3,237 research outputs found

    Accuracy of MAP segmentation with hidden Potts and Markov mesh prior models via Path Constrained Viterbi Training, Iterated Conditional Modes and Graph Cut based algorithms

    Full text link
    In this paper, we study statistical classification accuracy of two different Markov field environments for pixelwise image segmentation, considering the labels of the image as hidden states and solving the estimation of such labels as a solution of the MAP equation. The emission distribution is assumed the same in all models, and the difference lays in the Markovian prior hypothesis made over the labeling random field. The a priori labeling knowledge will be modeled with a) a second order anisotropic Markov Mesh and b) a classical isotropic Potts model. Under such models, we will consider three different segmentation procedures, 2D Path Constrained Viterbi training for the Hidden Markov Mesh, a Graph Cut based segmentation for the first order isotropic Potts model, and ICM (Iterated Conditional Modes) for the second order isotropic Potts model. We provide a unified view of all three methods, and investigate goodness of fit for classification, studying the influence of parameter estimation, computational gain, and extent of automation in the statistical measures Overall Accuracy, Relative Improvement and Kappa coefficient, allowing robust and accurate statistical analysis on synthetic and real-life experimental data coming from the field of Dental Diagnostic Radiography. All algorithms, using the learned parameters, generate good segmentations with little interaction when the images have a clear multimodal histogram. Suboptimal learning proves to be frail in the case of non-distinctive modes, which limits the complexity of usable models, and hence the achievable error rate as well. All Matlab code written is provided in a toolbox available for download from our website, following the Reproducible Research Paradigm

    Markov mezƑk a kĂ©pmodellezĂ©sben, alkalmazĂĄsuk az automatikus kĂ©pszegmentĂĄlĂĄs terĂŒletĂ©n = Markovian Image Models: Applications in Unsupervised Image Segmentation

    Get PDF
    1) KifejlesztettĂŒnk egy olyan szĂ­n Ă©s textĂșra alapĂș szegmentĂĄlĂł MRF algoritmust, amely alkalmas egy kĂ©p automatikus szegmentĂĄlĂĄsĂĄt elvĂ©gezni. Az eredmĂ©nyeinket az Image and Vision Computing folyĂłiratban publikĂĄltuk. 2) KifejlesztettĂŒnk egy Reversible Jump Markov Chain Monte Carlo technikĂĄn alapulĂł automatikus kĂ©pszegmentĂĄlĂł eljĂĄrĂĄst, melyet sikeresen alkalmaztunk szĂ­nes kĂ©pek teljesen automatikus szegmentĂĄlĂĄsĂĄra. Az eredmĂ©nyeinket a BMVC 2004 konferenciĂĄn Ă©s az Image and Vision Computing folyĂłiratban publikĂĄltuk. 3) A modell többrĂ©tegƱ tovĂĄbbfejlesztĂ©sĂ©t alkalmaztuk video objektumok szĂ­n Ă©s mozgĂĄs alapĂș szegmentĂĄlĂĄsĂĄra, melynek eredmĂ©nyeit a HACIPPR 2005 illetve az ACCV 2006 nemzetközi konferenciĂĄkon publikĂĄltuk. SzintĂ©n ehhez az alapproblĂ©mĂĄhoz kapcsolĂłdik HorvĂĄth PĂ©ter hallgatĂłmmal az optic flow szamĂ­tĂĄsĂĄval illetve szĂ­n, textĂșra Ă©s mozgĂĄs alapĂș GVF aktĂ­v kontĂșrral kapcsoltos munkĂĄink. TDK dolgozata elsƑ helyezĂ©st Ă©rt el a 2004-es helyi versenyen, az eredmĂ©nyeinket pedig a KEPAF 2004 konferenciĂĄn publikĂĄltuk. 4) HorvĂĄth PĂ©ter PhD hallgatĂłmmal illetve az franciaorszĂĄgi INRIA Ariana csoportjĂĄval, kidolgoztunk egy olyan kĂ©pszegmentĂĄlĂł eljĂĄrĂĄst, amely a szegmentĂĄlandĂł objektum alakjĂĄt is figyelembe veszi. Az eredmĂ©nyeinket az ICPR 2006 illetve az ICCVGIP 2006 konferenciĂĄn foglaltuk össze. A modell elƑzmĂ©nyekĂ©nt kidolgoztunk tovĂĄbbĂĄ egy alakzat-momemntumokon alapulĂł aktĂ­v kontĂșr modellt, amelyet a HACIPPR 2005 konferenciĂĄn publikĂĄltunk. | 1) We have proposed a monogrid MRF model which is able to combine color and texture features in order to improve the quality of segmentation results. We have also solved the estimation of model parameters. This work has been published in the Image and Vision Computing journal. 2) We have proposed an RJMCMC sampling method which is able to identify multi-dimensional Gaussian mixtures. Using this technique, we have developed a fully automatic color image segmentation algorithm. Our results have been published at BMVC 2004 international conference and in the Image and Vision Computing journal. 3) A new multilayer MRF model has been proposed which is able to segment an image based on multiple cues (such as color, texture, or motion). This work has been published at HACIPPR 2005 and ACCV 2006 international conferences. The work on optic flow computation and color-, texture-, and motion-based GVF active contours doen with my student, Mr. Peter Horvath, won a first price at the local Student Research Competition in 2004. Results have been presented at KEPAF 2004 conference. 4) A new shape prior, called 'gas of circles' has been introduced using active contour models. This work is done in collaboration with the Ariana group of INRIA, France and my PhD student, Mr. Peter Horvath. Results are published at the ICPR 2006 and ICCVGIP 2006 conferences. A preliminary study on active contour models using shape-moments has also been done, these results are published at HACIPPR 2005

