45,437 research outputs found

    Spurious memory in non-equilibrium stochastic models of imitative behavior

    Full text link
    The origin of the long-range memory in the non-equilibrium systems is still an open problem as the phenomenon can be reproduced using models based on Markov processes. In these cases a notion of spurious memory is introduced. A good example of Markov processes with spurious memory is stochastic process driven by a non-linear stochastic differential equation (SDE). This example is at odds with models built using fractional Brownian motion (fBm). We analyze differences between these two cases seeking to establish possible empirical tests of the origin of the observed long-range memory. We investigate probability density functions (PDFs) of burst and inter-burst duration in numerically obtained time series and compare with the results of fBm. Our analysis confirms that the characteristic feature of the processes described by a one-dimensional SDE is the power-law exponent 3/23/2 of the burst or inter-burst duration PDF. This property of stochastic processes might be used to detect spurious memory in various non-equilibrium systems, where observed macroscopic behavior can be derived from the imitative interactions of agents.Comment: 11 pages, 5 figure

    Time series forecasting with the WARIMAX-GARCH method

    Get PDF
    It is well-known that causal forecasting methods that include appropriately chosen Exogenous Variables (EVs) very often present improved forecasting performances over univariate methods. However, in practice, EVs are usually difficult to obtain and in many cases are not available at all. In this paper, a new causal forecasting approach, called Wavelet Auto-Regressive Integrated Moving Average with eXogenous variables and Generalized Auto-Regressive Conditional Heteroscedasticity (WARIMAX-GARCH) method, is proposed to improve predictive performance and accuracy but also to address, at least in part, the problem of unavailable EVs. Basically, the WARIMAX-GARCH method obtains Wavelet “EVs” (WEVs) from Auto-Regressive Integrated Moving Average with eXogenous variables and Generalized Auto-Regressive Conditional Heteroscedasticity (ARIMAX-GARCH) models applied to Wavelet Components (WCs) that are initially determined from the underlying time series. The WEVs are, in fact, treated by the WARIMAX-GARCH method as if they were conventional EVs. Similarly to GARCH and ARIMA-GARCH models, the WARIMAX-GARCH method is suitable for time series exhibiting non-linear characteristics such as conditional variance that depends on past values of observed data. However, unlike those, it can explicitly model frequency domain patterns in the series to help improve predictive performance. An application to a daily time series of dam displacement in Brazil shows the WARIMAX-GARCH method to remarkably outperform the ARIMA-GARCH method, as well as the (multi-layer perceptron) Artificial Neural Network (ANN) and its wavelet version referred to as Wavelet Artificial Neural Network (WANN) as in [1], on statistical measures for both in-sample and out-of-sample forecasting

    Physical Pictures of Transport in Heterogeneous Media: Advection-Dispersion, Random Walk and Fractional Derivative Formulations

    Full text link
    The basic conceptual picture and theoretical basis for development of transport equations in porous media are examined. The general form of the governing equations is derived for conservative chemical transport in heterogeneous geological formations, for single realizations and for ensemble averages of the domain. The application of these transport equations is focused on accounting for the appearance of non-Fickian (anomalous) transport behavior. The general ensemble-averaged transport equation is shown to be equivalent to a continuous time random walk (CTRW) and reduces to the conventional forms of the advection-dispersion equation (ADE) under highly restrictive conditions. Fractional derivative formulations of the transport equations, both temporal and spatial, emerge as special cases of the CTRW. In particular, the use in this context of L{\'e}vy flights is critically examined. In order to determine chemical transport in field-scale situations, the CTRW approach is generalized to non-stationary systems. We outline a practical numerical scheme, similar to those used with extended geological models, to account for the often important effects of unresolved heterogeneities.Comment: 14 pages, REVTeX4, accepted to Wat. Res. Res; reference adde

    Extreme Value Laws for Superstatistics

    Full text link
    We study the extreme value distribution of stochastic processes modeled by superstatistics. Classical extreme value theory asserts that (under mild asymptotic independence assumptions) only three possible limit distributions are possible, namely: Gumbel, Fr\'echet and Weibull distribution. On the other hand, superstatistics contains three important universality classes, namely χ2\chi^2-superstatistics, inverse χ2\chi^2-superstatistics, and lognormal superstatistics, all maximizing different effective entropy measures. We investigate how the three classes of extreme value theory are related to the three classes of superstatistics. We show that for any superstatistical process whose local equilibrium distribution does not live on a finite support, the Weibull distribution cannot occur. Under the above mild asymptotic independence assumptions, we also show that χ2\chi^2-superstatistics generally leads an extreme value statistics described by a Fr\'echet distribution, whereas inverse χ2\chi^2-superstatistics, as well as lognormal superstatistics, lead to an extreme value statistics associated with the Gumbel distribution.Comment: To appear in Entrop
    • 

    corecore