simulations and Âżeld measurements prove the appropriateness of the modeling guidelines used in this work and highlight the high accuracy achieved in the implemented three-phase Matlab/Simulink modelPostprint (published version

    Multimodal electromechanical model of piezoelectric transformers by Hamilton's principle

    Get PDF
    This work deals with a general energetic approach to establish an accurate electromechanical model of a piezoelectric transformer (PT). Hamilton’s principle is used to obtain the equations of motion for free vibrations. The modal characteristics (mass, stiffness, primary and secondary electromechanical conversion factors) are also deduced. Then, to illustrate this general electromechanical method, the variational principle is applied to both homogeneous and nonhomogeneous Rosen-type PT models. A comparison of modal parameters, mechanical displacements, and electrical potentials are presented for both models. Finally, the validity of the electrodynamical model of nonhomogeneous Rosen-type PT is confirmed by a numerical comparison based on a finite elements method and an experimental identification

    Nuclear Magnetohydrodynamic EMP, Solar Storms, and Substorms

    Full text link
    In addition to a fast electromagnetic pulse (EMP), a high altitude nuclear burst produces a relatively slow magnetohydrodynarnic EMP (MHD EMP), whose effects are like those from solar storm geomagnetically induced currents (SS GIC). The MHD EMP electric field E < 10^-1 V/m and lasts < 10^2 sec, whereas for solar storms E > 10^-2 V/m and lasts >10^3 sec. Although the solar storm electric field is lower than MHD EMP, the solar storm effects are generally greater due to their much longer duration. Substorms produce much smaller effects than SS GIC, but occur much more frequently. This paper describes the physics of such geomagnetic disturbances and analyzes their effects.Comment: 29 pages, 14 figures, 5 table

    Linearized large signal modeling, analysis, and control design of phase-controlled series-parallel resonant converters using state feedback

    Get PDF
    This paper proposes a linearized large signal state-space model for the fixed-frequency phase-controlled series-parallel resonant converter. The proposed model utilizes state feedback of the output filter inductor current to perform linearization. The model combines multiple-frequency and average state-space modeling techniques to generate an aggregate model with dc state variables that are relatively easier to control and slower than the fast resonant tank dynamics. The main objective of the linearized model is to provide a linear representation of the converter behavior under large signal variation which is suitable for faster simulation and large signal estimation/calculation of the converter state variables. The model also provides insight into converter dynamics as well as a simplified reduced order transfer function for PI closed-loop design. Experimental and simulation results from a detailed switched converter model are compared with the proposed state-space model output to verify its accuracy and robustness

    AC voltage regulation of a bidirectional high-frequency link converter using a deadbeat controller

    Get PDF
    This paper presents a digital controller for AC voltage regulation of a bidirectional high-frequency link (BHFL) inverter using Deadbeat control. The proposed controller consists of inner current loop, outer voltage loop and a feed-forward controller, which imposes a gain scheduling effect according to the reference signal to compensate the steady-state error of the system. The main property of the proposed controller is that the current- and the voltage-loop controllers have the same structure, and use the same sampling period. This simplifies the design and implementation processes. To improve the overall performance of the system, additional disturbance decoupling networks are employed. This takes into account the model discretization effect. Therefore, accurate disturbance decoupling can be achieved, and the system robustness towards load variations is increased. To avoid transformer saturation due to low frequency voltage envelopes, an equalized pulse width modulation (PWM) technique has been introduced. The proposed controller has been realized using the DS1104 digital signal processor (DSP) from dSPACE. Its performances have been tested on a one kVA prototype inverter. Experimental results showed that the proposed controller has very fast dynamic and good steady-state responses even under highly nonlinear loads

    Discrete time domain small-signal modeling of full-bridge phase-shifted series resonant converter

    Get PDF
    • …
    corecore