    Deep learning in remote sensing: a review

    Get PDF
    Standing at the paradigm shift towards data-intensive science, machine learning techniques are becoming increasingly important. In particular, as a major breakthrough in the field, deep learning has proven as an extremely powerful tool in many fields. Shall we embrace deep learning as the key to all? Or, should we resist a 'black-box' solution? There are controversial opinions in the remote sensing community. In this article, we analyze the challenges of using deep learning for remote sensing data analysis, review the recent advances, and provide resources to make deep learning in remote sensing ridiculously simple to start with. More importantly, we advocate remote sensing scientists to bring their expertise into deep learning, and use it as an implicit general model to tackle unprecedented large-scale influential challenges, such as climate change and urbanization.Comment: Accepted for publication IEEE Geoscience and Remote Sensing Magazin

    Change detection in optical aerial images by a multilayer conditional mixed Markov model

    Get PDF
    In this paper we propose a probabilistic model for detecting relevant changes in registered aerial image pairs taken with the time differences of several years and in different seasonal conditions. The introduced approach, called the Conditional Mixed Markov model (CXM), is a combination of a mixed Markov model and a conditionally independent random field of signals. The model integrates global intensity statistics with local correlation and contrast features. A global energy optimization process ensures simultaneously optimal local feature selection and smooth, observation-consistent segmentation. Validation is given on real aerial image sets provided by the Hungarian Institute of Geodesy, Cartography and Remote Sensing and Google Earth

    Markov Models and Extensions for Land Cover Mapping in Aerial Imagery

    Get PDF
    International audienceMarkov models are well-established stochastic models for image analysis and processing since they allow one to take into account the contextual relationships between image pixels. In this paper, we attempt to methodically review the use of Markov models and their extensions for Land Cover mapping problem in aerial imagery according to available literature and previous research works. A new Markov model combining Markov random fields and hidden Markov models and inspired from the NSHP-HMM model, initially introduced for Handwritten Words Recognition is defined. New learning and labeling procedures are derived
    • 

    corecore