6 research outputs found

    Modeling nonlinearities with mixtures-of-experts of time series models

    Get PDF
    We discuss a class of nonlinear models based on mixtures-of-experts of regressions of exponential family time series models, where the covariates include functions of lags of the dependent variable as well as external covariates. The discussion covers results on model identifiability, stochastic stability, parameter estimation via maximum likelihood estimation, and model selection via standard information criteria. Applications using real and simulated data are presented to illustrate how mixtures-of-experts of time series models can be employed both for data description, where the usual mixture structure based on an unobserved latent variable may be particularly important, as well as for prediction, where only the mixtures-of-experts flexibility matters

    Bayesian Nonparametric Density Autoregression with Lag Selection

    Full text link
    We develop a Bayesian nonparametric autoregressive model applied to flexibly estimate general transition densities exhibiting nonlinear lag dependence. Our approach is related to Bayesian density regression using Dirichlet process mixtures, with the Markovian likelihood defined through the conditional distribution obtained from the mixture. This results in a Bayesian nonparametric extension of a mixtures-of-experts model formulation. We address computational challenges to posterior sampling that arise from the Markovian structure in the likelihood. The base model is illustrated with synthetic data from a classical model for population dynamics, as well as a series of waiting times between eruptions of Old Faithful Geyser. We study inferences available through the base model before extending the methodology to include automatic relevance detection among a pre-specified set of lags. Inference for global and local lag selection is explored with additional simulation studies, and the methods are illustrated through analysis of an annual time series of pink salmon abundance in a stream in Alaska. We further explore and compare transition density estimation performance for alternative configurations of the proposed model

    A Nonlinear Mixture Autoregressive Model For Speaker Verification

    Get PDF
    In this work, we apply a nonlinear mixture autoregressive (MixAR) model to supplant the Gaussian mixture model for speaker verification. MixAR is a statistical model that is a probabilistically weighted combination of components, each of which is an autoregressive filter in addition to a mean. The probabilistic mixing and the datadependent weights are responsible for the nonlinear nature of the model. Our experiments with synthetic as well as real speech data from standard speech corpora show that MixAR model outperforms GMM, especially under unseen noisy conditions. Moreover, MixAR did not require delta features and used 2.5x fewer parameters to achieve comparable or better performance as that of GMM using static as well as delta features. Also, MixAR suffered less from overitting issues than GMM when training data was sparse. However, MixAR performance deteriorated more quickly than that of GMM when evaluation data duration was reduced. This could pose limitations on the required minimum amount of evaluation data when using MixAR model for speaker verification
    corecore